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Prognostication and Risk Factors 
for Cystic Fibrosis via Automated 
Machine Learning
Ahmed M. Alaa1 & Mihaela van der Schaar   2,3,1

Accurate prediction of survival for cystic fibrosis (CF) patients is instrumental in establishing the 
optimal timing for referring patients with terminal respiratory failure for lung transplantation (LT). 
Current practice considers referring patients for LT evaluation once the forced expiratory volume (FEV1) 
drops below 30% of its predicted nominal value. While FEV1 is indeed a strong predictor of CF-related 
mortality, we hypothesized that the survival behavior of CF patients exhibits a lot more heterogeneity. 
To this end, we developed an algorithmic framework, which we call AutoPrognosis, that leverages the 
power of machine learning to automate the process of constructing clinical prognostic models, and 
used it to build a prognostic model for CF using data from a contemporary cohort that involved 99% of 
the CF population in the UK. AutoPrognosis uses Bayesian optimization techniques to automate the 
process of configuring ensembles of machine learning pipelines, which involve imputation, feature 
processing, classification and calibration algorithms. Because it is automated, it can be used by clinical 
researchers to build prognostic models without the need for in-depth knowledge of machine learning. 
Our experiments revealed that the accuracy of the model learned by AutoPrognosis is superior to that of 
existing guidelines and other competing models.

Cystic fibrosis (CF) is an autosomal recessive disease caused by the presence of mutations in both alleles at the 
cystic fibrosis transmembrane conductance regulator (CFTR) gene, and is the most common genetic disease in 
Caucasian populations1,2. Impaired CFTR functionality gives rise to different forms of lung dysfunction, all of 
which eventually lead to progressive respiratory failure3,4. Despite recent therapeutic progress that significantly 
improved CF prognosis5, only half of the current CF population are expected to live to over 40 years old6. Lung 
transplantation (LT) is recommended for patients with end-stage respiratory failure as a means to improved life 
expectancy7–9. Unfortunately, there are more LT candidates than available lung donors7, and in addition, the LT 
procedure is accompanied by serious risks of subsequent post-transplant complications10. An effective LT referral 
policy should ensure an efficient allocation of the scarce donor lungs by precisely identifying high-risk patients as 
candidates for transplant, without overwhelming the LT waiting list with low-risk patients for whom a LT might 
be an unnecessary exposure to the risk of post-transplant complications11. The goal of this paper is to develop a CF 
prognostic model that can guide clinical decision-making by precisely selecting high-risk patients for LT referral.

Current consensus guidelines, such as those recommended by the International Society for Heart and Lung 
Transplantation (ISHLT)12, consider referring a patient for LT evaluation when the forced expiratory volume 
(FEV1) drops below 30% of its predicted nominal value. This guideline, which is widely followed in clinical 
practice13,14, is based mainly on the seminal study by Kerem et al.15, which identified FEV1 as the main pre-
dictor of mortality in CF patients using survival data from a cohort of Canadian CF patients (patients eligible 
1977–1989). While the FEV1 biomarker has been repeatedly confirmed to be a strong predictor of mortality in 
CF patients10,16,17, recent studies have shown that the survival behavior of CF patients with FEV1 < 30% exhibits 
substantial heterogeneity18, and that the improvements in CF prognosis over the past years have changed the 
epidemiology and demography of CF populations19,20, which may have consequently altered the relevant CF risk 
factors (A striking example of a significant change in the demography of the CF population is the sharp decline 
in pediatric mortality in recent years19). However, none of the existing prognostic models that combine multiple 
risk factors21–24 have been able to demonstrate a significant improvement in mortality prediction compared to the 
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FEV1 criterion in terms of the positive predictive value, which is a proximal measure for the rate of premature LT 
referral (low-risk patients referred to a transplant)10.

In this paper, we leverage machine learning algorithms to discover an accurate, data-driven prognostic model 
and CF risk factors on the basis of a contemporary cohort from the UK CF registry; a database that includes 
99% of the CF population in the UK25–27. While machine learning has proven successful in providing high pre-
dictive accuracies in clinical settings with heterogeneous populations28, its deployment in healthcare research 
and practice has been limited (e.g. only 15% of hospitals in the US use machine learning only for rather limited 
purposes29). A main hindrance to wide deployment of machine learning in clinical research is the need for the 
in-depth expertise that is necessary for making complex design choices on what algorithm to use and how to tune 
the algorithm’s hyper-parameters29. We would like to have a machine learning framework that is easily accessible 
by clinicians and CF centers. In addition, because the CF population demography, epidemiology and therapeutic 
options are evolving rapidly, we would like a prognostic model that can be updated and re-calibrated annually in 
an automated fashion whenever data from the most recent annual review becomes available in the registry.

In order to fully exploit the potentiality of machine learning in CF prognostication, we developed an algorith-
mic framework and a software package, dubbed AutoPrognosis, which adopts an automated machine learning 
(AutoML)30 approach for constructing optimized clinical prognostic models. An overview of the AutoPrognosis 
framework is provided in Fig. 1. AutoPrognosis uses Bayesian optimization techniques31 in order to (efficiently) 
identify the machine learning pipelines (out of a huge space of possible pipelines) that maximize a predefined 
diagnostic accuracy metric, where a pipeline consists of an imputation algorithm, a feature processing algorithm, 
a classification algorithm and a calibration method. AutoPrognosis combines the best performing pipelines in 
a single, well-calibrated predictive ensemble by weighting the different pipelines using the algorithm’s poste-
rior belief about each pipeline’s clinical utility. The AutoPrognosis framework is currently implemented as a 
Python module, and it supports 7 imputation algorithms, 14 feature processing algorithms, 20 classification algo-
rithms, and 3 calibration methods; a design space which corresponds to a total of 5,880 pipelines (The software 
implementation of AutoPrognosis can be very easily updated with more algorithmic components over time.) 
The Bayesian optimization algorithm used by AutoPrognosis implements a sequential exploration-exploitation 
scheme in which balance is achieved between exploring the clinical utility of new pipelines and re-examining 
the utility of previously explored ones32, where the clinical utility is predefined by clinical researchers as a 
(cost-sensitive) function of the achieved diagnostic accuracy. Our adoption of a Bayesian optimization frame-
work is motivated by its recent remarkable success in optimizing black-box functions with costly evaluations 
as compared to simpler approaches such as grid and random search32. The final stage of AutoPrognosis is an “ 
interpreter” module, which uses an associative classifier33,34 to explain the predictions of the black-box prognostic 
ensemble learned by the preceding stage, allowing for prognostic model interpretability without degrading the 
predictive performance. Detailed explanation for the components and operation of AutoPrognosis is provided in 
Methods. A technically-oriented report on our system can be found in Alaa et al.35.

We conducted an extensive analysis of the performance of AutoPrognosis, and compared it to those achieved 
by the existing guidelines, competing clinical models and other machine learning algorithms. Our analysis shows 
that AutoPrognosis displays clear superiority to all competing methods in terms of both diagnostic accuracy and 
impact on clinical decision-making. In particular, AutoPrognosis was capable of achieving a positive predictive 

Figure 1.  Schematic depiction of the AutoPrognosis framework. AutoPrognosis is provided with a dataset 
and a definition for an appropriate clinical utility selected by clinical experts. The algorithm uses Bayesian 
optimization in order to update its beliefs about the clinical utility of different machine learning pipelines, where 
each pipeline comprises an imputation algorithm, a feature processing algorithm, a classification algorithm and 
a calibration method. In this depiction, a pipeline comprising MICE imputation, fast ICA processing, XGBoost 
classifier and sigmoid calibration is highlighted.
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value of 65% (95% CI: 61–69%), whereas that achieved by the FEV1 criterion recommended by the guidelines is 
as low as 48% (95% CI: 44–52%), at a fixed sensitivity level. To the best of our knowledge, this is the best reported 
reduction in premature LT referrals since the seminal study by Mayer-Hamblett et al.10. While the vast majority 
of clinical literature has focused on spirometric biomarkers reflecting airway obstruction as the main CF risk 
factors, AutoPrognosis revealed new insight on the importance of variables reflecting disorders in pulmonary 
gas exchange in improving the precision and clinical usefulness of prognostic models. AutoPrognosis was also 
able to identify moderate-risk patient groups that experience intermediate adverse outcomes such as short-term 
pulmonary decline.

