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Aquatic toxicity is an important issue in pesticide development. In this study, using nine molecular finger-

prints to describe pesticides, binary and ternary classification models were constructed to predict aquatic

toxicity of pesticides via six machine learning methods: Naïve Bayes (NB), Artificial Neural Network (ANN),

k-Nearest Neighbor (kNN), Classification Tree (CT), Random Forest (RF) and Support Vector Machine

(SVM). For the binary models, local models were obtained with 829 pesticides on rainbow trout (RT) and

151 pesticides on lepomis (LP), and global models were constructed on the basis of 1258 diverse pesti-

cides on RT and LP and 278 on other fish species. After analyzing the local binary models, we found that

fish species caused influence in terms of accuracy. Considering the data size and predictive range, the

1258 pesticides were also used to build global ternary models. The best local binary models were

Maccs_ANN for RT and Maccs_SVM for LP, which exhibited accuracies of 0.90 and 0.90, respectively. For

global binary models, the best model was Graph_SVM with an accuracy of 0.89. Accuracy of the best

global ternary model Graph_SVM was 0.81, which was a little lower than that of the best global binary

model. In addition, several substructural alerts were identified including nitrobenzene, chloroalkene and

nitrile, which could significantly correlate with pesticide aquatic toxicity. This study provides a useful tool

for an early evaluation of pesticide aquatic toxicity in environmental risk assessment.

1 Introduction

Pesticides have become essential products in our daily life.
Modern pesticides are usually used to protect plants and
crops, but the release of pesticides continues to affect all
aspects of natural resources including the atmosphere, water,
soil and wildlife. Therefore, it is of importance to assess the
potential risk of pesticides to our health and the environment.
For water pollution, fishes are usually used as the model
species to evaluate aquatic toxicity; especially, under the EC
Regulation 1107/2009 (European Pesticide Regulation No.
1107/2009), there is a requirement for registrants to assess
whether pesticide metabolites are potentially harmful to the
environment and fish acute toxicity assessments may be
carried out. The experimental determination of acute fish tox-

icity usually involves an animal test, resulting in LC50 (lethal
concentration 50%) values. However, there is an increasing
need to reduce or replace animal tests for regulatory purposes.
Both in vitro and in silico approaches are hence developed as
non-animal alternatives.1–5

In practice, knowing whether a compound is toxic or non-
toxic, highly toxic or slightly toxic, rather than its exact toxicity
value is the first step of hazard risk assessment. The United
States Environmental Protection Agency (U.S. EPA) has defined
chemical toxicity categories of aquatic organisms, as shown in
Table 1, which are suitable for the abovementioned purpose.
According to these categories, chemical aquatic toxicity can be
divided into five categories: very highly toxic, highly toxic,
moderately toxic, slightly toxic, and practically nontoxic.

Table 1 Chemical toxicity categories in aquatic organisms

Toxicity
category

Aquatic organism
acute concentration
(PPM)

Binary
classification

Ternary
classification

Very highly toxic <0.1 1 2
Highly toxic 0.1–1 1 2
Moderately toxic 1–10 1 1
Slightly toxic 10–100 0 0
Nontoxic >100 0 0

†Electronic supplementary information (ESI) available: The SMILES strings and
toxic classes of all chemicals are listed in SI1 of ESI, and the performance of
binary and ternary classification models for ten-fold cross-validation using
different fingerprints and modeling methods is listed in SI2. See DOI: 10.1039/
c7tx00144d
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A large number of computational methods have been used
for the development of reliable prediction models of pesticide
toxicity on fishes. These models can be divided into local
models and global models.6–9 Local models are based on the
mode of action (MOA)10–13 and specific functional groups.14–18

However, the application of such models is limited due to the
pre-requirement of information on the MOA and functional
groups in the chemicals. Recently, local models based on tox-
icity data in a single test species and global models based on
combined toxicity data for different test species have been
proposed.19–21 Global models have the advantage that they are
applicable for many compounds across mechanisms of action
and structure.22,23 To date, local models24–26 have some limit-
ations in their application, while global models19,27,28 have a
larger applicability domain but limited numbers of pesticides.
Compared with the local ones, global models usually apply
different toxicity data in model building, and hence, they are
more difficult to be developed with high accuracy than local
ones to some extent.

