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Abstract

Many immune receptors transduce activation across the plasma membrane through their 

clustering. With Fcγ receptors, this clustering is driven by binding to antibodies of differing 

affinities that are in turn bound to multivalent antigen. As a consequence of this activation 

mechanism, accounting for and rationally manipulating IgG effector function is complicated by, 

among other factors, differing affinities between FcγR species and changes in the valency of 

antigen binding. In this study, we show that a model of multivalent receptor-ligand binding can 

effectively account for the contribution of IgG-FcγR affinity and immune complex valency. This 

model in turn enables us to make specific predictions about the effect of immune complexes of 

defined composition. In total, these results enable both rational immune complex design for a 

desired IgG effector function and the deconvolution of effector function by immune complexes.

eTOC Blurb

Robinett et al. show that a multivalent binding model can predict antibody binding to immune 

effector cells. By using this model with measurements of the FcγR combinations expressed across 

effector populations, they are able to predict the outcome of tumor-targeted antibodies and identify 
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the essential innate cell types. These results inform the further rational design of therapeutic 

antibodies and potentially antibody combinations.

Introduction

Antibodies are critical and central regulators of the immune response. Antibodies of the IgG 

isotype interact with FcγR receptors expressed widely on innate immune effector cells. IgGs 

transduce effector function through multiple cell types—including macrophages, monocytes, 

neutrophils, and NK cells—and through multiple processes, including promoting antibody-

dependent cell-mediated cytotoxicity (ADCC), antigen presentation, and cytokine response. 

IgG immunotherapies, operating through regulating effector cell function, have been used in 

the treatment of both cancer and autoimmune diseases. In cancer treatment, IgG therapies 

can show a synergistic effect when used in combination with checkpoint or cytokine-

mediated immunotherapies (Moynihan et al., 2016; Zhu et al., 2015). These biologic agents 

are particularly versatile therapeutic agents on account of their immunotherapeutic effects 

and their ability to operate directly through antigen binding and opsonization.

The ability to quantitatively predict FcγR-IgG function would aid the understanding and 

treatment of cancer, autoimmune diseases, and infectious diseases. Efforts to engineer IgG 

treatments with improved effector response have included designing Fc variants with biased 

FcγR binding, deglycosylating Fc domains (with the effect of modulating FcγR binding), 

and utilizing alternative IgG subclasses with distinct binding profiles (Mimoto et al., 2013; 

Shields et al., 2002). In cases where antigen and antibody are exogenously provided, binding 

valency and affinity may be manipulated coordinately in a controlled manner (Ortiz et al., 

2016). With a better understanding of the underlying regulation, endogenous humoral 

responses might similarly be modulated through adjuvant engineering (Chung et al., 2015).

Previous efforts have sought to improve our understanding of IgG-mediated effector 

function. These include efforts to carefully quantify the individual, monovalent FcγR-IgG 
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interaction affinities (Bruhns et al., 2009; Gavin et al., 1998; Guilliams et al., 2014). Others 

have characterized the effects of IgG glycosylation (which serves to modulate FcγR affinity) 

and immune complex (IC) valency on the binding of IgG-antigen complexes (Lux et al., 

2013; Ortiz et al., 2016). Genetic models have made it possible to remove certain FcγRs and 

examine the consequent effect on IgG treatment, including in the treatment of various 

cancers (Bournazos et al., 2014; Clynes et al., 2000; Nimmerjahn and Ravetch, 2005). By 

comparing antibodies of matched variable region but differing Fc domains, one can evaluate 

the influence of effector function, though with necessarily pleiotropic effects on binding to 

each FcγR class (Bournazos et al., 2014; Nimmerjahn and Ravetch, 2005).

Models of multivalent ligand binding to monovalent receptors have been successfully 

employed to study the function of other immune receptors with corresponding binding 

models (Hlavacek et al., 1999a, Perelson:1981iii; Perelson, 1980; Perelson and DeLisi, 

1980). For example, a two-component binding model can capture the effect of T cell 

receptor activation or FcεRI binding (Hlavacek et al., 1999b; Stone et al., 2001). However, 

unlike these cases, distinct members of the FcγR family can be simultaneously expressed 

within most cells. Additionally, the multiple FcγRs present, with activating and inhibitory 

roles, ensure that any manipulation of IC composition will necessarily have multivariate 

effects. Thus, while the underlying theoretical models of multivalent binding are long-

standing, FcγR-IgG interactions are especially suited for developments in inference 

approaches to rigorously link these models to experimental observations (Foreman-Mackey 

et al., 2013; Graham and Storkey, 2016; Wingate et al., 2011).

In this study, we have employed a model of multivalent IC binding to FcγRs and show that 

it can capture experimentally measured binding at differing valencies. Applying this model, 

we show it can quantitatively predict effector response to diverse interventions in a forward 

manner and can deconvolve the causal factors of response in a reverse fashion. More 

broadly, these results demonstrate the abilities of both a unified binding model and 

computational inference techniques to link theory and experimental observation.