We envision AutoPrognosis as being embedded in a computerized support system that is fed annually with 
the most recent CF review data, providing clinical researchers and CF centers with up-to-date prognostic models, 
new risk factors, and explanations for risk predictions. While we focus in this study on CF prognostication, the 
AutoPrognosis framework can be applied to construct prognostic models for any other disease.

Results
Data and experimental setup.  Experiments were conducted using retrospective longitudinal data from 
the UK cystic fibrosis Registry; a database sponsored and hosted by the UK cystic fibrosis Trust25. The registry 
comprises a list of annual follow-up variables for individual CF patients that includes demographics, genetic 
mutations, airway colonization and microbiological infections, comorbidities and complications, transplantation, 
hospitalization, spirometry and therapeutic management. We used AutoPrognosis to automatically construct a 
prognostic model for predicting 3-year mortality (a realistic waiting time in a lung transplantation waiting list10) 
based on the follow-up variables at baseline.

All experiments were conducted using data for a baseline cohort comprising patients’ follow-up variables 
collected in 2012: this was the most recent cohort for which 3-year mortality data was available. A total of 115 
variables were associated with every patient, all of which were fed into AutoPrognosis in order to encourage an 
agnostic, data-driven approach for discovering risk factors. Since transplantation decisions are mostly relevant 
for adults (93.75% of transplantation operations recorded in the registry were performed in adults), we excluded 
pediatric patients, and included only patients who were more than 18 years old. (Deaths in children with CF are 
now very rare in developed countries19,36). Outcomes are defined as death or lung transplantation within 3 years 
of the baseline data collection date. Patients who were lost to follow-up or have already undergone a transplant 
before 2012 were excluded. Figure 2 depicts a flow chart of the data assembly process involved in our analysis. Of 
the 4,532 patients who were aged 18 years or older in 2012, a total of 114 patients underwent a lung transplant 
before their 2012 annual review, and a total of 354 patients were lost to follow-up. Of the remaining 4,064 patients, 
382 patients (9.4%) experienced an adverse outcome within a 3-year period.

Of the 382 patients who experienced an adverse outcome, 266 died without receiving a transplant, 104 under-
went a successful transplant, and 12 patients received a transplant but died within the 3-year horizon. We incor-
porated each patient’s spirometric trajectory by extracting the FEV1% predicted for all patients in the years 2008 
to 2011. The characteristics of the patients in the baseline cohort are provided in Table 1. The study population 
was stratified into two subgroups based on the endpoint outcomes and the characteristics of the two subgroups 
were compared using Fisher’s exact test for discrete (and categorical) variables, and Mann-Whitney U test for con-
tinuous variables. The number of CFTR mutations (in either alleles) whose frequencies in the cohort exceeded 1% 
was 66, with the most frequent five mutations being ΔF508, G551D, R117H, G542X, and 621 + 1G → T. Previous 
studies on CF genetics have classified CFTR mutations into 6 different categories according to the mechanism by 

Figure 2.  Patient selection and data assembly process.
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which they obstruct the synthesis and traffic of CFTR2. We used the CFTR genetic classification in order to cluster 
the (high-dimensional) genotype information. In particular, we converted the genotype information of every 
patient into a vector of 9 binary features which encodes the following information: whether the CFTR mutation 
is homozygous, whether any of the two alleles carries a ΔF508 or a G551D mutation, and the class to which the 
mutation carried by the patient belongs. All the encoded genetic features are listed in Table 1. Examples for the 
mutations and molecular consequences37 of every class are provided in Table 2.

Variable
Alive & no LT
n = 3,682 (%)

Death/LT
n = 382 (%) p-value Variable

Alive & no LT
n = 3,682 (%)

Death/LT
n = 382 (%) p-value

Gender (% male) 2,027 (55.0) 192 (50.2) 0.075 Pancreatic

Age (years)§ 27.6 (12) 29.2 (14) <0.001  Cirrhosis 86 (2.3) 24 (6.3) <0.001

Height (cm)§ 168.0 (14) 166.0 (15) <0.001  Liver Disease 578 (15.7) 81 (21.2) 0.007

Weight (kg)§ 63.1 (17) 54.8 (15) <0.001  Pancreatitis 57 (1.5) 3 (0.8) 0.368

BMI (kg/m2)§ 22.3 (4) 20.1 (4) <0.001  Liver Enzymes 521 (14.1) 98 (25.7) <0.001

CFTR genotype  Gall Bladder 20 (0.5) 3 (0.8) 0.472

 Homozygous 1,784 (48.4) 208 (54.4) <0.001  GI Bleed (variceal) 3 (0.1) 3 (0.8) 0.013

 Heterozygous 1,240 (33.7) 92 (24.0) <0.001 Gastrointestinal

 ΔF508 3,189 (86.6) 325 (85.0) 0.388  GERD 747 (20.3) 100 (26.2) 0.008

 G551D 224 (6.0) 15 (3.9) 0.108  GI Bleed (no variceal) 4 (0.1) 1 (0.3) 0.390

 Class I 169 (4.6) 23 (6.0) 0.205  Intestinal Obstruction 303 (8.2) 33 (8.6) 0.770

 Class II 3,207 (87.1) 326 (85.3) 0.338 Musculoskeletal

 Class III 3,281 (89.1) 330 (86.3) 0.123  Arthropathy 338 (9.2) 52 (13.6) 0.008

 Class IV 184 (5.0) 4 (1.0) <0.001  Bone Fracture 39 (1.1) 6 (1.6) 0.310

 Class V 130 (3.5) 8 (2.0) 0.179  Osteopenia 710 (19.3) 126 (33.0) <0.001

 Class VI 3,189 (86.6) 325 (85.0) 0.388 Other

Spirometry§  Cancer 8 (0.2) 5 (1.3) 0.005

 FEV1 (L) 2.34 (1.4) 0.99 (0.6) <0.001  Diabetes 906 (24.6) 199 (52.1) <0.001

 FEV1% 67.8 (35) 29.6 (19) <0.001  CFRD 1,096 (29.8) 223 (58.4) <0.001

 Best FEV1 (L) 2.57 (1.4) 1.2 (0.7) <0.001  Pulmonary Abscess 2 (0.1) 0 (0.0) 1.000

 Best FEV1% 75.2 (31) 35.2 (18) <0.001  Chronic Pseudomonas 2,005 (54.5) 281 (73.6) <0.001

 FEV1% (2011) 70.2 (34) 36.2 (20) <0.001  Osteoporosis 293 (8.0) 91 (23.8) <0.001

 FEV1% (2010) 70.7 (33) 37.5 (23) <0.001  AICU 5 (0.1) 1 (0.3) 0.447

 FEV1% (2009) 72.2 (32) 41.2 (27) <0.001  Kidney Stones 45 (1.2) 17 (4.5) <0.001

 FEV1% (2008) 73.7 (31) 45.2 (27) <0.001  Cough Fracture 1 (0.0) 3 (0.8) 0.003

Lung Infections  Hypertension 121 (3.3) 23 (6.0) 0.012

 B. Cepacia 176 (4.8) 35 (9.2) 0.001  Atypical Mycobacteria 127 (3.4) 17 (4.5) 0.308

 P. Aeruginosa 2,190 (59.5) 295 (77.2) <0.001  Hearing Loss 82 (2.2) 26 (6.8) <0.001

 MRSA 154 (4.2) 17 (4.5) 0.789  Depression 257 (7.0) 59 (15.4) <0.001

 Aspergillus 478 (13.0) 70 (18.3) 0.006 Inhaled Antibiotics 2,194 (59.6) 280 (73.3) <0.001