However, most of these models are built by statistic
methods with limited compounds and molecular descrip-
tors.19 In recent years, several approaches to machine learning
have emerged as unbiased methods for building predictive
models.29–31 For example, Nikita used decision tree forest and
decision tree boost approaches with descriptors to build
models for predicting toxicity data of 318 pesticides in
O. mykiss (96 h LC50) and 294 pesticides in L. macrochirus (96 h
LC50).

28 Hence, in this study, we aim to use machine learning
methods to build both local and global models to predict pes-
ticide aquatic toxicity in various fish species. High-quality
diverse data were first collected from databases. Then, nine
fingerprints were used to represent the chemicals, and six
machine learning methods were applied to build binary and
ternary classification models for the prediction of toxicity. Two
fish species, i.e. rainbow trout (RT, O. mykiss) and bluegill
sunfish (LP, L. macrochirus), were used to build local models,
and only one fish species was used in each local model. In the
global models, the two fish species used above and some other
fishes were used together. We also compared our models with
ECOSAR,32 a computerized predictive system for estimating
aquatic toxicity, in terms of accuracy. At last, substructural
alerts33 of pesticides were analyzed by information gain and
substructure frequency analysis methods. The predictive
models built here would be very helpful for the assessment of
chemical aquatic toxicity.

2 Materials and methods
2.1 Data collection and preparation

Acute aquatic toxicity data of all pesticides were obtained from
the Pesticide Properties Database (PPDB 2015), which has
evolved from a database that originally accompanied the EMA
(Environmental Management for Agriculture) software and has
been systematically developed further and expanded with
funding from other research projects and earned income. Only

the data obtained in 96 hours for fresh water fish with LC50

values were chosen for this study. 2D chemical structures were
obtained from Aggregated Computational Toxicology Resource
(ACToR) database of the U.S. EPA by CAS Registry Number
(CASRN) using in-house scripts. All the structures were double
checked with the PubChem database.34 The data were pre-
pared by the following steps. First, the compounds including
inorganic compounds, organometallic compounds, salts and
mixtures were removed. Next, based on U.S. EPA guidelines of
toxicity categories (Table 1), the compounds were classified
into five levels. It is easy to clear the original data from PPDB,
as each compound has only one toxic value. Finally, the
dataset was randomly divided into two sets for model building
and external validation in the ratio of 8 : 2.

2.2 Molecular description

Molecular fingerprints are widely used in molecular descrip-
tion, similarity searching and classification. Nine fingerprints
were used in this work. They are Fingerprint (FP), Extended
fingerprint (Ext), Estate fingerprint (Est), MACCS fingerprint
(Maccs), PubChem fingerprint (Pub), Substructure fingerprint
(Sub) Graphonly fingerprint (Graph), AP2D fingerprint (AP2D)
and Klekota-Roth fingerprint (KR). All the fingerprints were
calculated using PaDEL-Descriptor software.35

2.3 Model building

Both local and global models were constructed, and binary
and ternary classification models were built separately. In the
binary classification models, very highly toxic, highly toxic and
moderately toxic data were combined as one class, and the
remaining slightly toxic and nontoxic data were combined as
the other class. While in the ternary classification models, very
highly toxic and highly toxic data were combined as one class;
moderately and slightly toxic data were used as the second
class, and nontoxic data were used as the third class. Six
machine learning methods (Naïve Bayes (NB), Artificial Neural
Network (ANN), k-Nearest Neighbor (kNN), Classification Tree
(CT), Random Forest (RF) and Support Vector Machine (SVM))
were employed for model building. The first five methods were
performed on Orange Canvas 2.7 (available free of charge at
the website: http://www.ailab.si/orange/). The SVM algorithm
was performed on the LIBSVM 3.16 package.36