Results

IgG-FcγR binding varies with affinity and valency

Building upon earlier work in which IC valency was shown to alter human FcγR-IgG 

binding, we wished to examine the influence of IC valency and IgG composition on the 

binding and activation of different human FcγRs (hFcγRs) (Lux et al., 2013). We assessed 

the binding of ICs presenting one of four human IgG (hIgG) subclasses to cells expressing 

one of six hFcγR subclasses at a single IC concentration. To do so, we utilized a panel of 

CHO cell lines, each stably expressing a single hFcγR species, and two populations of IC, 

with average valencies of four and 26, assembled by covalently attaching 2,4,6-

trinitrophenol (TNP) to bovine serum albumin (BSA; see Methods). Anti-TNP antibodies of 

differing hIgG subclass were bound to the BSA complexes before treatment. The measured 

binding and variation in binding with valency recapitulated that measured before, with 

variation as a function of hIgG subclass, hFcγR, and valency (Lux et al., 2013) (Fig. 1A).
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We quantitatively measured receptor abundance for each hFcγR-expressing cell line to 

account for this potential source of variation in binding. This revealed twenty-fold variation 

in the amount of each hFcγR expressed (Fig. 1B). To interpret these measurements, we 

normalized the amount of binding measured to the amount of hFcγR expressed and plotted 

each measurement against the measured affinity of the individual hFcγR-hIgG monovalent 

interaction. We observed a strong correlation between the affinity of the relevant hFcγR-

hIgG pair and measured binding, along with a shift toward more binding with increased 

valency (Fig. 1C–D). By comparing each TNP-26-BSA and TNP-4-BSA measurement, we 

observed that the valency-dependent change in binding varied with the relevant affinity of 

the hFcγR-hIgG monovalent interaction (Fig. 1E). Lower affinity interactions were more 

avidity-dependent, and the measured binding for each IC with low monovalent affinity was 

too high to be the result of monovalent binding alone. These observations indicated to us 

that affinity, valency, and receptor expression were all critical to interpreting IC binding.

A multivalent interaction model accounts for variation in FcγR-IgG binding

To interpret the complicated variation in binding we observed with each hFcγR-hIgG pair 

(i.e. affinity), receptor expression, and IC valency, we employed an equilibrium model of 

multivalent ligand/monovalent receptor binding (Stone et al., 2001). Within the model, an 

initial binding event occurs with the kinetics of the monovalent interaction (Fig. 2A). 

Subsequent binding events with the same IC occur with a partition coefficient (crosslinking 

parameter) Kx (see Methods). Therefore, values of Kx ≫ 1 promote highly multivalent 

interactions, while Kx ≪ 1 result in predominantly monovalent binding.

Treating Kx as constant across receptor-epitope combinations may be reasonable when 

dealing with interactions of similar affinity, but clearly breaks down when a wide range of 

receptor-ligand affinities is involved (Perelson, 1981). For example, for an FcγR-IgG 

interaction of barely measurable affinity, one would not expect to see multimeric binding 

occur with the same partitioning as an extremely high affinity interaction. Most concerning, 

given the assumption of equilibrium, is that an assumption of constant Kx violates detailed 

balance when this model is extended to include multiple receptor species that all bind the 

same epitope. Therefore, in attempt to resolve these issues, we assume that Kx is 

proportional to Ka, such that there exists a crosslinking coefficient Kx
∗ such that Kx = Kx

∗Ka. 

With this assumption, detailed balance is preserved, and Kx is reduced when Ka is very low, 

as expected (see Methods).

We utilized a Markov chain Monte Carlo simulation to fit this model to our measurements of 

hFcγR-hIgG binding (Foreman-Mackey et al., 2013). We observed close agreement between 

measured values and our model’s prediction of each condition (Fig. 2B). Both the sample 

autocorrelation (fig. S1) and the Geweke diagnostic (Fig. 2C) indicated sampling 

convergence (Geweke, 1991). Inspecting the fit of each parameter revealed that all 

parameters were well-specified, and that many of the parameter fits closely agreed with prior 

expectations. The Kx
∗ parameter was found to be roughly 10−12 (Fig. 2D). For the high-

affinity hFcγRI-hIgG1 interaction, this comes out to a crosslinking constant of 6 × 10−5 per 

cell−1, close to the crosslinking constant of 1.35 × 10−5 per cell−1 observed for the high 

affinity human IgE-hFcεR interaction (Hlavacek et al., 1999b). This fit for the crosslinking 
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coefficient falls within a range that provides differing binding behaviour dependent upon the 

affinity of the receptor interaction (Fig. 2E). Namely, the predicted binding valency upon a 

single IC interaction responds to changes in both affinity and receptor expression level 

within the range experimentally observed. There was a 1.6-fold difference in the fit values of 

the conversion coefficients that convert the number of TNP-4-BSA and TNP-26-BSA bound 

to mean fluorescent intensity, with the coefficient for TNP-26-BSA being larger (Fig. 2F). A 

difference in the IC-to-fluorescence conversion coefficients is expected as IC binding was 

measured with an anti-TNP fluorescent antibody.

Both TNP-4-BSA and TNP-26-BSA showed a preference toward higher effective valency, 

TNP-4-BSA significantly so (Fig. 2G). The method for coupling TNP to BSA creates a 

(likely Poisson) distribution of valencies and so deviation from the average is not surprising. 

A preference toward higher effective valency than the average is perhaps consistent with our 

earlier measurements that valency has a potent effect on the level of binding (Fig. 1). That 

the deviation parameter for the IC binding data, σ1
∗, is fit to a greater value than the standard 

error of the receptor expression measurements, σ2
∗, is consistent with greater variation in the 

former measurements (Fig. 2H). We compared σ2
∗ to its experimental value by calculating 

the standard errors of the receptor expression measurements normalized to the means of 

these measurements, then averaging these values. The resultant number (0.08) was close to 

and fell within one standard deviation of the predicted value (0.06). Finally, fits of receptor 

expression closely matched measured levels (Fig. 2I). In total, this demonstrates that a 

multivalent binding model accurately captures hFcγR-hIgG binding.