 NTM 186 (5.1) 20 (5.2) 0.902 Muco-active Therapies

 H. Influenza 191 (5.2) 10 (2.6) 0.025  DNase 2,057 (55.9) 297 (77.7) <0.001

 E. Coli 17 (0.5) 2 (0.5) 0.698  Hypertonic Saline 859 (23.3) 109 (28.5) 0.027

 K. Pneumoniae 10 (0.3) 3 (0.8) 0.116 Promixin 765 (20.8) 71 (18.6) 0.352

 Gram-negative 14 (0.4) 4 (1.0) 0.082 Tobramycin 110 (3.0) 28 (7.3) <0.001

 ALCA 97 (2.6) 25 (6.5) <0.001 iBuprofen 8 (0.2) 2 (0.5) 0.241

 Staph. Aureus 1,175 (31.9) 64 (16.8) <0.001 Oral Corticosteroids 347 (9.4) 122 (31.9) <0.001

 Xanthomonas 165 (4.5) 23 (6.0) 0.199 IV Antibiotics 1493 (40.5) 292 (76.4) <0.001

 B. Multivorans 86 (2.3) 16 (4.2) 0.037 IV Antibiotic Courses§

 B. Cenocepacia 51 (1.4) 13 (3.4) 0.007  Days at Home 0 (14) 14 (49) <0.001

 Pandoravirus 8 (0.2) 2 (0.5) 0.241  Days at Hospital 0 (13) 27.5 (56) <0.001

Comorbidities Non-IV Hospitalization 312 (8.5) 62 (16.2) <0.001

Respiratory Non-invasive Ventilation 161 (4.4) 82 (21.5) <0.001

 ABPA 432 (11.7) 71 (18.6) <0.001 Oxygen Therapy 279 (7.6) 205 (53.7) <0.001

 Nasal Polyps 123 (3.3) 4 (1.0) 0.012  Continuous 13 (0.4) 75 (19.6) <0.001

 Asthma 578 (15.7) 58 (15.2) 0.825  Nocturnal 42 (1.1) 48 (12.6) <0.001

 Sinus Disease 486 (13.2) 41 (10.7) 0.200  Exacerbation 100 (2.7) 46 (12.0) <0.001

 Hemoptysis 48 (1.3) 11 (2.9) 0.022  Pro re nata 37 (1.0) 29 (7.6) <0.001

Table 1.  Baseline characteristics of patients in the UK CF Registry on December 31st 2012. (§Continuous 
variables: median (inter-quartile range)).
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Training and validation of AutoPrognosis.  All evaluations of diagnostic accuracy in the following sub-
sections were obtained via 10-fold stratified cross-validation in order to assess the generalization performance, 
where a held-out sample was used to evaluate the performance of the model learned by AutoPrognosis in every 
fold using a mutually exclusive training sample. In every cross-validation fold, AutoPrognosis conducts up to 
200 iterations of a Bayesian optimization procedure (details are provided in Methods), where in every iteration 
it explores a new pipeline and tunes its hyper-parameters. AutoPrognosis builds an ensemble of all the pipelines 
that it explored in which every pipeline is given a weight that is proportional to its empirical performance. All 
explored models with a posterior mean performance that is less than the best performance reported in the clinical 
literature (or equivalently, all models with weight less than 0.01 as shown in Fig. 4) were excluded from the final 
ensemble. The final model that would be used in actual practice is fit to the entire dataset; the pipeline config-
uration corresponding to the in-sample model fit obtained by AutoPrognosis is depicted in Fig. 3. The model 
combines two pipelines: the first uses missForest imputation38 and a random forest classifier (with 736 trees) with 
no feature processing, whereas the second pipeline uses simple mean imputation, a PCA transformation with 80 
components followed by an XGBoost classifier with 650 trees. Both pipelines used sigmoid regression for calibra-
tion. The achieved in-sample area under receiver operating characteristic curve was 0.9714, and the model was 
well-calibrated, with a Brier score of 0.0543. The clinical utility function used for optimizing the prognostic model 
was the average of the area under the precision-recall curve and the average precision; the definitions of these 
metrics and the rationale behind using them as measures of the clinical utility will be clarified in the following 
subsections. The detailed training procedure is explained in Methods.

Comparing AutoPrognosis with state-of-the-art prognostic models.  Systematic review.  We com-
pared the diagnostic accuracy of AutoPrognosis with state-of-the-art prognostic models that were developed for 
predicting short-term CF outcomes. In order to identify and select the competing prognostic models, we searched 
PubMed for studies published in the last 10 years (in all languages) with the terms “(cystic fibrosis) and survival 
and (prognostic or predictive model)”. We filtered the relevant studies by their clinical end-points, focusing only 
on studies that defined the composite end-point of death and lung transplantation in a time horizon of less than 5 
years. We identified 3 contemporary studies that developed and validated prognostic models using multicenter or 
registry data23,36,39,40. In the first study, Buzzetti et al.23 developed a parsimonious multivariate logistic regression 
model for predicting 5-year outcomes for CF patients using 4 variables, and demonstrated that it outperforms the 
model developed by Liou et al.22 using retrospective data from 9 Italian CF centers. McCarthy et al.39 developed 
a predictive model, dubbed “CF-ABLE”, for predicting 4-year CF outcomes using 4 variables, and validated their 
model using data for 370 patients enrolled in the Irish CF registry data. Dimitrov et al.40 proposed a modified 
version of the CF-ABLE score, dubbed “CF-ABLE-UK”, which they (externally) validated through the UK CF reg-
istry data, reporting a c-statistic of 0.80 (95% CI: 0.79–0.83). More recently, Nkam et al.36 developed a multivariate 

Figure 3.  Schematic depiction for the in-sample model fit obtained by AutoPrognosis.

Genetic class Molecular consequence

Class I No functional protein produced

Class II Diminished protein processing

Class III Defective gating

Class IV Decreased conductance

Class V Abnormal splicing

Class VI Decreased cell surface stability

Genetic class Mutations

Class I G542X, W1282X, 1717-1G → A

Class II N1303K, ΔF508, A455E

Class III G551D, R117H, ΔF508

Class IV R117H, R347H, R347P, R334W

Class V 621 + 1G → T, 3849 + 10kbC → T, 2789 + 5G → A

Class VI ΔF508

Table 2.  Exemplary mutations and molecular consequences of the 6 genetic classes.



www.nature.com/scientificreports/

6ScienTific RePortS | (2018) 8:11242 | DOI:10.1038/s41598-018-29523-2

logistic regression model for predicting 3-year CF outcomes using 8 risk factors. The model was internally vali-
dated through the French CF registry, reporting a c-statistic of 0.91 (95% CI: 0.89–0.92). We compared the diag-
nostic accuracy of AutoPrognosis with these 3 models as they considered similar clinical end-points and were 
validated on contemporary retrospective cohorts.

All of the studies mentioned above explored the usage of only a few risk factors in model development. To 
the best of our knowledge, ours is the first study to investigate an agnostic, machine learning-based approach for 
discovering risk factors for CF using a representative cohort that covers the entire CF population in the UK. In 
order to assess the clinical utility of AutoPrognosis, we also compared its diagnostic accuracy with the simple 
FEV1-based prediction rule proposed by Kerem et al.15, where a LT referral criterion that selects CF patients with 
an FEV1% of less than 30% predicted was recommended. This simple prediction rule continues to be the main 
criterion for LT referral in current clinical practice guidelines13,14,41.

