
Toxicology Research

PAPER

Cite this: Toxicol. Res., 2016, 5, 1029

Received 2nd March 2016,
Accepted 7th April 2016

DOI: 10.1039/c6tx00083e

www.rsc.org/toxicology

QSAR modeling for predicting reproductive toxicity
of chemicals in rats for regulatory purposes†
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The experimental determination of multi-generation reproductive toxicity of chemicals involves high

costs and a large number of animal studies over a long period of time. Computational toxicology offers

possibilities to overcome such difficulties. In this study, we have established ensemble machine learning

(EML) based quantitative structure–activity relationship models for predicting the reproductive toxicity

potential (LOAEL) of structurally diverse chemicals in accordance with the OECD guidelines. Accordingly,

decision tree forest (DTF) and decision tree boost (DTB) QSAR models were developed using a novel

dataset composed of the toxicity endpoints for 334 chemicals. Relevant structural features of chemicals

responsible for toxicity potential were identified and used in QSAR modeling. The generalization and pre-

diction abilities of the constructed QSAR models were evaluated by internal and external validation pro-

cedures and by deriving several stringent statistical criteria parameters. In the test set, the two models

(DTF and DTB) yielded R2 of 0.856 and 0.945, between the experimental and predicted endpoint toxicity

values. The models were also evaluated for predictive use through the most recent criteria based on root

mean squared error (RMSE) and mean absolute error (MAE). The values of various statistical validation

coefficients derived for the test data were above their respective threshold limits and thus put a high

confidence in this analysis. The applicability domains of the constructed QSAR models were defined using

the leverage and standardization approaches. The results suggest that the proposed QSAR models can

reliably predict the reproductive toxicity potential of diverse chemicals and can be useful tools for screen-

ing new chemicals for safety assessment.

1. Introduction

Humans are exposed to a variety of chemicals willingly
through the intake of drugs and pharmaceuticals, food pro-
ducts, beverages etc., and unwillingly due to interactions with
environmental chemicals and adulterants in various consum-
ables. Exposure to many of these chemicals has been estab-
lished to cause several toxic and adverse health effects,
including reproductive toxicity in animals. Reproductive tox-
icity refers to adverse effects produced by a chemical on the
reproductive ability of individuals such as alteration of sexual
organs and behavior, and the development of toxicity in
offspring.1 The results of animal studies are used by regulatory
agencies to help set human exposure guidelines.2 The primary
study used for assessing reproductive effects of chemicals is
the multi-generation reproductive test,3,4 which is typically