A binding model provides specific predictions for the coordinate effects of IC abundance, 
valency, and IgG subclass

With confidence that an equilibrium binding model can predict FcγR-IC binding, we sought 

to apply the model to make predictions about the combined influence of ligand valency and 

Fc affinity on effector function. We focused on hFcγRIIIA, which is expressed alone within 

NK cells or alongside hFcγRIIB in dendritic and other cell populations (Lux et al., 2013; 

Robinette et al., 2015). Predicted binding curves showed a shift left with increased valency, 

consistent with the avidity-driven shift observed experimentally elsewhere (Ortiz et al., 

2016) (Fig. 3A). Examining the number of receptor-receptor crosslinks and the abundance of 

receptors in multimer complexes showed a strong change with valency, and biphasic 

concentration dependence (Fig. 3B–C). As a consequence of the differences in behavior 

between receptor multimerization and binding, increased valency leads to far more 

oligomerization at a comparable level of receptor binding (Fig. 3B–D). For example, an IC 

of valency 32 leads to the same amount of receptor oligomerization as the peak for valency 

two at a 1000-fold lower concentration, and while binding roughly 50-fold less receptor. 

This emphasizes that valency is an essential factor to consider for enacting effector 

responses and that measured receptor binding alone cannot predict consequent FcγR 

response.

In contrast to NK cells, other innate immune cell types express higher-affinity activating and 

lower-affinity inhibitory FcγRs in combination. Specifically, the inhibitory receptor 
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mFcγRIIB is known to dampen effector function both endogenously and during a response 

to exogenous mIgG treatment (Ravetch and Bolland, 2001). We wondered how coordinate 

expression of an activating and inhibitory receptor would modulate the hFcγR-IC complexes 

formed. To explore the coordination of heterogeneous receptor species, we extended the 

model to account for binding to multiple receptors expressed simultaneously on the cell 

surface. Bound ligand was assumed to partition among these receptors according to its 

affinity for each (Fig. 3E). We first plotted the abundance of multimerized hFcγRIIIA versus 

multimerized hFcγRIIB for varied valency and concentration of ICs. This indicated that, at 

low concentrations, hFcγRIIIA multimerization was higher at all valencies (Fig. 3F). Past a 

threshold concentration, hFcγRIIIA multimerization plateaued, and hFcγRIIB 

multimerization accumulated. This effect was observed for all valencies greater than one, 

only varying in the magnitude of the difference in multimerization, indicating that the effect 

of the lower affinity inhibitory receptor may modulate the concentration- and valency-

dependence only modestly. We additionally explored the influence of hFcγRIIB by defining 

an activity index (see Methods) as a surrogate measure for effector response. This also 

showed that inhibitory receptor has minor effects on the dose response relationship with 

respect to concentration or valency (Fig. 3C vs. G).

Instead, we wondered if an inhibitory receptor plays a larger role on influencing the relative 

response between IgG subclasses as compared to IC concentration or valency. Indeed, earlier 

work examining interventions of antibodies with constant variable regions but of differing 

IgG subclass identified that the ratio of the highest affinity activating receptor Ka to that of 

the sole inhibitory receptor (A/I ratio) could predict the influence of each intervention. 

While this ratio has proven successful across many contexts, we wondered if our model 

might help identify the reason for this quantity’s ability to predict effector response 

(Bournazos et al., 2014; Mimoto et al., 2013; Nimmerjahn and Ravetch, 2005). By varying 

the affinity of the activating receptor, we indeed observed a strong relationship between the 

A/I ratio and activity index over the range of ratios previously examined (Fig. 3H). A second 

implicit assumption of the A/I ratio is that the highest affinity receptor is the primary 

activating receptor that influences response. By varying the affinity of each receptor in a 

four-receptor model, we observed that the highest affinity receptor had the greatest influence 

on the activity index (see Methods) (Fig. 3I). Indeed, as lower affinity receptors were shifted 

to have higher affinity than the original highest affinity receptor, the response shifted toward 

dependence on that receptor.

An IgG-FcγR binding model deconvolves in vivo function

We wished to explore whether a multivalent binding model can enable one to reverse 

engineer effector function in vivo. We posited that our modeling approach would allow one 

to predict the effect of therapeutic interventions involving ICs with defined IgG subclass 

composition on the effector responses of different cell populations based on their FcγR 

expression profile. Prior studies investigating treatments for HIV, cancer, and autoimmune 

dysfunction have utilized antibodies with identical variable regions, while varying other 

parameters of FcγR engagement, to elucidate the influence of these parameters on effector 

function (Bournazos et al., 2014; Nimmerjahn and Ravetch, 2005). One finding from these 

studies is that the relative affinity of an IgG subclass for each FcγR is important to the 
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resulting response. We hypothesized that a more exact model of FcγR engagement would 

more robustly predict effector response (Fig. 4A).