Diagnostic accuracy evaluation.  The main objective of CF prognostic models is to inform LT referral deci-
sions7,10,14,42. Since donor lungs are scarce7,8,11, the clinical utility of a prognostic model should be quantified in 
terms of the model’s ability to (precisely) identify patients who are truly at risk and hence should be allocated in a 
LT waiting list. Many of the previously developed models have been validated only through goodness-of-fit meas-
ures21,24, which reveal little information about the models’ actual clinical utility. The area under receiver operating 
characteristic (AUC-ROC) curve has been used to quantify the discriminative power of the models developed 
by Nkam et al.36, McCarthy et al.39 and Buzzetti et al.23. AUC-ROC is nevertheless a misleading quantifier for the 
usefulness of a CF prognostic model as it is insensitive to the prevalence of poor outcomes in the population, 
and assumes that positive and negative predictions are equally important43. Since most patients would not need 
a LT at the 3-year horizon (the prevalence of poor outcomes is as low as 9.4%), a model’s AUC-ROC evaluation 
can be deceptively high, only reflecting a large number of “easy” and “non-actionable” true negative predictions, 
without reflecting the actual precision of the LT referral decisions guided by the model. The inappropriateness of 
AUC-ROC as a sole measure of diagnostic accuracy in the context of LT referral for CF patients was highlighted 
by Mayer-Hamblett et al.10, where it was shown that models with seemingly high AUC-ROC can still have modest 
predictive values (refer to Table 3 therein). A detailed technical analysis of the shortcomings of the AUC-ROC in 
imbalanced datasets was recently conducted by Saito et al.44.

In order to ensure a comprehensive assessment for the clinical usefulness of AutoPrognosis, we evaluated 
the positive predictive values (PPV) and negative predictive values (NPV) for all predictive models under consid-
eration, in addition to the standard AUC-ROC metrics. (PPV is also known as the precision metric.) The PPV 
reflects the fraction of patients who are truly at risk among those identified by the model as high risk patients. A 
model’s PPV characteristic best represents its clinical usefulness as it reflects the precision in the associated LT 
referral decisions10. That is, at a fixed sensitivity, models with higher PPV would lead to fewer patients who are not 
at risk being enrolled in a transplant waiting list, resulting in a more effective lung allocation scheme with fewer 
premature referrals.

In Table 3, we compare the performance of AutoPrognosis with the competing models in terms of various 
diagnostic accuracy metrics that capture the models’ sensitivity, specificity and predictive values. In particular, 
we evaluate the models’ AUC-ROC, Youden’s J statistic, area under precision-recall curve (AUC-PR), average 
precision and the F1 score. The AUC-ROC and Youden’s J statistic characterize the models’ sensitivity and spec-
ificity; the J statistic, also known as the “informedness”, characterizes the probability of an “informed decision”, 
and is computed by searching for the optimal cutoff point on the ROC curve that maximizes the sum of sensi-
tivity and specificity45,46. As discussed earlier, the clinical usefulness of a model is better represented via its PPV 
characteristics, and hence we evaluate the models’ AUC-PR, average precision and F1 scores. The three metrics 
characterize the models’ precision (PPV) and recall (sensitivity): the AUC-PR is an estimate for the area under 

Figure 4.  Depiction of the criterion for pipeline inclusion in the final AutoPrognosis ensemble.
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the precision-recall curve using the trapezoidal rule44,47, whereas the average precision is a weighted mean of 
precisions achieved at each threshold on the (non-interpolated) precision-recall curve, where the weights are set 
to be the increase in recall across the different thresholds48. We chose to report both the AUC-PR and the average 
precision since the trapezoidal rule used to estimate the AUC-PR can provide overly optimistic estimates for 
the precision-recall performance; both AUC-PR and average precision provide numerically close estimates for 
well-behaved precision-recall curves49. The F1 score is the harmonic mean of the model’s precision and recall; in 
Table 3 we compute each model’s F1 score at the cutoff point determined by its Youden’s J statistic.

AutoPrognosis outperformed the competing models with respect to all diagnostic metrics under consider-
ation. We found the model developed by Nkam et al.36 to be the most competitive clinical model with respect 
to all metrics. All the results in Table 3 are statistically significant: 95% confidence intervals and p-values were 
obtained via 10-fold stratified cross-validation. All prognostic models performed markedly better than the sim-
ple criterion based on the FEV1 biomarker. AutoPrognosis displayed a satisfactory discriminative power, with 
an AUC-ROC of 0.89 (95% CI: 0.88–0.90) and a J statistic of 0.67 (95% CI: 0.65–0.69), outperforming the most 
competitive clinical model which achieves an AUC-ROC of 0.86 (95% CI: 0.85–0.87, p-value < 0.001) and a J 
statistic of 0.58 (95% CI: 0.55–0.61, p-value < 0.001). More importantly, AutoPrognosis displayed an even more 
significant gain with respect to the precision-recall performance metrics. In particular, it achieved an AUC-PR 
(Random guessing achieves an AUC-PR that is as low as 0.09.) of 0.58 (95% CI: 0.54–0.62), an average precision 
of 0.59 (95% CI: 0.55–0.63) and an F1 score of 0.60 (95% CI: 0.57–0.63), whereas the most competitive clinical 
model achieved an AUC-PR of 0.50 (95% CI: 0.47–0.53, p-value < 0.001), an average precision of 0.48 (95% CI: 
0.45–0.51, p-value < 0.001) and an F1 score of 0.52 (95% CI: 0.50–0.54, p-value < 0.001).

We observe that the competing clinical models, albeit satisfying high AUC-ROC figures, are providing mar-
ginal (or no) gains with respect to the precision-recall metrics (The big gap between the AUC-PR and average 
precision values for the FEV1-based criterion reported in Table 3 resulted from the fact that this criterion creates 
a binary statistic with limited number of operating points, while the average precision is computed using the 
non-interpolated precision-recall curve.) For instance, the CF-ABLE-UK score achieves a better AUC-ROC com-
pared to the FEV1-based criterion, but performs rather poorly in terms of the precision-recall measures since it 
additively combines the FEV1 predictors and many of the variables correlated with it, and hence it double-counts 
the risk factors for a large number of patients. (As we will show later, the CF-ABLE-UK score also ignores Oxygen 
therapy intake, which is an important variable for precise identification of low-FEV1 patients at risk.) The mod-
els developed by Nkam et al. and Buzzetti et al. achieve impressively high gains in AUC-ROC, but only modest 
gains in the AUC-PR and F1 scores, implying a limited clinical significance. Contrarily, AutoPrognosis was able 
to provide not only a high AUC-ROC figure, but also a significant improvement in the precision-recall metrics.

Finally, we checked whether the Bayesian optimization procedure used by AutoPrognosis was able to con-
figure an ensemble of pipelines with tuned hyper-parameters that perform better than individual, plain vanilla 
machine learning benchmarks. We compared the diagnostic metrics of AutoPrognosis with those of 4 com-
petitive machine learning algorithms: Gradient boosting, support vector machines (SVM), random forests and 
AdaBoost. As we can see in Table 3, the prognostic model learned by AutoPrognosis outperforms all the individ-
ual machine learning baselines, which highlights the benefit of using our framework instead of a naive deploy-
ment of off-the-shelf machine learning algorithms. We also compared the performance of AutoPrognosis with an 
open-source AutoML library known as Tree-based Pipeline Optimization Tool50,51 (TPOT), which uses a genetic 
algorithm to optimize and tune machine learning pipelines. The results in Table 3 show that AutoPrognosis 
clearly outperforms TPOT. In order to assess the benefits of Bayesian optimization and ensemble construction, we 
also evaluated the performance of the individual pipelines picked up by AutoPrognosis (Pipeline 1 and Pipeline 
2 in Fig. 3) when tuned with grid and random search approaches. For a fixed computational cost (200 iterations), 
AutoPrognosis outperformed these benchmarks as well.