NB is a simple classification method based on the Bayes
theorem for conditional probability.37 Neural networks are
good at fitting non-linear functions and recognizing pat-
terns;38 it was trained for classification by using the represen-
tative fingerprint of each class. The kNN classification method
is based on the closest training examples in a feature space;39

it was built by Orange and the parameter of k was set to ten in
the present work. Classification tree analysis is one of the
main techniques used in data mining.40,41 in this study,
orange with the default setting was used to perform the classi-
fication models by these four methods. Random forest is also
an ensemble learning method for classification (and
regression) that operates by constructing a multitude of
decision trees at training time and outputting the class that is
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the mode of the classes outputted by individual trees.42 In this
study, the number of trees in the forest was set as 10, stop
splitting nodes as 5, and the other parameters were the default
values. SVM is an excellent kernel-based tool for binary data
classification and can be used for classification and regression
analysis,43 and it has been successfully employed to solve
many binary classification problems by our group44,45 and
many others.46,47 In this study, the Gaussian radial basis func-
tion (RBF) kernel was used. RBF is a popular kernel function
used in SVM classification; the parameters C and γ for RBF
kernel were tuned on the training set by a 10-fold cross-
validation.

2.4 Evaluation of model performance

Ten-fold cross-validation31 was used to evaluate the robustness
of the models, while external validation set48 was used to
assess the predictive accuracy of the models. All models were
evaluated by the counts of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). The sensi-
tivity (SE), specificity (SP) and classification accuracy (CA) were
also calculated. In binary classification, the sensitivity, speci-
ficity, and overall predictive accuracy (CA) of the models were
calculated as follows:

sensitivity SE ¼ TP
TPþ FN

ð1Þ

specificity ðSPÞ ¼ TN
TNþ FP

ð2Þ

classification accuracy CA ¼ TPþ TN
TPþ TNþ FPþ FN

: ð3Þ

In ternary classification models, the overall predictive
accuracy was calculated as follows:

classification accuracyðCAÞ ¼ N0�0 þ N1�1 þ N2�2

NTotal
ð4Þ

Here, N0–0 means high toxicity was predicted as high tox-
icity; N1–1 means moderate toxicity was predicted as moderate
toxicity; N2–2 means non-toxicity was predicted as non-toxicity;
and NTotal represents the total number in the data set.

2.5 Analysis of substructural alerts

The privileged substructures or substructural alerts are
defined as molecular functional groups that are known to
induce toxicity. Their appearance in a chemical structure alerts

the researchers to potential toxicities of the test compounds.33

Hence, they are important tools to predict toxicity. We used
the method of information gain (IG) to search substructural
fragments, and the detailed method has been described in our
previous papers.45,49,50 Another method, named ChemoTyper,
was also used to identify toxic substructures.51

3 Results
3.1 Data collection and analysis

Acute aquatic toxicity data of all pesticides were obtained from
the Pesticide Properties Database (PPDB 2015). After standard-
ization of the data, we collected acute aquatic toxicity data of
1258 diverse pesticides including 828 on RT, 151 on LP and
278 on other fish species. All these data were separated into
training sets and external validation sets randomly in the ratio
of 8 : 2. The SMILES strings and toxic classes of all the data
sets are listed in the ESI (SI1†). The distributions of com-
pounds in different toxic classes of training sets and external
validation sets are listed in Table 2. The number of pesticides
in the training set and external validation set of the local
models was 663 and 166 for RT and 120 and 31 for LP. For the
global models, the number of unique compounds in the train-
ing set and external validation set was 1005 and 253,
respectively.

Chemical diversity is important for building a global and
robust classification model. Therefore, we used chemical space
and Tanimoto similarity to investigate the chemical diversity.
In this study, the chemical space distributed by these data sets
was defined by the molecular weight (MW) and A log P. The
chemical space distribution plot of the RT training set and
external validation set is depicted in Fig. 1A and that of LP
training set and external validation set is depicted in Fig. 1B;
chemical space distribution plot for all fish training and exter-
nal validation sets are depicted in Fig. 1C. From the chemical
space analysis, we found that data in the training and external
validation sets were distributed in the same chemical space,
which indicated that these models had a reasonable applica-
bility domain.