conducted under continuous exposure of male and female rats
from 10 week premating through lactation in the second gene-
ration.5 The multi-generation study also provides information
about the effects of the test substance on neonatal morbidity,
mortality, and test organs in the offspring, and data on pre-
natal and post-natal developmental toxicity.6 The LOAEL (lowest
observed adverse effect level) dose of a chemical is considered
an appropriate endpoint in multi-generation reproductive tox-
icity studies. The LOAEL is the minimum dose of a chemical
for which any adverse effect is observed. The USEPA and
OECD have developed experimental protocols for determining
the reproductive toxicity potential of chemicals in test
animals3,4,7,8 and the EPA’s toxicity reference database has
been developed for animal based multi-generation reproduc-
tion toxicity studies in rats, mice, hamsters, and minks (Tox-
RefDB)9 and specific effects within this category include
reproductive performance measures, male and female repro-
ductive tract effects, and sexual development landmarks.
However, the multi-generation reproductive toxicity tests are
the costliest and require a large number of animals. Moreover,
for a large number of chemicals in use and newly added
ones, it is almost impossible to screen them for their reproduc-
tive toxicity potential assessment using the experimental
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protocols.6 Accordingly, attention has been focused on finding
in vitro alternatives that can effectively screen a large number
of compounds for their effects relevant to reproductive tox-
icity.5 Recently, the European Union REACH (Registration,
Evaluation, Authorization and Restriction of Chemicals) legis-
lation has emphasized toxicological hazard and risk assess-
ments for all new and existing chemicals10 and advocates the
use of sufficiently validated computational prediction models
based on QSAR (quantitative structure–activity relationship) to
fill in the toxicity data gaps, and thus save time, and money
and help reduce the numbers of animals used for experi-
mental testing purposes.11 QSAR uses chemical information
on compound structures in the form of numerical quantities
(molecular descriptors) to correlate with the response property
or toxicity using appropriate statistical tools.12 Recently,
Dearden13 has summarized the history and development of
QSARs. The OECD (Organization for Economic Cooperation
and Development) has provided guidelines for QSAR model
development and validation for regulatory purposes.14 The
OECD guidelines emphasize the selection of a definite dataset
with a defined end-point (principle 1), an explainable model
building strategy in view of the nature of the selected data
(principle 2), a defined applicability domain of the con-
structed model (principle 3), appropriate validation strategies
corresponding to the goodness of fit, robustness and predictiv-
ity (principle 4), and finally offering a possible mechanistic
interpretation of the developed models (principle 5). There-
fore, robust and reliable QSAR models based on an appropriate
method and validated through OECD recommended pro-
cedures are required for the screening of chemicals for their
reproductive toxicity potential (LOAEL) for their risk assess-
ment. However, predictive modeling of chemical toxicity
requires high-quality experimental toxicity data for the devel-
opment and validation of new computational approaches. Sub-
sequently, in the past, significantly less attention has been
paid to the development of predictive QSAR models for chemi-
cal-induced reproductive toxicity endpoints. The EPA’s Toxicity
Reference Database (ToxRefDB), which compiles toxicity data

from high quality experimental studies, provides opportunities
for QSAR modelling studies.15 Subsequently, a few studies
have reported (Q)SAR analyses of reproductive toxicity
data.1,5,16,17 However, these were limited to classification
models only and no attempt has been made to perform
regression QSAR analysis for reproductive toxicity prediction.

In recent years, ensemble machine learning (EML)
methods, such as the decision tree forest (DTF) and the
decision tree boost (DTB), have emerged as unbiased tools for
QSAR modelling in computational toxicology. Ensemble tech-
niques have the advantage of alleviating the small sample size
problem by averaging and incorporating over multiple models
to reduce the potential for over-fitting the training data.18,19

These techniques are inherently non-parametric statistical
methods and make no assumption regarding the underlying
distribution of the values of predictor variables and can
handle numerical data that are highly skewed or multi-model
in nature20 and, moreover, are capable of capturing the non-
linear dependence in data and have been successfully used for
QSAR studies.21–29

The present study aims to identify relevant structural fea-
tures of the chemicals that could be responsible for their
reproductive toxicity potential in rats; and to establish reliable
QSAR models strictly in accordance with the OECD guidelines,
using the ToxRefDB toxicity data. Accordingly, QSAR models
based on EML methods (DTF and DTB) were constructed. The
models were rigorously validated using stringent statistical
parameters to ensure their external predictivity for untested
new chemicals.

2. Materials and methods

In this study, we intend to develop QSAR models for screening
the chemicals for their reproductive toxicity potential (LOAEL)
in rats using EML methods (DTF and DTB), in accordance with
the OECD principles. A schematic diagram showing the model-
ing steps is presented in Fig. 1.