Prognostic model AUC-ROC
Youden’s J 
statistic AUC-PR

Average 
Precision F1 score

AutoPrognosis 0.89 ± 0.01 0.67 ± 0.02 0.58 ± 0.04 0.59 ± 0.04 0.60 ± 0.03

Nkam et al.36 0.86 ± 0.01 0.58 ± 0.03 0.50 ± 0.03 0.48 ± 0.03 0.52 ± 0.02

Buzzetti et al.23 0.83 ± 0.01 0.54 ± 0.03 0.42 ± 0.02 0.44 ± 0.03 0.49 ± 0.02

CF-ABLE-UK40 0.77 ± 0.01 0.48 ± 0.05 0.28 ± 0.04 0.20 ± 0.02 0.34 ± 0.02

FEV1% predicted criterion15 0.70 ± 0.01 0.41 ± 0.02 0.50 ± 0.02 0.27 ± 0.02 0.47 ± 0.01

SVM 0.84 ± 0.03 0.60 ± 0.05 0.50 ± 0.09 0.51 ± 0.09 0.52 ± 0.07

Gradient Boosting 0.87 ± 0.02 0.63 ± 0.01 0.55 ± 0.03 0.55 ± 0.04 0.56 ± 0.01

Bagging 0.83 ± 0.03 0.58 ± 0.05 0.51 ± 0.04 0.47 ± 0.04 0.52 ± 0.03

Pipeline 1 (grid search) 0.83 ± 0.02 0.56 ± 0.03 0.51 ± 0.04 0.47 ± 0.04 0.51 ± 0.03

Pipeline 1 (random search) 0.84 ± 0.01 0.56 ± 0.02 0.53 ± 0.02 0.49 ± 0.032 0.53 ± 0.02

Pipeline 2 (grid search) 0.87 ± 0.03 0.62 ± 0.02 0.54 ± 0.05 0.55 ± 0.03 0.57 ± 0.01

Pipeline 2 (random search) 0.83 ± 0.02 0.56 ± 0.03 0.51 ± 0.04 0.47 ± 0.04 0.51 ± 0.03

TPOT 0.84 ± 0.01 0.56 ± 0.03 0.51 ± 0.02 0.49 ± 0.02 0.51 ± 0.02

Table 3.  Comparison of various diagnostic accuracy metrics (with 95% CI) for the prognostic models under 
consideration.
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Assessing the clinical utility of AutoPrognosis.  Practical deployment of a prognostic model in clinical 
decision-making would entail converting the model’s (continuous) outputs into binary decisions on whether 
a patient might be an appropriate candidate for transplant referral10. This can be achieved by setting a cutoff 
point on the model output (which corresponds to the patient’s risk), beyond which the patient is recommended 
for a transplant. In order to examine the potential impact of the prognostic models under study on clinical 
decision-making, we evaluated the diagnostic accuracy of AutoPrognosis, the best performing clinical model, and 
the FEV1-based criterion, at various cutoff points for transplant referral. The results are summarized in Table 4.

In order to ensure a sensible comparison, sensitivity was fixed for all models at four levels (0.13, 0.46, 0.62, 
and 0.73); these are the four levels of sensitivity achieved by the FEV1 criterion at the cutoff thresholds 20%, 
30%, 40% and 50%, respectively. The results in Table 4 show that at each cutoff threshold, the model learned via 
AutoPrognosis outperforms both the FEV1 criterion and the best performing competing model in terms of PPV, 
specificity, accuracy, and F1 scores. Of particular interest is the cutoff point of FEV1 < 30% (underlined in Table 4), 
which represents the main transplant referral criterion adopted in current clinical practices. The transplant refer-
ral policy achieving the same sensitivity as that achieved by the FEV1 < 30% criterion places a threshold of 0.33 on 
the output of AutoPrognosis. At this operating point, AutoPrognosis yields a PPV of 65%, which is significantly 
higher than that achieved by the FEV1 criterion (48%), and that achieved by the model developed by Nkam et al.36  
(56%). That is, by adopting the model learned by AutoPrognosis for LT referral, we expect that the fraction of 
patients populating the lung transplant waiting list who are truly at risk would rise from 48% to 65%. In other 
words, in a waiting list of 100 patients, our model would replace 17 patients who were unnecessarily referred to a 
transplant with 17 other patients who truly needed one.

The clinical utility of AutoPrognosis is not limited to transplant referral; the predictions prompted by 
AutoPrognosis serve as granular risk scores that can quantify the severity of future outcomes and hence can be 
used for treatment planning, follow-up scheduling, or estimating the time at which a transplant would be needed 
in the future. For instance, decisions on whether a CF patient carrying a G551D mutation should start taking 
the (expensive) ivacaftor or lumacaftor drugs can be guided by the predictions of our model52,53. Patients with 
risk predictions that do not exceed the LT referral threshold are not equally healthy; higher risk scores are still 
indicative of higher levels of CF severity. The results in Tables 3 and 4 quantify the models’ ability to distinguish 
patients with and without poor (binary) outcomes (death or LT), but do not show how well the different models 
are able to predict less severe outcomes. To this end, we sought to classify the predictions of AutoPrognosis into 
low, moderate and high risk categories, and test the model’s ability to predict intermediate poor outcomes. We 
chose pulmonary function decline within a 3-year period as the intermediate poor outcome; we define pulmonary 
decline as the event when a patient has an FEV1% predicted less than 30% in the year 2015 (but did not undergo 
a lung transplant) when her FEV1% predicted was greater than 30% in 2012.

The FEV1 trajectories for all patients enrolled in the UK CF registry in 2012 are visualized in Fig. 5; FEV1 
trajectories corresponding to pulmonary decline events are highlighted in red. The trajectories in Fig. 5 belong 
only to patients who had FEV1 > 30% in 2012 and did not die or undergo a transplant in 2015. A total of 4.4% of 
those patients experienced pulmonary function decline in 2015. The inset plot in Fig. 5 shows a histogram for 
the predictions of AutoPrognosis stratified by the occurrence of a pulmonary decline; we can visually see that 
AutoPrognosis is able to discriminate patients with and without the intermediate poor outcome. A two-sample 
t-test rejects the hypothesis that the average predictions for AutoPrognosis for patients with and without pul-
monary decline are equal (p-value < 0.0001). The average predicted risk for patients without pulmonary decline 
was 0.046, whereas for those with pulmonary decline, the average predicted risk was 0.116. In order to assess the 
ability of our model to predict the pulmonary decline events, we redefined the poor outcomes as being death, lung 
transplant or pulmonary decline in a 3-year period. The in-sample average precision and AUC-PR of the predic-
tive model learned by AutoPrognosis were 0.66 (95% CI: 0.63–0.69) and 0.65 (95% CI: 0.63–0.69), respectively, 
whereas those achieved by the model developed by Nkam et al. were 0.51 (95% CI: 0.48–0.54) and 0.48 (95% CI: 
0.45–0.51). (95% confidence intervals were obtained via bootstrapping.) This demonstrates that AutoPrognosis is 
more precise than the existing models in predicting intermediate poor outcomes.

Cutoff PPV (95% CI) (%) NPV (95% CI) (%) Sens (95% CI) (%) Spec (95% CI) (%) Accuracy (%) F1 score

FEV1% predicted

<20 66 (62, 70) 92 (91, 93) 13 (9, 17) 99 (98, 100) 92 (91, 93) 21 (19, 23)

<30 48 (44, 52) 95 (94, 96) 46 (42, 50) 95 (94, 96) 91 (90, 92) 47 (45, 49)

<40 29 (27, 31) 96 (95, 97) 62 (60, 64) 86 (84, 88) 84 (83, 85) 40 (38, 42)

<50 21 (19, 23) 97 (96, 98) 73 (71, 75) 75 (73, 77) 75 (74, 76) 33 (31, 35)

Nkam et al.36

>6.5 75 (64, 86) 92 (91, 93) 13 (11, 15) 99 (98, 100) 92 (91, 93) 22 (19, 25)

>4 56 (52, 60) 95 (94, 96) 46 (44, 48) 96 (95, 97) 92 (91, 93) 50 (49, 51)

>2.5 42 (37, 47) 96 (95, 97) 61 (60, 62) 91 (90, 92) 88 (87, 89) 49 (45, 53)

>2 31 (27, 35) 97 (96, 98) 73 (72, 74) 83 (79, 87) 82 (78, 86) 43 (39, 47)

>0.50 88 (79, 97) 92 (91, 93) 13 (12, 14) 99 (98, 100) 92 (91, 93) 23 (22, 24)

AutoPrognosis

>0.33 65 (61, 69) 95 (94, 96) 46 (45, 47) 97 (96, 98) 93 (92, 94) 53 (51, 55)

>0.15 49 (43, 55) 96 (95, 97) 62 (61, 63) 93 (92, 94) 90 (89, 91) 54 (50, 58)

>0.10 36 (32, 40) 97 (96, 98) 74 (73, 75) 87 (86, 88) 86 (84, 88) 48 (45, 51)