Tanimoto coefficient was used to evaluate the diversity of
chemicals. The heat maps of Tanimoto similarity index of the
above three datasets and their external validation sets are
shown in Fig. 2. The color closer to red in the heat map (with
high Tanimoto similarity index) means that the compounds

Table 2 Statistical data of pesticides in different toxic classes of training sets and external validation sets

Set name Total number
Training set External validation set

Very highly
toxic

Highly
toxic

Moderately
toxic

Slightly
toxic Nontoxic

Very highly
toxic

Highly
toxic

Moderately
toxic

Slightly
toxic Nontoxic

All 1258 (1005 : 253) 150 166 238 219 232 37 44 58 55 59
RT 829 (663 : 166) 104 116 154 139 150 25 30 39 35 37
LP 151 (120 : 31) 24 24 25 27 20 6 7 6 6 6
Others 278 (222 : 56) 22 26 61 53 60 6 7 13 14 16
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are more similar; on the contrary, the color closer to dark blue
(with low Tanimoto similarity index) means that the com-
pounds have higher diversity. The average Tanimoto similarity
indexes were 0.17 for RT training set, 0.16 for RT external
validation set, 0.17 for LP training set and 0.25 for LP external
validation set. Tanimoto similarity indexes for all fish training
set and the external validation set were 0.16 and 0.16, respect-
ively. These results indicated these datasets were chemically
diverse.

3.2 Performance of binary classification models

In this study, the local and global binary classification models
were built using nine fingerprints combined with six machine
learning methods, including NB, ANN, kNN, CT, RF and SVM.
The models were validated by ten-fold cross-validation and
external set validation. The CA, SE, SP and AUC values of top
10 classification models for ten-fold cross-validation are sum-
marized in Fig. 3, and detailed values of all binary classifi-
cation models are listed in ESI (SI2†).

Ten-fold cross-validation of the training set was performed
to evaluate models’ robustness. The best models were selected
based on the values of CA and AUC. For local models, the best
model of RT was Maccs_ANN (CA = 0.90, SP = 0.90, SE = 0.90,
AUC = 0.95), the best model of LP was Maccs_SVM (CA = 0.90,
SP = 0.89, SE = 0.90, AUC = 0.96). For global models, the best
model was Graph_SVM (CA = 0.89, SP = 0.89, SE = 0.89, AUC =
0.94).

The values of CA and AUC of all local and global models
were greater than 0.6, and for both local and global models,
the values of SE and SP were greater than 0.7, except some
models built with NB (SI2†). For RT and LP local models, com-
paring the performance of the six machine learning methods
when using the same fingerprint, SVM and ANN performed
better than the others and NB performed the worst.
Comparing the performance of nine fingerprints when using
the same algorithm, Maccs yielded the best results and KR
and Graph also performed pretty well. For global models, we
found the method with the worst performance was NB, but the
best fingerprint was Graph.

3.3 Performance of ternary classification models

In this study, 65% of the total data was about RT; considering
the data size, only global ternary classification models were
built using nine fingerprints combined with six machine
learning methods, including NB, ANN, KNN, CT, RF and SVM.
All the models were validated by ten-fold cross-validation and
external set validation. The CA, SE and AUC values of the top
10 models for ten-fold cross-validation are summarized in
Table 3 and the detailed values of all ternary classification
models are listed in ESI 2 (SI2†). The best model Graph_SVM
(CA = 0.81, SE_0 = 0.67, SE_1 = 0.89, SE_2 = 0.80, AUC = 0.92)
was selected based on the values of CA and AUC.

Compared with the results of binary classification for
global models, all ternary classification models performed
much worse. The values of CA and AUC of these ternary
models were much lower, and the values of SE for each class
were much lower too. By comparing the performance of the six
machine learning methods when using the same fingerprint,
we found that SVM and ANN performed better than the others
and NB performed the worst, which is the same as that for the
binary classification models. Comparing the performance of
the nine fingerprints, when using the same algorithm, finger-
prints Graph and AP2D yielded better results than other seven
fingerprints.

Fig. 1 Chemical space distribution of the training and external vali-
dation sets of RT, LP and all fish sets. N represents the number of chemi-
cals in different datasets. Chemical space was defined by molecular
weight (MW) and Ghose-Crippen LogKow (A log P).
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Fig. 2 Tanimoto similarity index for each training set and external validation set. A: RT training set; B: RT external validation set; C: LP training set;
D: LP external validation set; E: all fish training set; F: all fish external validation set.