Fig. 1 A workflow diagram showing the QSAR modeling steps.
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2.1 The dataset

Multi-generation reproductive toxicity data (oral LOAEL dose,
mg per kg body weight per d) of chemicals in rats were col-
lected from the ToxRefDB.9 This database contained multi-
generation reproductive toxicity endpoints of 863 compounds
in rats with the LOAEL dose, which have been generated
according to the OPPTS guideline (870.38).3 According to
Martin et al.5 the reproductive toxicity effects investigated were
the reproductive performance measures (e.g., fertility, mating,
and gestational interval), male and female reproductive tract
effects (e.g., testis, epididymis, ovary, and uterus pathology
and weight, along with sperm measures and morphology), and
sexual development landmarks (e.g., preputial separation,
vaginal opening, and anogenital distance). Additional infor-
mation regarding the treatment groups, including the life
stage and generation of the animals and the administered
dose, was available in ToxRefDB to provide additional context
for each chemical’s reproductive toxicity potential. In order to
obtain a high quality dataset, a rigorous screening process was
applied here. All the mixtures, duplicates and salts were
removed. Finally, a total of 334 chemicals in rats were retained
for QSAR analysis, which included 306 pesticides, 14 pharma-
ceuticals and 14 other organic chemicals (Table S1, ESI†).
Among the toxicity endpoints, 4 studies referred to a single
generation, 299 to two generations, 30 to three generations
and a single study to four generations, respectively. Prior to
the QSAR analysis, the LOAEL values were converted into the
negative logarithmic scale (pLOAEL, mmol per kg bw per d).
The end-point toxicity (pLOAEL) values ranged between
−0.89 and 3.36.

2.2 The molecular descriptors

In total, 633 1D and 2D molecular descriptors were calculated
for all the compounds using Chemopy.30 For calculating the
descriptors, SMILES (simplified molecular input line entry
system) of the compound were obtained from ChemSpider.31

The chemical structures available in ChemSpider corres-
ponding to the SMILES of the considered molecules were com-
pared with those in the PubChem.32 For the compounds for
which the chemical structures were found different, the
SMILES of such molecules were taken from the PubChem for
descriptor calculations. The calculated descriptors belong to
the constitutional, autocorrelation, Basak, Charge, MOE-type,
Burden, connectivity, E-state, Kappa, molecular property, and
topological categories. Although, during the development of
the models, all the descriptors in the pool were used in order
to identify the most relevant features, in the final QSAR
models the descriptors that can demonstrate the physical
meaning of the structural attributes of molecules were retained
to ensure the compliance of the OECD principles.

2.3 Data processing and descriptor selection

For QSAR analysis, the reproductive toxicity data (rat) were
split into the training (80%) and test (20%) sets using the
random distribution approach. A random distribution ensures

a uniform selection of test set molecules that cover the entire
range of the activity space of the total data.33 Further, the dis-
tribution of the structural features of the test and training set
compounds was checked using the principal components ana-
lysis (PCA)34 scores (Fig. 2). From these plots, it is evident that
the test set compounds were located in close proximity to the
training set compounds.

For the selection of relevant features for QSAR model devel-
opment, descriptors with low variation (≤0.5) were excluded
from the pool. With the remaining descriptors, DTF and DTB
based QSAR models were constructed using the training data
performing repeated runs and excluding the least contribut-
ing.21 Optimal model parameters were then determined
through a 10-fold cross-validation (CV). The mean squared
error (MSE) values were calculated to rank the contribution of
the descriptors in the current set for each model. The lowest
ranked descriptors (<10% contribution) were then removed in
the successive modeling steps.22 The most significant descrip-
tors were then retained and the corresponding prediction accu-
racies were computed. Finally the descriptors retained for the
QSAR models (DTF, DTB) are presented in Table 1. The distri-
bution (range) of the selected descriptors for QSAR analysis
shows that the compounds used in this study covered a
sufficiently large structural space.

The Tanimoto similarity index (TSI) was calculated to evalu-
ate the structural diversity of the compounds considered for

Fig. 2 Plot showing the distribution of the PCA scores of the descrip-
tors in the training and test compounds in (a) DTF QSAR and (b) DTB
QSAR analyses.
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QSAR modeling.35 TSI provides a measure for identifying the
mechanistic groups the target chemical was most likely to
belong to.36 The TSI for a pair of molecules, A and B, was cal-
culated as: TSIAB = 2ZAB[ZAA + ZBB − ZAB]

−1, where Z is the simi-
larity matrix. The TSI ranges from 0 (no similarity) to 1 (pair-
wise similarity). Smaller TSI means that compounds have good
diversity. The TSI values of the considered compounds ranged
between 0.001 and 0.229, which suggests a sufficiently high
structural diversity among the considered compounds.