To study in vivo effector response, we focused on the manipulations made in one study 

wherein antibodies against the B16F10 melanoma antigen TRP1 (TA99) were applied to 

block lung metastasis in C57BL/6 mice (Nimmerjahn and Ravetch, 2005). Using a panel of 

antibodies with differing constant region but identical antigen binding revealed that an A/I 

ratio predicted response as observed previously (Fig. 4B). However, we noted that murine 

IgG2b (mIgG2b) showed divergence from the strong relationship observed with the other 

antibody constructs. To study this panel of interventions further, we included a number of 

murine FcγR (mFcγR) knockout or blocking manipulations by assuming the affinity of the 

receptor would be zero (Table S1). The A/I ratio cannot exist in the absence of an inhibitory 

receptor, and so we regressed the log-transformed maximal activating affinity and inhibitory 

receptor affinity, including knockout receptor conditions, to see whether this information 

could predict response in the broader panel (Fig. 4C). The highest affinity activating receptor 

Ka and inhibitory receptor Ka, even when treated as separate quantities, poorly predicted 

response in this larger panel, suggesting that other information is required to predict 

response within a wider panel of perturbations.

Examining the affinities present with each intervention emphasized that each antibody 

treatment differs in a multivariate way (Fig. 4D); a single principal component explained 

only 62% of the variation in affinities across each condition. We hypothesized that, although 

the A/I ratio captures the dominant variation for smaller changes in antibody binding, the 

other variation becomes important for more divergent interventions. Using mFcγR 

measurements for a panel of peripheral immune populations (fig. S2A), we applied our 

binding model to predict the activity index for each population and intervention, assuming a 

set valency and ligand concentration (Fig. 4E). Regressing the activity index of each cell 

population against response showed greater predictive capacity than the A/I ratio within the 

wider panel of interventions (Fig. 4F). Multiple cell populations, including eosinophils and 

classical monocytes, were required for predicting response (Fig. 4G). Model prediction was 

robust to valency and ligand concentration within an order of magnitude (fig. S2B).

The components of the resulting predictive model revealed how the A/I ratio is usually but 

not always predictive. Each input quantity was scaled by model weighting to indicate the 

relative contribution of each cell population (Fig. 4E). From this, the divergent response of 

mIgG2b was elucidated. mIgG2a is predicted to operate prominently through classical 

monocyte activity by our model (Fig. 4H), consistent with recent findings (Lehmann et al., 

2017). In contrast, mIgG2b and mIgG2b-fucose are predicted to operate through both types 

of monocytes. Finally, our model provides predictions for the efficacy of interventions, such 

as engineered variants of mIgG2b, with specifically altered mFcγR affinities (Fig. 4I).

Discussion

A unified multivalent binding model accounting for IC valency and affinity provides a 

framework for reasoning about how IC binding is affected by changing antibody-antigen 

binding or constant region composition (Fig. 2). Glycosylation forms and engineered 
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mutants, in addition to variation in antigen binding, exponentially expand the repertoire of 

antibody variants possible. The quantitative model presented here provides a robust 

framework for reasoning about the contributions of each of these variables. Since it would 

not be feasible to experimentally explore all combinations of these variables, such a model is 

necessary for knowing which combinations would result in the most effective 

immunotherapeutic intervention. Further, a unified model for IC engagement may make it 

possible to consider the effects of antibody combinations in a rational manner.

In addition to enabling rationally designed immunotherapeutic interventions, our model of 

IC engagement makes it feasible to infer the factors contributing to the in vivo efficacy of 

existing immunotherapies (Fig. 4). In particular, we show through the application of our 

model to murine immunotherapy data that it can predict the effect of tumor-targeted 

antibodies better than an affinity ratio alone. This model additionally provides a number of 

specific, testable predictions: First, even modest reductions in inhibitory FcγR engagement 

may drastically increase the efficacy of mIgG2b, but only so long as activating receptor 

affinities are preserved (Fig. 4I). This ability to predict effector function for each individual 

cell population, given the kinetics of binding to each FcγR, will help to explore the complex 

changes constant region glyclosylation confers to antibody function (Jennewein and Alter). 

Second, our model implicates cMO cells in the ability of TA99 mIgG2a to clear lung 

metastases. Given recent results showing that tumor location influences the relevant effector 

cell populations, this suggests that the optimal antibody design may be dependent upon 

tumor location (Lehmann et al., 2017).

Applying this model can provide focus for future IgG engineering. For example, further 

development may inform application of antibody combinations of differing class for 

synergistic effector function. While we lack information about the effective valency of TA99 

engagement, more detailed characterization of its antibody binding might enable coordinate 

rational design of antibody class and antigen valency. Our model is dependent upon FcγR 

abundance and the quantitative relationship between binding state and cell response; 

therefore, further refinement of where these receptors are expressed and how they sense IC 

engagement will improve our ability to study the in vivo environment. In particular, effector 

function is a complex mix of processes, including ADCC, ADCP, and CDC. More detailed 

information about the activity of each of these processes with each treatment would allow 

for more narrowly targeted design. The versatility of antibody-based therapies ensure broad 

applicability of this approach to many diseases in which IgG effector function plays a key 

role, including the design of therapeutic antibodies for the treatment of infectious diseases, 

autoimmune disorders, and other cancers.

More generally, these results demonstrate the ability of molecular models linked to data-

driven inference to deconvolve in vivo function. Due to the baffling complexity of the 

immune system, model-driven design is vital to the advancement of rationally designed 

immunotherapies. Like Fc receptors, many innate immune receptors are extensively 

characterized in their interactions and knockout effects, and yet operate through 

combinatorial complexity due to diversity in protein species. As binding profiles and 

signaling mechanisms of these receptors become better quantified, model-driven design will 

prove to be a powerful vehicle for further immune engineering advancement.
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STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Aaron S. Meyer (ameyer@asmlab.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All cell lines used in binding studies are derivatives of the classical female (ovarian) cell line 

CHO derived from Chinese Hamster Cricetulus griseus in 1957 by TT Puck. Confirmation 

of FcgR expression and exclusion of cross-contamination with other FcγR expressing CHO 

cell lines was repeatedly performed during cell culture by flow cytometry. For binding 

studies, only cell lines exclusively expressing >90% of the expected FcγR were used.