Fig. 3 Top 10 binary models of RT, LP and all fish training set. AP2D: AP2D fingerprint, Est: estate fingerprint, Ext: extended fingerprint, FP: finger-
print, Graph: graphonly fingerprint, KR: Klekota-Roth fingerprint, Maccs: MACCS fingerprint, Pub: PubChem fingerprint, Sub: substructure finger-
print; ANN: artificial neural network, CT: classification tree, kNN: k-nearest neighbor, NB: naïve bayes, RF: random forest, SVM: support vector
machine.
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3.4 External set validation

3.4.1 External set validation of local binary classification
models. To further study the predictive ability of these classifi-
cation models, all local models were evaluated by external set
validation. The detailed results are shown in SI2.† For RT, the
top 5 prediction results are listed in Table 4; Maccs_ANN per-
formed the best and machine learning method SVM per-
formed pretty well. For LP, performance of top 5 binary classi-
fication models for the external validation set is listed in
Table 5; Est_CT gave the best performance, which seems very
strange. We think that the number of external test sets caused
this difference, as only 31 pesticides were used as external test
sets for LP fish.

3.4.2 External set validation of global binary classification
models. The external validation sets were used to evaluate pre-
dictive ability of all models in ten-fold cross-validation. The
detailed results of the external set validation are listed in
Table 6. The best model for the global binary model was
Maccs combined with ANN algorithm (CA = 0.83, SP = 0.83,
SE = 0.82, AUC = 0.89), which performed fourth best in the

ten-fold cross-validation, while the best model in the ten-fold
cross-validation did not perform very well in the external set
validation. The ranking by CA values of these external vali-
dation results were different from that in the ten-fold cross-
validation. But in the external set validation, we found that
ANN and SVM performed better than other algorithms and
Maccs performed better than other fingerprints, which is in
accordance with the results of ten-fold cross-validation.

3.4.3 External set validation of ternary classification
models. Although the results of all global ternary classification
models were not as good as binary classification models, the
external validation sets were also used to evaluate the predic-
tive ability of all models. The detailed results of the top 5 exter-
nal set validation sets are listed in Table 7. The best model for
the global ternary model was Pub combined with SVM algor-
ithm (CA = 0.67, SE_0 = 0.67, SE_1 = 0.67, SE_2 = 0.68, AUC =
0.85), which did not perform very well in the ten-fold cross-
validation. The results of external set validation further
explained that for the ternary global model, SVM performed
better than other algorithms and Pub performed better than
other fingerprints.

3.5 Comparison with ECOSAR

The Ecological Structure Activity Relationships (ECOSAR)
program is a computerized predictive system that estimates

Table 3 Performance of top 10 ternary classification models of all fish
species for the ten-fold cross validation

Modela AUC CA SE_0b SE_1b SE_2b

Graph_SVM 0.92 0.81 0.67 0.89 0.80
AP2D_KNN 0.90 0.80 0.72 0.81 0.84
AP2D_SVM 0.93 0.80 0.65 0.88 0.81
Graph_ANN 0.91 0.79 0.71 0.81 0.82
Maccs_SVM 0.91 0.79 0.65 0.85 0.82
AP2D_ANN 0.90 0.79 0.67 0.83 0.83
Graph_KNN 0.90 0.77 0.67 0.79 0.81
Pub_SVM 0.92 0.77 0.65 0.84 0.77
KR_SVM 0.91 0.77 0.66 0.83 0.76
Maccs_ANN 0.90 0.76 0.68 0.79 0.80

a AP2D: AP2D fingerprint, Est: estate fingerprint, Ext: extended finger-
print, FP: fingerprint, Graph: graphonly fingerprint, KR: Klekota-Roth
fingerprint, Maccs: MACCS fingerprint, Pub: PubChem fingerprint,
Sub: substructure fingerprint; ANN: artificial neural network, CT:
classification tree, kNN: k-nearest neighbor, NB: naïve bayes, RF:
random forest, SVM: support vector machine. b SE_0: SE value of data
labeled class 0, SE_1: SE value of data labeled class 1, SE_2: SE value of
data labeled class 2.