2.4 The QSAR model development

In this study, the QSAR models were developed using the EML
methods (DTF and DTB) for predicting the reproductive tox-
icity (LOAEL) of the organic chemicals in rats. In the EML
approach, multiple learners are trained to solve the same
problem. An ensemble contains a number of base learners.37

The generalization ability of an ensemble is usually much
stronger than that of the base learners. Ensemble learning is
able to boost weak learners to make accurate predictions. The
DTF38 and DTB39 are ensembles of SDTs (single decision
trees). The DTF method implements the bagging algorithm,
which derives bootstrapped replicas of the original data. A
bootstrapped sample is constructed40 as D*

i ¼ Y *
i ; X

*
i

� �
, where

D consists of data {(Xi, Yi), i = 1, 2, …, n}, Yi is the real-valued
response and Xi is a p-dimensional predictor variable for the
ith instance. A bootstrapped predictor E(YIX = x) = f (x) is then
estimated as C*

n xð Þ ¼ hnðD*
i ; . . . ; D

*
nÞðxÞ, where Cn(x) = hn(D1, …,

Dn)(x), and hn is the nth hypothesis. Finally, the bagged predic-
tor is given as Cn;B xð Þ ¼ E* D*

nðxÞ
� �

. The bagging technique uses
the out of bag data rows for model validation and can reduce
variance when combined with the base learner generation,
with a good performance.

The stochastic gradient boosting algorithm implemented in
the DTB method creates a tree ensemble, as Fm(x) = Fm−1(x) +
Treem(x), where Fm represents the sum of all trees built in the
model. The method minimizes the loss function in the train-
ing set, {x,y}, where x and y are predictor and response vari-
ables, respectively. Regardless of the loss-function, the trees
fitting the gradient on pseudo-residuals are regression trees
trained to minimize MSE. The regularization parameter is the
number of gradient boosting iterations and achieved by
shrinkage, which consists in modifying the update rule as:
Fm(x) = Fm−1(x) + υγmhm(x), 0 < υ ≤ 1, where υ is the learning
rate, and hm(x) is the base learner. In this method, a certain
tree population is selected and the first tree is fitted to the
data. The residuals from the first tree are then fed into the

second tree which attempts to reduce the error. This process is
repeated through a chain of successive trees and the final pre-
dicted value is formed by adding the weighted contribution of
each tree.39 The number and depth of trees are the method’s
parameters in both the DTF and DTB. However, the primary
disadvantage of DTF and DTB is that the models are complex
and cannot be visualized like a single tree.

2.5 Model validation metrics

The DTF and DTB QSAR models developed here were validated
by both the internal and the external validation procedures.
For internal validation, a 10-fold CV procedure was adopted. In
CV, the training data D are divided into k (= 10) non-overlap-
ping subsets, D1, D2, …, Dk. At each iteration i (i = 1 to k), the
model is trained with D − Di and tested on Di. In this
approach, each test set is independent of the others.41 The
optimal architectures of the models were selected on the basis
of the MSE in the training and validation data42 calculated as:

MSE ¼ 1
n

Xn

i¼1

ŷi � yi
� �2, where n is the number of data points,

and ŷi and yi are the model predicted and measured values of
the response variable, respectively. For the external validation,
a separate test set was used, which was kept out during the
training phase. The prediction accuracies of the developed
QSAR models were evaluated in terms of the statistical para-
meters derived for the test data, such as the R2 (squared corre-
lation coefficient) and the root mean squared error (RMSE).
Recently, Alexander et al.43 emphasized that the prediction
accuracy of a QSAR model can be adequately assessed using
the R2 and RMSE values in the test data and proposed corres-
ponding criteria, R2 > 0.6 for the test set, calculated as:

R2 ¼ 1�

Xn

i¼1

yi � ŷi
� �2

Xn

i¼1

yi � ȳð Þ2
, where yi and ŷi have their usual mean-

ings and ȳ is the mean of the measured value of the variable.
Moreover, the test set RMSE of less than 10% of the range of
the target property is considered to be adequate. The predic-
tion quality of the developed QSAR models for test data was
also assessed using the recently proposed mean absolute error
(MAE) criteria.44 The MAE is considered to be a simpler and
more straightforward determinant of prediction errors45 and
is calculated as: MAE ¼ 1

n

P
yi � ŷi
�� ��. For a good prediction,

a QSAR model should meet the following criterion: MAE ≤ 0.1 ×
training set range AND MAE + 3σ ≤ 0.2 × training set range,

Table 1 Selected descriptors in QSAR modeling

Descriptor symbol QSAR model Descriptor range Description

naccr DTF 0.00–14.00 Number of H-bond acceptors
S35 DTF 0.00–70.15 Sum of E-state of atom type: dO
S36 DTF, DTB 0.00–63.67 Sum of E-state of atom type: ssO
Smax DTF, DTB 2.23–15.07 The maximal E-state value in all atoms
Smin DTF, DTB [−5.71]–1.59 The minimal E-state value in all atoms
TPSA DTB, DTF 0.00–221.31 Topological polarity surface area
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whereas a model will be considered to be a bad predictor if
MAE > 0.15 × training set range OR MAE + 3σ > 0.25 × training
set range. Here, the σ value denotes the standard deviation of
the absolute values for the test set data. The predictions which
do not fall under either of the above two conditions may be
considered to be of moderate quality. The Y-scrambling test
was performed to check for any chance-correlation in the deve-
loped QSAR models.46 Accordingly, models were derived using
various randomly rearranged endpoint activities in the train-
ing data with the selected descriptors and these were com-
pared with the optimal models in terms of the corresponding
values of R2. The chance-correlation in the developed QSAR
models was also checked deriving the value of cRp

2 for the
scrambled models47 as: cRp

2 ¼ R� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Rr

2
p

where Rr
2 rep-

resents the squared mean correlation coefficient of the ran-
domized model. A model for which the cRp

2 exceeds 0.5 might
be considered not the outcome of mere chance only.

2.6 Applicability domain analysis

The applicability domains (AD) of the developed QSAR models
were defined using the leverage48 and standardization49

approaches. The AD of a predictive model defines the theore-
tical region in space within which a model can make reliable
predictions.50,51 In the leverage method, the distance of a com-
pound from the centroids of its training set is measured by the
leverage, hi, of the compound, calculated from the descriptor
matrix (X) as: hi = xi

T(XTX)−1xi, where xi is a raw vector of mole-
cular descriptors for the ith compound. A value of hi > h* indi-
cates that the structure of the compound substantially differs
from those used for the model calibration. The h* value is

given as:52 h* ¼ 3ðpþ 1Þ
n

, where p is the number of variables

used in the model, and n is the number of training com-
pounds. However, a major limitation of this method is that the
value of h*, hence, the number of compounds within or
outside the AD of a model, would depend on the number of
compounds (n) in the training data. The AD of the QSAR
models was also analyzed by the standardization approach,49

which identifies the X-outliers (in the training set) and the
compounds that reside outside the AD (in the test set). In this
approach, the standardized value of each descriptor for each
compound in the training and test data is calculated as