Animal Experimentation in this work (i.e. blood sampling without any previous 

experimental treatment) was carried out with notification of the animal welfare officer of the 

University of Erlangen Nürnberg, the district veterinary office and the government of 

Central Franconia and approval by the relevant district veterinary office in accordance with 

ethical standards and relevant legislation in Germany and the European Union (Notification 

Reference number TS-13/14).

Mus musculus inbred C57Bl/6-J females, 8–12 weeks of age were used for Fc receptor 

quantification. The strain represents an immuno-competent disease free standard laboratory 

inbred strain. Mice were kept under IVC conditions with food and water ad libidum and a 12 

hrs day/night rhythm and received humane care in accordance with ethical standards and 

relevant legislation in Germany and the European Union. Inbreeding was performed by the 

commercial supplier (Janvier Laboratories). Animals were test naïve and had not been 

involved in previous experimental procedures.

METHOD DETAILS

Immune complex binding measurement—IC binding to hFcγRs was analyzed using 

Chinese hamster ovarian (CHO) cells stably expressing hFcγRs as previously described 

(Lux et al., 2013). Receptor expression was quantified using antibodies against each hFcγR 

and flow cytometry measurement as previously described (Lux et al., 2013). Briefly, ICs 

were generated by coincubation of 10 μg/ml anti-TNP hIgG and 5 μg/ml TNP-coupled BSA 

for 3 h with gentle shaking at room temperature. ICs were incubated with 100,000 CHO 

cells stably expressing hFcγRs for 1 h under gentle shaking at 4°C. Bound ICs were 

detected by flow cytometry using a PE-conjugated goat anti-human IgG F(ab′)2 fragment at 

0.5 mg/ml (Jackson ImmunoResearch Laboratories). Each IC binding measurement was 

normalized to the average of all the points within that replicate. Receptor expression was 

quantified in terms of absolute number through comparison to fluorescence standards (QSC 

microspheres, Bangs Labs). Data were analyzed with Flow Cytometry Analysis Software 

(FlowJo) or FACSDiva Software.
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FcγR abundance measurement for primary cells—FcγR abundance was measured 

by flow cytometry from peripheral blood leukocytes of female C57Bl/6J mice under steady 

state conditions.

After erythrocyte lysis of anti-coagulated blood, cells were stained with antibodies to enable 

identification of cell types and for quantification of Fcγ receptors as listed in the 

Supplementary Information. Prior to addition of the staining antibodies cells were blocked 

with anti-FcγR antibodies to avoid unspecific binding to Fc receptors. Samples for 

quantification of FcγR4 were blocked with anti-FcγR2b/3 antibody clone 2.4G2. Samples 

for quantification of mFcγRI, mFcγRIIb or mFcγRIII were blocked with anti-FcγRIV 

antibody clone 9E9, since FcγRIV receptor has been shown to be a potential cause for 

unspecific binding of certain antibody isotypes in flow cytometry (Biburger et al., 2015).

A typical cell identification strategy was as follows: Cell aggregates were excluded by their 

forward light scatter (FSC) characteristics (area vs. height) and dead cells based on their 

DAPI staining. Leukocytes were identified by expression of common leukocyte marker 

CD45. Among those lymphocytes and myeloid cells were gated based on low side scatter 

(SSC) characteristics and absence of the Ly6G marker of neutrophilic granulocytes. NK 

cells were identified by low to intermediate CD11b expression together with expression of 

NK marker NK1.1. Among the highly CD11b-positive but NK1.1-negative cells, CD11bhigh 

CD62Lhigh Gr-1high classical and CD11bhigh CD62Llow Gr-1low non-classical monocytes 

were distinguished based on their differential expression of Gr-1 and in most experiments 

additionally CD62L. Among the granulocytes with high SSC and CD11b expression, 

eosinophils were identified by their very high SSC, low FSC and absence of Ly6G, whereas 

neutrophils were characterized by intermediately high side and forward scatter and presence 

of the neutrophil marker Ly6G.

Surface receptor was quantitated by measuring antibody binding capacity (ABC) for 

antibodies specific for the respective Fcγ receptor. Calculation of ABC on cells is based on a 

reference curve for the correlation between fluorescence intensity (caused by the respective 

anti-FcγR antibody) and the number of antibody binding sites using a group of beads with 

known ABC values, reflecting their ability to bind a known amount of antibody. These 

curves were established in each experiment for all tested anti-FcγR antibodies, using 

Quantum Simply Cellular (QSC) anti-mouse or anti-rat beads (Bangs Laboratories Ltd.)—

depending on the host species of the respective anti-FcγR antibody—according to 

manufacturer’s instructions. Anti-FcγR4 antibody 9E9 is derived from Armenian hamster 

but was found to be efficiently bound by the anti-mouse QSC beads. Yet, in most 

experiments these beads were pre-coated with mouse anti-hamster moieties prior to staining 

with 9E9.

All anti-FcγR antibodies used for Fc quantification were used as conjugates with R-PE. 