Table 4 Performance of top 5 binary classification models of RT for
the external validation set

Modela AUC CA SP SE

Maccs_ANN 0.88 0.81 0.81 0.82
Maccs_SVM 0.89 0.81 0.78 0.84
KR_SVM 0.87 0.81 0.77 0.84
Est_SVM 0.89 0.81 0.82 0.79
Ext_SVM 0.83 0.80 0.85 0.75

a AP2D: AP2D fingerprint, Est: estate fingerprint, Ext: extended finger-
print, FP: fingerprint, Graph: graphonly fingerprint, KR: Klekota-Roth
fingerprint, Maccs: MACCS fingerprint, Pub: PubChem fingerprint,
Sub: substructure fingerprint; ANN: artificial neural network, CT:
classification tree, kNN: k-nearest neighbor, NB: naïve bayes, RF:
random forest, SVM: support vector machine.

Table 5 Performance of top 5 binary classification models of LP for the
external validation set

Modela AUC CA SP SE

Est_CT 0.82 0.81 0.89 0.74
AP2D_KNN 0.76 0.79 0.89 0.71
KR_CT 0.77 0.76 0.89 0.65
AP2D_RF 0.74 0.76 0.78 0.74
Graph_NB 0.76 0.74 0.82 0.68

a AP2D: AP2D fingerprint, Est: estate fingerprint, Ext: extended finger-
print, FP: fingerprint, Graph: graphonly fingerprint, KR: Klekota-Roth
fingerprint, Maccs: MACCS fingerprint, Pub: PubChem fingerprint,
Sub: substructure fingerprint; ANN: artificial neural network, CT:
classification tree, kNN: k-nearest neighbor, NB: naïve bayes, RF:
random forest, SVM: support vector machine.

Table 6 Performance of top 5 binary classification models of all fish for
the external validation set

Modela AUC CA SP SE

Maccs_ANN 0.89 0.83 0.83 0.82
Est_SVM 0.88 0.82 0.86 0.80
Maccs_SVM 0.85 0.82 0.89 0.78
KR_SVM 0.85 0.80 0.86 0.77
Pub_SVM 0.83 0.81 0.87 0.76

a AP2D: AP2D fingerprint, Est: estate fingerprint, Ext: extended finger-
print, FP: fingerprint, Graph: graphonly fingerprint, KR: Klekota-Roth
fingerprint, Maccs: MACCS fingerprint, Pub: PubChem fingerprint,
Sub: substructure fingerprint; ANN: artificial neural network, CT:
classification tree, kNN: k-nearest neighbor, NB: naïve bayes, RF:
random forest, SVM: support vector machine.
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aquatic toxicity. To compare the accuracy of our models,
ECOSAR was used to predict chemical aquatic toxicity of our
both local and global external validation sets. For local exter-
nal validation set, ECOSAR gave CA = 0.72, SP = 0.65, and SE =
0.79, and for global external validation set, ECOSAR gave CA =
0.68, SP = 0.61, and SE = 0.77. These indicated that our models
had greater prediction accuracy for pesticide acute toxicity to
fish.

3.6 Identification of toxic substructures

To investigate structural differences between toxic and non-
toxic compounds, the IG method was performed to identify
toxic substructures in all datasets based on Maccs fingerprint.
According to the values of IG, p (positive) and n (negative), we
obtained 26 substructures, and the top 6 substructures are
shown in Table 8 for further analysis.

ChemoTyper was also used to validate the toxic substruc-
tures found above, and most of the six substructures such as
nitrile, chloroalkene, disulphide and phosphoric acid deriva-
tives in Table 8 can also be identified by ChemoTyper.

4 Discussion
4.1 Fish species influence predictive effect of models

As is known, data quality plays an important role in the results
of classification models. In binary classification models, for
example, we built local models for RT and LP and global
models for all data. We found that fish species do impact pre-
dictive effect of classification models by comparing results of
the local and global models. To further validate if fish species
influence the accuracy of classification models, data named
others was further used to build binary classification models;
the toxicity values of 278 pesticides were included many fish
species, such as Pimephales promelas, Brachydanio rerio,
Cyprinodon, Cyprinus carpio and some other unknown species.
All toxicity data which were about more than 10 varieties of
fish were used to build binary classification models to prove
fish species have a significant impact on the accuracy of classi-

fication models. CA and other evaluation index value results of
binary classification models built in this section are shown in
SI2.† Then, we found that CA values reduced by more than 6%
and SE values by about 2% on separately comparing values
with RT and LP binary classification models.