Ski ¼ xki � x̄i
σxi

, where k = 1 to n (n is the total number of com-

pounds), i = 1 to m (m is the number of descriptors), Ski is the
standardized descriptor i for compound k (from the training
or test set), xki is the original descriptor i for compound k
(from the training or test set), x̄i is the mean value of the
descriptor xi for the training set compound only, and σxi is the
standard deviation of the descriptor xi for the training set com-
pounds only. If the maximum standardized values, [Si]max(k),
for the compounds are less than 3, there is no X-outlier in the
training set and no compound outside the AD in the test set;
however, in case the [Si]max(k) for any compound exceeds 3, the
minimum standardized value [Si]min(k) is calculated and if
[Si]min(k) for a compound exceeds 3, the compound is an

X-outlier (if in the training set) and is outside AD (if in the test
set). In case a compound has [Si]max(k) > 3 and [Si]min(k) < 3,
then Snew(k) can be calculated as Snew(k) = S̄k + 1.28σSk, where S̄k
and σSk are the mean and standard deviation of Si(k) values of
the compound k, respectively. If for a compound, Snew(k) ≤ 3,
then the compound is not an X-outlier (if in the training) and
is within AD (if in the test set).

3. Results and discussion
3.1 QSAR model development and validation

EML based QSAR models (DTF and DTB) were developed with
an aim to predict the reproductive toxicity potential (LOAEL) of
diverse chemicals in rats in accordance with the OECD prin-
ciples. The two approaches (DTF and DTB) identified six (S35,
S36, Smin, Smax, naccr, and TPSA) and four (S36, Smin, Smax,
and TPSA) descriptors, respectively, with four descriptors
common in both models. The optimal DTF and DTB models
have 200 and 410 number of trees in series, 25 and 10
maximum depth of any tree, and 161.5 and 803.8 number of
average group splits, respectively. In the training and 10-fold
CV, the MSE values for DTF and DTB models were 0.11, 0.59
and 0.05, 0.60, respectively. In Y-randomization, the respective
values of R2 and cRp

2 for these QSAR models derived through
10-fold CV were 0.009, 0.929 and 0.010, 0.965, which revealed
that the original models are unlikely to arise as a result of
chance-correlation. Moreover, according to Topliss53 to mini-
mize the chance correlation in regression methods, the ratio
of training set compounds to the descriptors should be at least
5 : 1.54 In the present study the ratio between the training set
compounds (n = 267) and selected descriptors (6 in DTF and 4
in DTB) was much higher in the two QSAR models. The con-
structed models in the training and test data captured 87.71%,
85.65% (DTF), and 94.82%, 94.49% (DTB), respectively, of the
data variances. The proportion of variance explained by model
variables is the best single measure of how well the predicted
values match the actual values. A model predicting exactly
matching values with measured ones would explain 100% var-
iance in data.19 The contributions of different descriptors in
the two models are plotted in Fig. 3. In DTB, the relative
importance of each independent variable to the model fit is
measured through a reduction in the Huber loss summed
across all the internal nodes, of all the trees, that split on that
variable and divided by the total number of internal nodes
(number of internal nodes per tree × number of trees), yielding
a squared importance for that variable. In DTF, the contri-
bution measures are based on the number of times a variable
is selected for splitting, weighted by the squared improvement
to the model as a result of each split, and averaged over all the
trees.55 The relative importance is finally obtained in the range
of 0–100 percent.56

Fig. 3 shows that in both the DTF and DTB models, Smin
has the highest (100%) contribution, whereas naccr (45.61%)
in DTF and S36 (74.65%) in DTB contributed the least among
the selected descriptors. The S35, S36, Smax, and Smin are the
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E-state (electrotopological state index) descriptors. The E-state
index is developed from chemical graph theory and uses the
chemical graph (hydrogen-suppressed skeleton) for the gene-
ration of atom-level structure indices. The index is based on
the electronic effect of each atom on the other atoms in the
molecule as modified by molecular topology.57 It provides
information on the electronic state of the atom which depends
on π-bonds, lone pair electrons and σ-bonds that reflect quan-
titative availability of valence electrons.58 The S35 and S36
descriptors represent the sum of E-state of atom type vO and
–O–, respectively. The Smax and Smin represent the maximum
and minimum E-state values in all atoms. The topological
polar surface area (TPSA) is defined as the part of the surface
area of the molecule associated with N, O, and S and
H-bonded to any of these atoms.59 It correlates well with the
passive molecular transport through membranes and allows
the prediction of the transport properties of chemicals.60 The
naccr is a constitutional descriptor, and represents the