Table 4.  Comparison of the diagnostic accuracy for the prognostic models under consideration at different 
cutoff points.
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Predicated on the results above, we classified the CF population into three risk groups, with low, moderate 
and high risk, based on the risk predictions of AutoPrognosis. (In what follows, we converted the outputs of 
AutoPrognosis, which are real numbers between 0 and 1, into percentages.) The risk groups are defined as fol-
lows: the low risk group is associated with risk predictions in the range (0–5%), whereas the moderate risk group 
is associated with risk predictions in the range (5–30%), and finally, the high risk group is associated with risk 
predictions that exceed 30%. Figure 6 is a scatter plot for the CF patient outcomes in 2015 (red colored dots cor-
respond to deaths or transplants, yellow dots correspond to pulmonary decline events, and blue dots correspond 
to patients with no adverse outcomes). The outcomes are plotted against the predictions issued by AutoPrognosis 
(y-axis), and every individual patient’s FEV1 measure in 2012 (x-axis). As we can see, the FEV1 criterion can only 
provide a low-precision classification of patients with and without the poor outcome, whereas AutoPrognosis 
provides a more precise risk stratification for the CF population in which most patients with intermediate poor 
outcomes (pulmonary decline) reside in the moderate risk group, and patient allocation to the high risk group 
exhibits lower false alarm rates (refer to Table 4). Clinicians can use the risk predictions and risk strata learned 
by AutoPrognosis as actionable information that guide clinical decisions. For instance, patients in the high risk 
group would be immediately referred to a transplant, patients in the moderate risk group would be recommended 
a drug with potential consideration for a transplant in the future, and patients in the low risk group should rou-
tinely pursue their next annual review.

Variable importance.  We sought to understand how the different patient variables contribute to the pre-
dictions issued by AutoPrognosis. Previous studies have identified a wide range of CF risk factors including 
FEV1% predicted4,11,24,36,39, female gender4,24, BMI39,40, Pseudomonas Aeruginosa infection24, Burkholderia 

Figure 5.  FEV1 trajectories over the years 2012 to 2015.

Figure 6.  Depiction for the CF patients’ outcomes, FEV1 measures and predictions made by AutoPrognosis.
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cepacia colonization36, hospitalization36, CF-related diabetes4,54, non-invasive ventilation36, and ΔF508 homozy-
gous mutation24. Since AutoPrognosis was trained in order to provide precise predictions, we focus not only on 
identifying variables that are most predictive of the outcomes in the sense of AUC-ROC maximization, but also 
on understanding which variables AutoPrognosis exploited in order to improve the precision (i.e. PPV) of the 
learned model (refer to Tables 3 and 4). These variables can then be considered when updating the current con-
sensus guidelines on LT referral and waiting list priority allocation12.

We evaluated the predictive power of each individual variable by providing AutoPrognosis with one variable at 
a time, and assessing the diagnostic accuracy of the model that it constructs using only that variable. We evaluated 
the AUC-ROC and the AUC-PR metrics (using 10-fold stratified cross-validation) in order to get a full picture 
of each variable’s predictive power with respect to sensitivity, specificity, precision and recall. The most predictive 
22 variables with respect to both the AUC-ROC and the AUC-PR metrics are illustrated in Figs 7 and 8. In both 
figures, the bars associated with the variables correspond to the AUC-ROC/AUC-PR performance achieved by 
AutoPrognosis using only this variable. The black error bars correspond to the 95% confidence intervals. Since 
CF patients may encounter pulmonary disorders manifesting in either increased airway resistance or impaired 
gas exchange55, we labeled the patients’ variables in Figs 7 and 8 based on the aspect of lung function that they 
reflect. Variables that describe lung function in terms of airway resistance (e.g. FEV1, FEV1% predicted, FEV1 
trajectory, etc) are represented through red bars. Variables that describe lung function in terms of gas exchange 
(e.g. Oxygenation) are represented through blue bars. Variables that represent pulmonary disorders resulting 
from bacterial infections are represented through green bars. All other variables had their corresponding bars 
colored in yellow.

Figure 7 shows that the spirometric (FEV1) biomarkers, including the FEV1 measurements collected 3 years 
prior to 2012, display the best AUC-ROC performance. Interestingly, we found that the history of FEV1 meas-
urements (e.g. the FEV1% predicted 1 year before baseline) is as predictive as the FEV1 measurements at baseline. 
Variables reflecting pulmonary disorders resulting from bacterial infections (intravenous antibiotic courses in 
hospital56) were the second most predictive in terms of the AUC-ROC performance. The most predictive compli-
cations were found to be diabetes and CF-related diabetes. Apart from intravenous antibiotics, the most predictive 
treatment-related variable was usage of oral corticosteroids. Genetic variables and microbiological infections 
were found to have a poor predictive power when used solely for predictions, though intravenous antibiotic 
courses can be thought of as proxies for microbiological infections.

Figure 8 shows that the importance ranking for the patients’ variables changes significantly when using preci-
sion (i.e. AUC-PR) as a measure of the variables’ predictive power. Most remarkably, reception of Oxygen therapy 
turns out to be the variable with the highest AUC-PR. Hence, precise risk assessment and transplant referral deci-
sions need to consider, in addition to the spirometric biomarkers, other biomarkers that reflect disorders in gas 
exchange, such as the partial pressure of carbon dioxide in arterial blood (PaCO2) and Oxygen saturation by pulse 
oximetry (SpO2)57. Prevalence of respiratory failures that are usually treated via Oxygenation, such as hypoxemia 
and hypercapnia17,55,57,58, should be considered as decisive criteria for LT referral even when airway obstruction is 

Figure 7.  AUC-ROC of individual variables.
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not severe (i.e. FEV1 > 30%). AutoPrognosis was able to learn a prediction rule that carefully combines spiromet-
ric and gas exchange variables in order to come up with a precise lung transplant referral criterion that accurately 
disentangles patients who are truly at risk from those who do not need a lung in the near future (refer to Tables 3 
and 4). Our results indicate that looking at the right accuracy metric that reflects the true clinical utility (in this 
case the precision-recall curve) is important not only for tuning and comparing predictive models, but also for 
discovering risk factors that are relevant for clinical decision-making.

Figures 9 and 10 illustrate how LT referral policies based on AutoPrognosis handle patient subgroups strat-
ified by spirometric and Oxygenation variables. In Fig. 9, we look at 4 subgroups: patients with FEV1 < 30% 
who received Oxygen therapy, patients with FEV1 < 30% who did not receive Oxygen therapy, patients receiving 
Oxygen therapy but had FEV1 ≥ 30%, and patients who were neither Oxygenated nor had their FEV1 drop below 
the 30% threshold. The subgroup memberships are labeled on the y-axis; every patient is represented as a dot in a 
scatter plot, with the x-axis quantifying the risk estimate of AutoPrognosis for every individual patient. Patients 
with adverse outcomes are represented via red dots, whereas those with no adverse outcomes are depicted as 
blue dots. As we can see in Fig. 9, the simple FEV1 criterion would refer the two subgroups with poor spirometric 
biomarkers (FEV1 < 30%) to a transplant; this leads to a referral list with many blue dots (this is depicted via 
the dotted box that groups all patients with FEV1 < 30% in Fig. 9), and consequently a high false positive rate 
that leads to a PPV of 48%. Contrarily, AutoPrognosis orders the risks of the 4 subgroups by accounting for 
both Oxygenation and spirometry; this results in a more precise list of referrals at any given cutoff threshold (as 
can be seen in the dotted box that groups all patients with risk cutoff of 0.33, where the majority of the dots in 
the box are red). AutoPrognosis achieves precision by assigning a high risk assessment to Oxygenated patients, 
even if their spirometric biomarkers are not severe. At a fixed TPR of 46%, this leads to some of the patients 
with FEV1 < 30% but good clinical outcomes being replaced with Oxygenated patients with FEV1 > 30% who 
experienced adverse outcomes, which raises the PPV to 65%. Figure 10 illustrates the agreement between a lung 
transplant referral policy based on AutoPrognosis and 3 policies that make referral decisions based on either 
spirometry, Oxygenation or both. As we can see, the higher the cutoff threshold is (high cutoff threshold means 
that the length of the waiting list is restricted, perhaps due to scarcity of donors), the more similar is the policy 
based on AutoPrognosis to a policy that picks patients who were both Oxygenated and had an FEV1 below 30%. 
This implies that AutoPrognosis ranks the patients’ risks by incorporating both spirometric and gas exchange 
variables, and hence in a practical setting in which patients are already in a transplant waiting list, AutoPrognosis 
would assign higher priorities to patients who encountered problems with both airway obstruction and impaired 
gas exchange.