4.2 Comparison of different fingerprints and machine
learning methods

Nine fingerprints and six types of machine learning methods
were used to build local and global classification models, and
then we found which method and fingerprint perform the
best. CA value distribution was considered as the evaluation
index of each method and fingerprint. Boxplots of all methods
and fingerprints that can intuitively describe the distribution
of CA values are shown in Fig. 4. By comparing six different
machine learning methods, we found that SVM gave the best
performance for all local models and global models and ANN
was the second-best method with a CA value just a little lower
than that of SVM. Next in order were KNN, RF and CT. NB gave
the worst performance. For both local and global models, the
prediction accuracy of six methods showed a lot of consist-
encies. Thus, it can be concluded that the performance of
each method was less affected by fish species. By comparing
the nine fingerprints, we found that Graph, KR, Maccs, Pub
and AP2D gave good performance in most of the models,
while the other four fingerprints (Est, Ext, FP and Sub) did not
perform very well. By comparing the five fingerprints with
good performance, we found that Maccs did best in local
models such as RT and LP, while Graph and AP2D gave high
accuracy value in All fish and Others fish models. So, we
speculated that fish species influence the performance of each
fingerprint and Maccs is more applicable to build models for a
single species, while Graph and AP2D are more suitable to
build prediction models for various species of fish.

4.3 Analysis of substructural alerts

Several common substructures in Table 5 have been reported
before, such as nitrobenzene, nitrile and phosphoric acid
derivatives. Toxicity of nitrobenzene derivatives in fish is deter-
mined by both hydrophobicity (expressed by octanol/water par-
tition coefficient) and rate of reduction of the nitro group
(expressed by either electrochemical halfwave reduction poten-
tial or Hammett σ values).52 For nitrile families, the acute tox-
icity is caused by their character of strong electron-withdraw-
ing.53,54 Phosphoric acid esters are well-known insecticides
that act specifically by inhibiting acetylcholinesterase (AChE).
The enzyme AChE is inhibited by phosphorylation of a hydroxy
group in serine.55 It can also affect the cholinergic receptor
directly, leading the next neuron or effector to exhibit excessive
excitement or inhibition.56 Other substructures such as chloro-
alkene and disulphide can cause infestation of nerve centers
or injury of internal organs.57,58 Because of highly biologically
active of pyrazolyl group and formamido group, pyrazole-
carboxamide is widely used in pesticides. But fish experiments
show that pyrazolecarboxamide can lead to fluctuation of both
superoxide dismutase (SOD) and catalase (CAT) levels in all

Table 7 Performance of top 5 ternary classification models of all fish
for the external validation set

Modela AUC CA SE_0b SE_1b SE_2b

Pub_SVM 0.85 0.67 0.67 0.67 0.68
Est_SVM 0.84 0.66 0.61 0.70 0.62
KR_SVM 0.84 0.65 0.62 0.70 0.60
Pub_KNN 0.80 0.65 0.58 0.66 0.68
FP_SVM 0.81 0.63 0.63 0.66 0.59

a AP2D: AP2D fingerprint, Est: estate fingerprint, Ext: extended finger-
print, FP: fingerprint, Graph: graphonly fingerprint, KR: Klekota-Roth
fingerprint, Maccs: MACCS fingerprint, Pub: PubChem fingerprint,
Sub: substructure fingerprint; ANN: artificial neural network, CT:
classification tree, kNN: k-nearest neighbor, NB: naïve bayes, RF:
random forest, SVM: support vector machine. b SE_0: SE value of data
labeled class 0, SE_1: SE value of data labeled class 1, SE_2: SE value of
data labeled class 2.
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Table 8 Common substructural alerts identified in all fish data

Fragments (structure name) Example 1 (CAS number) (IC50 value ppm) Example 2 (CAS number) (IC50 value ppm)
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tissues.59 These substructural alerts are very important in eco-
logical risk assessment and can help us evaluate whether pesti-
cides can be freely used in water.