number of H-bond acceptors in a molecule. The molecular
descriptors used in the models encode information about the
structure, branching, electronic effects and polarity of the
molecules, and thus implicitly account for the cooperative
effect between functional groups. Among these, the naccr (r =
0.08) and S36 (r = 0.20) have a positive correlation with the
endpoint (pLOAEL), whereas S35 (r = −0.14), Smax (r = −0.05),
Smin (r = −0.23), and TPSA (r = −0.15) exhibited a negative
relationship with the endpoint toxicity. A positive relationship
between a descriptor and the endpoint toxicity (pLOAEL)
suggests that a higher value of the descriptor for a chemical
would mean an enhanced toxicity potential, whereas a negative
relationship would reflect a lower toxicity endpoint.

The external predictivity of the developed QSAR models was
evaluated using the R2 and RMSE values in the training and
test data (Table 2). The R2 represents the percentage of varia-
bility that can be explained by the model and RMSE describes
an average measure of error in predicting the dependent vari-
able.19 The R2 values obtained by these models (DTF and DTB)
in the training and test sets were 0.877, 0.948 and 0.856, 0.945,
respectively. These values are higher than the respective
threshold values prescribed for the training (0.50) and test
(0.60) arrays.43,61 Identical values for the R2 in training and
test sets indicate that the test set selected for the QSAR model
development had a similar distribution of responses to the
training set. The RMSE values yielded by the two models in
training and test data were 0.33, 0.23 (DTF) and 0.21, 0.14
(DTB), respectively (Table 2). According to a recent criterion
proposed by Alexander et al.43 a QSAR model may be con-
sidered useful if the RMSE in test data is less than 10% of the
test data range. In this study, the test data range was 3.12 and
the RMSE values yielded by the two models in the test set were
less than 0.31, and hence the developed QSAR models will be
useful for future predictions of new compounds. The external
predictivity of the developed QSAR models was also tested
using the MAE based criteria recently proposed by Roy et al.44

According to this criterion, the performance of a QSAR model
will be ‘good’, if the MAE in the test data is less than 10% of
the training data range (0.10 × TR). From the results (Table 2),
it is evident that the MAE values yielded by DTF and DTB
models in test data were 0.18 and 0.11, respectively. These
values are less than 10% of the training data range (TR = 4.25),
thus validating the goodness of the developed QSAR models
for external prediction. These criteria parameter values
demonstrated the high predictive power of the constructed
QSAR models for external prediction.

Fig. 3 Plot showing the contribution of input descriptors in (a) DTF
QSAR and (b) DTB QSAR models.

Table 2 Performance parameters for the QSAR models

QSAR models Data set R2 RMSE Data set range MAE TRa × 0.1 MAE + 3σ TRa × 0.2

DTF Training 0.877 0.33 4.25 — — — —
Test 0.856 0.23 3.12 0.18 0.43 0.59 0.85

DTB Training 0.948 0.21 4.25 — — — —
Test 0.945 0.14 3.12 0.11 0.43 0.36 0.85

a TR training set range.
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A distribution plot of experimental and model predicted
values of the response variable in training and test arrays may
provide a good measure of the model predictivity. It also helps
to visualize any under- or over-estimation of the endpoint vari-
able throughout the domain. The experimental and predicted
values of the pLOAEL values for the considered chemicals in
the training and test data are plotted in Fig. 4. It is evident
that the predicted results for both the QSAR models are in
good agreement with the corresponding experimental values
both in training and test sets. A further analysis of the pre-
dicted results revealed that 97% of the predicted pLOAEL
values (DTF QSAR) in the test set were within 0.5 units,
whereas in DTB QSAR, none of the predicted values showed
deviation >0.5 units. Moreover, we also analyzed the model
predicted values of the endpoint variable in test data for any
over- or under-prediction and 10% of the prediction results at
both the ends were investigated. From Fig. 4, it is evident that
both the models (DTF and DTB) slightly over-predicted the
endpoint variable at the lower end and under-predicted it at
the upper end.