AutoPrognosis’ Interpreter.  The variable importance analyses conducted (manually) in the previous sub-
sections aimed at “interpreting” the prognostic model learned by AutoPrognosis, and revealed interesting insights 
on the role of different variables in clinical decision-making. As a part of our automated framework, we sought 
to automate the process of interpreting the complex prognostic model learned by AutoPrognosis and distilling 

Figure 8.  AUC-PR of individual variables.
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clinical insights from its underlying prediction rule. That is, we want AutoPrognosis to automatically “explain” its 
own predictions. Since models that are inherently interpretable, such as decision trees, often exhibit modest pre-
dictive accuracy33, we chose to separate the problem of tuning the predictive model from the problem of explain-
ing its predictions34. This was achieved by supplying AutoPrognosis with a post-processing module, which we 
call the “interpreter” (see Fig. 1), which operates on the (arbitrarily complex) prognostic model generated by the 
preceding Bayesian optimization module, and attempts to extract association rules that link different actionable 
variables to risk strata that are predefined by clinicians. It is important to note that the interpreter’s role is only to 
explain the predictions of the prognostic model and is not used for issuing any predictions, and hence we do not 
construct the interpreter to optimize any accuracy metric.

The interpreter module is implemented as a simple associative classifier59 which can be expressed through a set 
of clinically interpretable association rules (if-then rules) that link conjunctions of clinical conditions to risk pre-
dictions. An example for a possible association rule is: if the patient had her FEV1 below 30% and had a B. Cepacia 

Figure 9.  Depiction for transplant referral policies based on AutoPrognosis and the FEV1 criterion for different 
patient subgroups.

Figure 10.  Inter-rater agreement between AutoPrognosis and 3 simple referral policies.
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infection, then the patient will need a LT within the next 3 years. Implementation details for the associative clas-
sifier used in the interpreter module are provided in Methods. Figure 11 depicts the statistically significant asso-
ciation rules discovered by AutoPrognosis’ interpreter for a predefined risk strata that clusters the patients into 
4 risk groups, where we can see that the interpreter managed to automatically reconstruct the insightful findings 
presented in the previous subsections.

Sensitivity analyses.  AutoPrognosis was able to identify Oxygenation as a key variable for ensuring pre-
cise predictions for CF patients. We tested the robustness of this finding by examining the impact of defining a 
composite endpoint of death and transplant on our analysis of variable importance. In particular, we conducted 
a Chi-Square test of independence in order to test whether an association between Oxygenation and transplant 
events (rather than death events) existed in the data and led to the importance ranking in Fig. 8. (The test was con-
ducted on the population of patients with poor outcomes.) With a p-value of 0.723, the hypothesis of Oxygenation 
being associated with transplants through an underlying clinical policy was rejected. The variable importance 
ranking in Fig. 8 did not change when defining importance via F1 scores (see Supplementary Table S1).

Figure 11.  The interpreter’s association rules.
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Patients lost to follow-up are unlikely to have had an impact on our findings. By imputing the outcomes of 
patients lost to follow-up, we found their mean risk (as predicted by AutoPrognosis) to be 7.20% ± 0.29%, as 
compared to a mean risk of 8.54% ± 0.45% for the study population. A two-sample t-test rejected the null hypoth-
esis that the two populations have the same average risk (p-value < 0.001), and suggested that the patients lost to 
follow-up had a lower average risk. In order to examine the impact of not including those patients in our study, 
we augmented all patients lost to follow-up to our study population, and constructed an “adversarial” dataset in 
which none of the patients lost to follow-up had experienced a poor outcome. Such a dataset is “adversarial” to 
our findings since assuming that all patients lost to follow-up were alive implies that those patients had a dis-
tribution for their outcomes that does not match the observed event incidences used to tune our model, and is 
instead set to an extreme distribution that could change our conclusions. By feeding the augmented data set to 
AutoPrognosis, the variable importance rankings in Figs 7 and 8 did not change (see Supplementary Table S2). 
In the supplementary material, we also provide a table showing the variable importance ranking when corre-
lations between features are accounted for using the correlation-based feature selection (CFS) method60 (see 
Supplementary Table S3). The CFS algorithm assigned high ranks to both the FEV1 and Oxygen therapy varia-
bles. However, since CFS is based merely on feature-class (and feature-feature) correlations, it was not possible 
for the CFS-based ranking to disentangle the differences between FEV1 and Oxygen therapy variables in terms 
of accuracy and precision. Moreover, since CFS accounts for correlations among features, it discarded some of 
the FEV1 measures that were deemed important in the single-variable analysis as they were correlated with the 
patient’s most recent FEV1 % predicted measure.

Discussion
In this paper, we developed an algorithmic framework that leverage Bayesian optimization techniques for auto-
mating the process of constructing machine learning-based clinical prognostic models. Our framework allows 
clinical researchers to efficiently build highly-optimized machine learning pipelines for prognostication without 
the need for complicated design choices or time-consuming manual tuning of models’ hyper-parameters, which 
require in-depth technical expertise. Our framework also allows for interpreting complex machine learning mod-
els by mining for association rules that relate conjunctions of clinical conditions with risk strata.

We applied our general framework to the problem of predicting short-term survival of cystic fibrosis patients 
using data from the UK CF registry. AutoPrognosis was capable of learning an ensemble of machine learning 
models (including the well-known random forest and XGBoost algorithms) that outperformed existing risk 
scores developed in the clinical literature, mainstream practice guidelines, and naïve implementation of vanilla 
machine learning models. We demonstrated the clinical utility of the prognostic model learned by AutoPrognosis 
by examining its potential impact on lung transplant referral decisions. Our analysis showed that the model 
learned by AutoPrognosis achieves significant gains in terms of a wide variety of diagnostic accuracy metrics. 
Most notably, AutoPrognosis achieves significant gains in terms of the positive predictive values, which implies 
a remarkable improvement in terms of the precision of lung transplant referral decisions. AutoPrognosis’ inter-
preter module revealed that the model is able to achieve such gains because it recognizes the importance of 
variables that reflect disorders in pulmonary gas exchange (such as Oxygenation), and learns their interactions 
with spirometric biomarkers reflecting airway obstruction (such as FEV1). This gave rise to a precise survival pre-
diction rule which disentangles patients who are truly at risk from those who do not necessarily need a transplant 
in the short term.

Although our study provided empirical evidence for the clinical usefulness of applying automated machine 
learning in prognostication, it has some limitations. First, the prognostic model learned by AutoPrognosis needs 
to be externally validated in order to ensure that our findings generalize to other CF populations. Second, the net 
clinical utility of our model needs to be evaluated by considering post-transplant survival data, through which we 
can identify high-risk patients for whom a transplant is indeed beneficial. Finally, we had no access for data on 
patients who went through a transplant evaluation process or were enrolled in wait list but did not get a transplant 
within the 3-year analysis horizon, which rendered direct comparisons with the actually realized clinical policy 
impossible.