They were either purchased pre-labelled or were conjugated in-house. In each experiment 

QSC microspheres are stained with the respective anti-FcγR antibody in the same 

concentration as it was used for cell staining. To allow subtraction of ABC-background 

accounting for background fluorescence of the cells, FMO (“fluorescence-minus-one”) 

controls were used in each experiment, where cells were stained with all antibodies for cell 

Robinett et al. Page 10

Cell Syst. Author manuscript; available in PMC 2019 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



type identification but without anti-FcγR antibody. Flow cytometric analysis was done on a 

FACS Canto II (BD Biosciences, Heidelberg) and data were analyzed with FACSDiva 

Software (BD). For ABC calculation we used the QuickCal software provided by Bangs 

Laboratories. FcγRs with average abundances less than 103 per cell were considered absent; 

in every case this determination was consistent with measurements in samples from 

knockout animals.

QUANTIFICATION AND STATISTICAL ANALYSIS

IgG-FcγR binding measurements were performed across all pairs of IgG and FcγR in four 

independent experimental replicates across independent passages on separate days. Cell line 

FcγR expression was measured in four independent experiments on separate passages and 

days. Primary cell FcγR expression data were measured across 3–5 animals in separate 

experiments. Each measurement with these data were analyzed individually according to the 

assumptions detailed below.

In vivo regression—Regression against in vivo effectiveness of mIgG treatments was 

performed by non-linear least-squares (scipy.optimize.least_squares). Association constants 

for all combinations of mIgG and mFcγR were obtained from previous experimental 

measurements (Gavin et al., 1998; Robinette et al., 2015). Each effectiveness was 

represented as the percent reduction in the number of lung metastases quantified 

(Nimmerjahn and Ravetch, 2005). Using an assumed ligand concentration and valency, as 

well as mFcγR expression, activities of each cell population were calculated using the multi-

receptor model as independent variables. To account for the limited range of this quantity 

(e.g. one cannot have a reduction of 200%), the regression was transformed by tanh such 

that the predicted effectiveness: y = tanh(X · p) so that limx→∞y(x) = 1. X is the predicted 

mFcγR activity for each cell line according to our model, and p is the regression weights.

Principle component analsysis of mIgG-mFcγR affinities—Principle component 

analysis was performed using scikit-learn and the affinities of the four mIgGs (mIgG1, 

mIgG2a, mIgG2b, mIgG3), with or without knockout treatments, for each of four receptors 

(mFcγRI, mFcγRIIB, mFcγRIII, mFcγRIV). Association constants for all combinations of 

mIgG and mFcγR were obtained from previous experimental measurements (Bruhns et al., 

2009). The affinity for a knocked-out or blocked mFcγR was assumed to be zero. The 

affinities were not centered or variance-scaled before PCA transformation.

Model

Base model: TNP-BSA equilibrium binding to FcγRs was modeled using a two-parameter 

equilibrium model of multivalent ligands binding to monovalent receptors expressed 

uniformly on a cell surface (Perelson and DeLisi, 1980; Stone et al., 2001). This model 

assumes that the IC effectively presents a single kind of epitope and that the cell expresses 

exactly one receptor species that recognizes the epitope. The model also assumes an excess 

of ligand, such that ligand concentration is effectively constant. Within the model, the initial 

binding of an IC to the cell is assumed to occur according to a monovalent binding 

interaction governed by the individual binding site association constant Ka. Once a ligand is 

bound to the cell surface by one receptor, all subsequent binding occurs through crosslinking 
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events with equilibrium partitioning Kx, in which an unbound epitope on the ligand binds to 

a free receptor on the cell surface. Kx serves as the association constant for all crosslinking 

interactions. According to the model, the number of ligands bound i-valently to the cell at 

equilibrium, vi,eq, can be found using the relation

vi, eq = f
i

(Kx)
i − 1L0Ka Req

i . (1)

Here, f is the effective avidity of the ligands, Kx is a crosslinking parameter with units of # 

per cell, L0 is the ligand concentration, and Req is the number of unbound receptors per cell 

at equilibrium. Consequently, the total number of ligands bound at equilibrium is

Lbound = ∑
i = 1

f
vi, eq = ∑

i = 1

f f
i

(Kx)
i − 1L0Ka(Req)i . (2)

Req changes as a function of f, L0, Ka, Kx, and Rtot, the total number of receptors expressed 

on the cell surface. It can be solved for numerically using the relationship

Rtot = Req 1 + f L0Ka(1 + KxReq) f − 1 (3)

when these parameters are known. As a consequence of eq. 1, the number of receptors that 

are clustered with at least one other receptor at equilibrium (Rmulti) is equal to

Rmulti = ∑
i = 2

f
i vi, eq . (4)

Specification for Kx: We represented Kx for any given crosslinking interaction as the 

product of Ka, the affinity of the epitope being bound for the receptor species to which it 

binds, and a crosslinking coefficient, Kx
∗, that is uniform for all combinations of FcγR and 

IgG. For any given crosslinking interaction between an epitope-receptor pair with affinity 

Ka, Kx = Kx
∗Ka. As a consequence of this construction, Kx becomes zero in the absence of 

binding and satisfies detailed balance.