The statistical parameters derived to assess the generaliz-
ation and prediction abilities of the two QSAR models (DTF
and DTB) revealed that the performances of the QSAR models
based on the two approaches were satisfactory and can be
used as tools for the prediction of the endpoint toxicity poten-
tial of new chemicals. However, the inter-comparison of the

developed models suggested that the performance of DTB
QSAR is better than that of DTF QSAR. The better performance
of the DTB method than that of DTF has earlier been reported
in several other studies.21,22,25,26

3.2 Applicability domain analysis

The AD of the developed QSAR models were determined by the
leverage and standardization approaches. For the identifi-
cation of the structurally influential and response outliers, we
have developed the Williams plots (Fig. 5) using a standardized
residual cut-off value of 3 against the leverage value, which
showed 3 training set compounds (Abamectin, kasugamycin,
spinetoram) by DTF and 4 compounds (Abamectin, kasugamy-
cin, spinetoram, temephos) by DTB as structurally influential
(Table S2, ESI†). These compounds have leverage values above
the respective critical values of 0.079 (DTF) and 0.056 (DTB).
However, a single compound (Abamectin) in DTF was detected
as the response outlier. Further, the outliers in the training
and test data were also identified using the standardization
approach.49 The analysis revealed that in DTF and DTB
models, 11 and 7 compounds in the training and 2 common
compounds in the test were found outside the respective AD
(Table S3, ESI†). The anomalous behavior of the compounds
outside the AD of the models may be due to some relevant
structural features present in these molecules and could not
be captured by the selected descriptors. The developed QSAR
models can be used to predict the endpoint toxicity of new

Fig. 4 Plot showing the distribution of the measured and model pre-
dicted pLOAEL values for chemicals in the training and test sets using (a)
DTF QSAR, and (b) DTB QSAR models. Fig. 5 Williams plot for (a) the DTF-QSAR and (b) DTB-QSAR models.
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compounds if they are located in the AD of the respective
models.

The most important features of our models are the simplicity,
reproducibility and interpretability of the descriptors employed
for the QSAR analysis. Furthermore, our models comply with the
OECD norms and implicate reliability while assessing new or
existing compounds and also support the REACH policies.62 In
the present study, the good performance of both QSAR models
based on DTF and DTB methods may be attributed to the
implementation of the bagging and boosting algorithms.

4. Conclusions

Robust and reliable EML based QSAR models have been estab-
lished for predicting the multi-generation reproductive toxicity
potential of the chemicals in accordance with the OECD guide-
lines. Accordingly, the multi-generation rat reproductive tox-
icity (LOAEL) data composed of 334 structurally diverse
chemicals were considered for model development and vali-
dation. Relevant and interpretable structural features derived
from the chemical structure were identified for model develop-
ment. The generalization and external prediction abilities of
the constructed models were verified using the most recent
statistical test parameters, which rendered a high confidence
in the developed QSARs. The excellent predictivity and general-
ization achieved for the models here may be attributed to the
bagging and boosting algorithms implemented in the EML
approaches (DTF and DTB) used for QSAR modeling. The
results of the AD analysis using the leverage method revealed a
single compound in DTF as the response outlier and thus con-
firmed the applicability of the constructed QSAR models over a
wide chemical space. This study has provided a powerful tool
for the prediction of the multi-generation reproductive toxicity
potential of chemicals in rats, which is useful for achieving
cost and effort reduction in the reproductive toxicity evaluation
of new chemicals.
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