4.4 Comparison with others’ work

Pesticides have become essential products in everyday life, and
many researchers have already paid attention to pesticide
aquatic toxicity prediction. A fragment-based QSAR approach
was presented to correlate 96 h LC50 acute toxicity on rainbow
trout by Mose’ Casalegno.60 All 282 pesticides were used and
quantitative toxicity prediction yielded results for the training
set (R2TR 0.85) and test set (R2TS 0.75). Results of this single
fish species seemed really good, but only 282 pesticides were
considered; the lack of data might pose an insurmountable
barrier in toxicity prediction for pesticides’ complex structures
and tremendous amount. In another previous study,61 674
acute values linked to chemical MOA was developed for fish.
These 674 molecules included four aquatic species (three fish
species and one Daphnia magna): rainbow trout (Oncorhynchus
mykiss), fathead minnow (Pimephales promelas), bluegill
(Lepomis macrochirus), and cladoceran (Daphnia magna). In the
fish species, estimated values were highly correlated with
measured values (R2 > 0.87). In fact, it is always more valuable

to know whether it is toxic or not than to know the specific tox-
icity value for pesticides. At present, there are few predictive
models for the classification of pesticide toxicity. In this work,
many more pesticides (1258) were studied, and it could be
applied to a variety of toxicity predictions. For example, the
local models can help us predict toxicity of pesticide molecules
to specific species of fish such as RT or LP. When the species
of fish is not considered, global models can be used.

5 Conclusions

In the present study, nine fingerprints combined with six
machine learning methods were used to build both binary and
ternary classification models, which were based on a data set
of 1258 pesticides, aiming at predicting the acute toxicity for
fish. Based on the values of CA and AUC, the best models for
RT, LP and All fish groups were determined. For RT binary
classification models, Maccs_ANN gave the best result (CA =
0.90, SP = 0.90, SE = 0.90, AUC = 0.95); for LP binary classifi-
cation models, Maccs_SVM (CA = 0.90, SP = 0.89, SE = 0.90,
AUC = 0.96) performed the best; and for global models, the
best model was Graph_SVM (CA = 0.89, SP = 0.89, SE = 0.89,

Fig. 4 Boxplots of different machine learning methods and different fingerprints. AP2D: AP2D fingerprint, Est: estate fingerprint, Ext: extended
fingerprint, FP: fingerprint, Graph: graphonly fingerprint, KR: Klekota-Roth fingerprint, Maccs: MACCS fingerprint, Pub: PubChem fingerprint, Sub:
substructure fingerprint; ANN: artificial neural network, CT: classification tree, kNN: k-nearest neighbor, NB: naïve bayes, RF: random forest, SVM:
support vector machine.
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AUC = 0.94). From the above results, we can conclude that for
binary models, SVM and ANN are two good machine learning
methods for both local and global models, which means that
the accuracy of each method has nothing to do with fish
species. In contrast, fish species influence the performance of
each fingerprint, and we can conclude that fingerprint Maccs
is more applicable to local models, while fingerprint Graph is
more suitable to build global models. Considering the data
size, we neglected influence of different fish species and built
ternary classification models for all 1258 pesticides.
Graph_SVM gave the best result (CA = 0.81, SP = 0.95, SE =
0.67, AUC = 0.93), which is consistent with global binary
models which show that SVM and Graph perform better than
others. These results imply that our models are robust and
reliable and demonstrate that it is feasible to develop classifi-
cation models using fingerprints along with machine learning
methods. Moreover, the substructural alerts were identified,
which can be used to distinguish pesticide acute toxicity for
fish by means of information gain and substructure frequency
analysis. These substructural alerts appeared more frequently
in pesticides with high fish toxicity, and thus, they should be
responsible for acute aquatic toxicity, which would be helpful
for understanding reaction mechanism. In summary, this
study developed a series of predictive models including local
and global and binary and ternary models; all these models
can meet different prediction needs for acute aquatic toxicity
of pesticides. The identified toxic substructures responsible
for pesticide aquatic toxicity can be used for pesticide screen-
ing in the early stages of pesticide development.
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