Parameters and assumptions: Association constants for all combinations of hIgG and 

hFcγR were obtained from previous experimental measurements (Bruhns et al., 2009). In 

each replicate of the binding assay, cells were coincubated with 5 μg/ml TNP-4-BSA or 

TNP-26-BSA. Because the molar masses of 2,4,6-trinitrophenyl groups and of BSA are 

approximately 173 Da and 66 kDa, respectively, we represented the molar concentrations of 
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TNP-4-BSA and TNP-26-BSA as 74 nM and 70 nM (Lux et al., 2013). We also assumed 

that there were two different conversion factors for TNP-4-BSA and TNP-26-BSA between 

the number of ICs bound and the MFIs measured in the assay, due to IC detection occuring 

through TNP quantitation. Lastly, we assumed that, due to steric effects, the effective and 

average valence of TNP-4-BSA and (especially) TNP-26-BSA might be different. This 

required us to fit the following eleven parameters: the total expression level Rtot for each 

hFcγR, Kx
∗, conversion factors from ligands bound to MFI measured for both TNPBSAs, 

and effective valencies for both TNP-BSAs (f4 and f26, respectively). We specified a prior 

distribution for each ligand effective valency equal to a Poisson distribution with rate 

parameter equal to the average valency. Each other parameter was specified with an 

unbounded, log-uniform prior.

Model fitting and deviation parameters: The likelihood for each combination of predicted 

values for Kx
∗, the two conversion factors, f4, and f26 for each hFcγR-hIgG-TNP-BSA 

combination was calculated by comparison of our experimental data to a normal distribution 

with mean equal to our model’s predicted binding and standard deviation equal to the 

predicted binding times a fit standard deviation parameter σ1
∗.

In addition to IC binding, the receptor expression of each cell line was quantitatively 

measured. We assumed that the receptor expression measurements were log-normally 

distributed, with the standard deviation of the log-normal distribution being proportional to 

the common logarithm of the actual expression. We fit a second standard deviation 

parameter, σ2
∗, such that the likelihood of each receptor measurement was calculated using a 

normal distribution with mean equal to the common logarithm of the predicted receptor 

expression and standard deviation equal to σ2
∗. The overall likelihood of the model at each 

parameter set was calculated as the product of all individual likelihoods. The prior for each 

fitted parameter was specified to be log-uniform and unbounded.

We fit our model to binding measurements for each hFcγR-hIgG pair using an affine 

invariant Markov chain Monte Carlo sampler as implemented within the emcee package 

(Foreman-Mackey et al., 2013). We assayed the convergence of the Markov chain using the 

Geweke diagnostic and chain autocorrelation (Geweke, 1991). The Geweke diagnostic was 

used to determine whether early and late segments of the Markov chain could have been 

sampled from the same probability distribution. Each walker’s series of values for a 

particular parameter was treated as a single chain, upon which the diagnostic was evaluated.

Generalized Multi-Receptor Model: To account for cells expressing multiple FcγRs, we 

extended the model to account for binding in the presence of multiple receptors. At each 

crosslinking step, Kx must be proportional to the Ka of the corresponding monovalent 

epitope-receptor interaction to satisfy detailed balance. For any cell expressing N distinct 

receptor species that all bind the same epitope, let Rtot,i be the total number of receptors i per 

cell expressed on the cell surface, and let Ka,i be the affinity of receptor i for the epitope. Let 

IC, ligands, and Kx
∗ be as previously described (see Base Model). For all i in {1,2,…,N}, let 
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ϕi = Kx
∗Ka, iReq, i, where Req,i is the number of receptors i per cell unbound at equilibrium. 

The individual IC-receptor interactions of an IC, with effective avidity f, bound to qi 

receptors i, qj receptors j, etc. (per cell) can be represented by the vector q = (q1, q2, …, qN

+1), where qN+1 is equal to the number of unbound epitope on the IC. For any such vector 

describing the binding state of an IC-receptor complex, the number of ICs bound in such a 

way at equilibrium is equal to

vq, eq = f
q

L0
Kx

∗ ∏
i = 1

N
(ϕi)

qi,

where 
f
q  represents the multinomial coefficient 

f
q1, q2, …, qN + 1

. Therefore, for all 

receptors i, we have that Req,i satisfies the relation

Rtot, i = Req, i + ∑
q ∈ Q f , N

f
q

L0
Kx

∗(ϕi)
qi,

where

Q f , N ≡ {(q1, q2, …, qN, f − ∑
i = 1

N
qi) ∈ ℕN + 1 ∣ ∑

i = 1

N
qi ≤ f } .

For our analysis, Req,i was solved for for all i by iterative root-finding using this relation, 

utilizing the Brent routine (scipy.optimize.brenth). Consequently, the total number of ligands 

bound at equilibrium is

Lbound = ∑
q ∈ Q f , N

vq, eq .

The number of receptor i that are multimerized at equilibrium can be calculated as

Rmulti, i = ∑
q ∈ Q f , N

∗
∣ q ∣ vq, eq,

where ∣ q ∣ = ∑i = 1
N qi and
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Q f , N
∗ ≡ {(q1, q2, …, qN, f − ∑

i = 1

N
qi) ∈ ℕN + 1 ∣ 2 ≤ ∑

i = 1

N
qi ≤ f } .

Activity Index: To account for the combined effects of activating, inhibitory, and decoy 

receptors, we defined an activity index. To do so, we defined the activity index as being the 

dot product of the vector v, or number of multimerized receptors of each receptor species, 

and w, the activity of each receptor species. Activating receptors were given an activity of 1, 

decoy receptors 0, and inhibitory receptors −1. Multimerization states that resulted in 

activities of less than 0 were set to 0. This definition satisfied our expectations that activity 

increases with a greater number of activating receptors, decreases with more inhibitory 

receptors, and does not change with variation in the number of decoy receptors.

DATA AND SOFTWARE AVAILABILITY

All data and analysis source code can be found at https://github.com/meyer-lab/FcgR-

binding.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Avidity most prominently modulates low-affinity FcγR-immune complex 

binding

• A multivalent binding model can quantitatively predict FcγR-immune 

complex binding

• Immune complex valency effects FcγR multimerization more than binding

• A binding model predicts the outcome of in vivo FcγR-driven effector 

function

Robinett et al. Page 17

Cell Syst. Author manuscript; available in PMC 2019 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Human FcγR binding changes with FcγR-IgG pair and valency
A) Quantification of hIgG subclass TNP-4-BSA and TNP-26-BSA IC binding to CHO cells 

expressing the indicated hFcγRs (N = 4). Background binding of the ICs to CHO cells 

expressing no hFcγR was subtracted from the mean fluorescence intensity (MFI) obtained 

from binding to CHO cells expressing individual hFcγRs. Each IC binding measurement 

was further normalized by dividing by the average of all the points within that replicate. B) 

Receptor expression quantification for each CHO cell line expressing a single hFcγR 

subclass. C–D) Measured TNP-4-BSA-IC (C) and TNP-26-BSA-IC (D) binding, normalized 

to the receptor expression within each CHO cell line, as a function of the measured hFcγR-

hIgG subclass affinity (Bruhns et al., 2009). E) Fold increase in TNP-26-BSA binding over 

TNP-4-BSA binding as a function of the measured hFcγR-hIgG subclass affinity. All error 

bars are standard error of biological replicates (N = 4). Derived quantities use error 

propagated from each value.
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Figure 2. A multivalent binding model accounts for IgG-FcγR binding
A) Schematic of the multivalent binding model for interaction of an IC with a single species 

of hFcγR. B) Predicted versus measured binding for each hFcγR-hIgG pair at each valency. 

C) Geweke convergence criterion for each walker of the MCMC chain. A significant p-value 

would indicate failed convergence. D) Marginal distribution for the crosslinking constant Kx
∗. 

E) Average binding valency predicted for a single interaction between a cell and an IC of 

valency four, versus monovalent binding affinity at varied receptor expression levels. F) 

Marginal distribution for the constants to convert IC binding to normalized MFI. G) 

Marginal distribution for the effective valencies of TNP-4-BSA and TNP-26-BSA. Prior 

shown as line. H) Marginal distribution for each distribution spread parameter. I) The 

marginal distributions for receptor expression within each cell line expressing a single 

hFcγR subtype. Experimental measurements of receptor expression (Fig. 1B) are 

individually overlaid. See also Figure S1.
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Figure 3. Specific predictions for the coordinate effects of IC parameters
A–C) Predicted hFcγRIIIA-F-hIgG1 binding (A), multimerized receptor (B), and number of 

receptor crosslinks (C) versus IC concentration at varied valencies (colors). D) The amount 

of receptor bound versus number of crosslinks for varied valency. E) Schematic of the 

multivalent binding model for interaction of an IC with multiple species of FcγR. An 

individual IC can interact with a heterogeneous mix of receptors according to their affinities. 

The effective association constant for any crosslinking step, Kx, is proportional to affinity. F) 

The predicted amount of multimerized receptor at various valencies for a cell expressing 

hFcγRIIIA-F and hFcγRIIB simultaneously when hIgG1-IC concentration is varied from 1 

pM to 10 μM (beginning and ending near the origin). G) The calculated activity index (see 

Methods) for the conditions in F. H) Change in the activity index versus the A/I ratio for 

variations in hFcγRIIIA-F affinity responding to 1 nM hIgG1-ICs. I) Change in the activity 

index upon varying the affinity of mFcγRI, mFcγRIII, and mFcγRIV simultaneously 

expressed along with mFcγRIIB responding to 1 nM mIgG2b-ICs at a valency of 5. Dot 

indicates the affinity of the receptor when not varied. Activity index increased by 50 at all 

values of Ka for mFcγRI to make its curve visible.
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Figure 4. An FcγR-IgG binding model deconvolves in vivo function
A) Schematic of earlier IgG subclass experiments (top) and our approach (bottom). B) 

Effectiveness (proportional reduction in lung metastases) of individual mIgG interventions 

versus the A/I ratio for each mIgG constant region. Effectiveness is the fractional reduction 

in lung metastases observed with treatment throughout (e.g. no reduction is 0.0, while a full 

reduction in metastases is 1.0). C) Predicted versus regressed effectiveness for mIgG 

interventions upon mFcγR knockout using the maximal activating mFcγR affinity and 

inhibitory mFcγR affinity. D) Principal components analysis of the relevant affinities within 

each condition of mIgG treatment along with mFcγR knockout. Both axes scaled by a factor 

of 10−8. E) Individual quantities calculated for each intervention using receptor 

multimerization predicted by multivalent binding model and the activity index. Each 

quantity is scaled according to the weighting applied by the fitted regression model. F) 

Effectiveness predicted by the multivalent binding model, quantified by activity index, 

versus observed effectiveness. G) Leave-one-out model prediction R2 with individual input 

components removed. H) Calculated activity index for cMO versus overall effectiveness of 

each intervention. I) Predicted effect of modulating each indvidual mFcγR affinity of 

mIgG2b. Rd
2 and Rc

2 represent coefficient of determination of predicted versus actual directly 

or upon leave-one-out crossvalidation, respectively. See also Figure S2 and Table S1.
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