Methods
Data and clinical prognostic models.  The UK CF registry comprises annual follow-up data for a total of 
10,980 CF patients over a period spanning between 2008 and 2015. Data was gathered at every specialist center 
and clinic across the UK, with 99% of patients consenting to their data being submitted26, and hence the cohort 
is representative of the UK CF population. Variables with highest rates of missingness were those related to the 
spirometric trajectory: the missingness rates for the patients’ FEV1 biomarkers in 2008, 2009, 2010, 2011 and 
2012 were 31.0%, 20.0%, 15.5%, 6.2% and 4.4%, respectively. The missingness rates in the height, weight and BMI 
variables were 2.1%, 1.4% and 2.9%, respectively. Since AutoPrognosis software picked the missForest imputation 
algorithm in all cross-validation folds, an imputed dataset was created using the missForest algorithm for all the 
competing methods to ensure a fair comparison. Mortality data were extracted from the perennial database main-
tained by the UK CF trust, which includes all the death events for CF patients up to December 31st, 2015, includ-
ing death events for patients who did not provide annual review data in 2012. We did not assume that patients 
who neither have shown up for the annual review in 2015 nor had been included in the death records in the per-
ennial database to be alive. Instead, we assumed that those patients were lost to follow-up; the sensitivity analysis 
conducted earlier shows that our results would not change had we assumed those patients to be alive by 2015. We 
excluded from our analysis all patients who have had a LT at anytime that preceded her 2012 annual follow-up. 
We had no access to LT data in the years before 2008, but it is unlikely that this would affect our results since the 
number of LT that were carried out before 2008 is negligible compared to the size of the study population.
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We were not able to implement the CF-ABLE score by McCarthy et al.39, which uses the number of pulmo-
nary exacerbations as one of its three risk predictors, as the UK CF registry does not keep track of exacerbations. 
Instead, we implemented the modified CF-ABLE-UK score40, which uses the number of days the patient required 
intravenous antibiotics as a proxy for exacerbations. We were able to replicate the validation results obtained pre-
viously by Dimitrov et al.40; the in-sample AUC-ROC of CF-ABLE-UK in our study population was 0.7997, which 
closely matches the AUC-ROC of 0.80 (95% CI: 0.79–0.83) reported in their study. The models developed by 
Nkam et al.36 and Buzzetti et al.23 were fit to the French and Italian CF populations, respectively. Both models were 
re-calibrated prior to the diagnostic accuracy evaluations conducted in the Results section: the model by Nkam 
et al. was recalibrated in the large to match the incidence of poor outcomes in the UK CF population, whereas the 
model by Buzzetti et al. had its coefficients adjusted using logistic recalibration.

Implementation of AutoPrognosis.  AutoPrognosis is implemented as an installable Python package, 
with some of its submodules implemented in R and interfaced with the Python module via RPy2-based wrap-
pers. Bayesian optimization was implemented using GPyOpt61; a Python library that is based on GPy62. Currently, 
AutoPrognosis supports 7 imputation algorithms, 14 feature processing algorithms, 20 classification algorithms, 
and 3 calibration methods. Thus, AutoPrognosis can build prognostic models that combine any subset of a total 
of 5,460 machine learning pipelines. The 7 imputation algorithms are: mean imputation, median imputation, 
most-frequent imputation, expectation-maximization (EM), matrix completion, multiple imputation by chained 
equations (MICE), and missForest. Through RPy2-based wrappers, AutoPrognosis uses the R libraries mice, Amelia, 
softImpute and missForest to implement the MICE, EM, matrix completion and missForest imputation algorithms, 
respectively. The calibration methods considered by AutoPrognosis are: sigmoid regression, isotonic regression, 
or no calibration. The feature processing and classification algorithms deployed in the AutoPrognosis framework 
include all elements of the Scikit-learn Python library63. For feature processing, this includes (but not limited to) 
PCA, kernel PCA, feature agglomeration, fast ICA, random kitchen sinks, linear SVM preprocessing, Nystroem 
sampler, polynomial feature processing, and random trees embeddings. For classification algorithms, AutoPrognosis 
includes Gradient boosting, XGBoost, random forest, Naive Bayes, AdaBoost, Bagging, linear and kernel SVM, etc.

Bayesian optimization and ensemble construction.  AutoPrognosis uses a Bayesian optimization approach to con-
figure and combine machine learning pipelines with the goal of optimizing a given clinical utility function. In 
what follows, we present the formulation and algorithmic details of the AutoPrognosis training procedure. Let 
 = =X y( , )i i i

n
1 be the training dataset, where Xi is the variables of patient i in 2012, and ∈y {0, 1}i  is a binary 

label that is set to 1 if the patient encountered an adverse outcome by 2015. Let   denote the set of all pipelines 
supported by AutoPrognosis. Each pipeline θ ∈P( )  has a set of hyper-parameters that belongs to some 
hyper-parameter space Θ, i.e. θ ∈ Θ. Let θ U P( ( ), ) be an empirical estimate of the clinical utility achieved with 
pipeline P and hyper-parameter θ. Thus, AutoPrognosis attempts to solve the following optimization problem

D
P

⁎ ⁎θ θ= .
θ θ∈ ∈Θ

P U P, argmax ( ( ), )
(1)P( ) ,

Since we have no closed-form expression or gradient information for the complex objective function in 
Equation 1, we follow a “black box” optimization approach in which we repeatedly query the objective U P( ( ), )θ   
for different selections of the pipelines P and hyper-parameters θ. Note that every pipeline P can be decomposed 
into a set of “stages”, i.e. P = {I(θ), F(θ), M(θ), C}, where I is the imputation stage, F is the feature processing stage, 
M is the classification stage and C is the calibration stage. Note that the 3 calibration algorithms utilized by 
AutoPrognosis have no hyper-parameters to be tuned. In order to simplify the optimization problem, we decou-
ple the imputation and calibration stages from the other stages of the pipeline, i.e. we optimize the following 
approximate clinical utility:

D D D
P

θ θ θ θ= + +
∼ ∼ ∼

θ θ∈ ∈Θ

⁎ ⁎P U C U M F U I, argmax ( , ) ( ( ), ( ), ) ( ( ), ),
(2)P

c M F I I
( ) ,

where U C( , )c ∼  is the clinical utility achieved by the calibration algorithm C, U M F( ( ), ( ), )M Fθ θ∼  is the utility 
achieved by a combination of a feature processing F and classification algorithm M with hyper-parameters θF and 
θM, and θ∼ U I( ( ), )I I  is utility achieved by the imputation algorithm I with hyper-parameters θI. The approximation 
in Equation 2 assumes that the performance of calibration and imputations algorithms does not depend on the 
feature processing and classification algorithms. Hence, the optimization problem in Equation 2 can be decoupled 
into 3 separate optimization problems as follows:
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
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θ θ
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Let ,  , and   be the spaces of all possible classification, feature processing and imputation algorithms and 
their corresponding hyper-parameters. AutoPrognosis follows a Bayesian optimization approach for solving the 
3 optimization problems in Equation 3, where we place a Gaussian process prior over the clinical utility functions 
as follows32
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where GP(0, KM), GP(0, KI) and GP(0, KC) are Gaussian process priors (with kernels KM, KI and KC) defined over 
the input spaces ,  , and  , respectively. We chose the adaptive Matern 3/5 kernel for all the kernel functions 
KM, KI and KC. The Gaussian process priors allows AutoPrognosis to easily compute posterior beliefs about the 
clinical utility of all possible pipelines in closed-form. AutoPrognosis uses an acquisition function derived from 
the Gaussian process posterior in order to guide a sequence of evaluations of the clinical utility functions ∼U, ∼UI and ∼Uc in order to figure out the best pipeline. The acquisition function is designed so as to help AutoPrognosis balance 
between exploring new pipelines and re-evaluating previously explored ones. We use an Upper Confidence Bound 
acquisition function, which at the Kth iteration of the sequential algorithm is given by:
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where μ and σ are the posterior means and variances of the 3 Gaussian processes, and a κ is a tunable parameter 
that balances exploration and exploitation. We dropped the notations for hyper-parameters in Equation 5 for the 
sake of brevity. The sequential exploration and exploitation procedure goes as follows:

In the Kth step:

	 1.	 Select the calibration algorithm CK, feature processing algorithm FK, imputation algorithm IK and 
classification algorithm MK so as to maximize the acquisition functions =

−a M F M F(( , ); {( , )} )k k k
K

1
1 , 

=
−a I I( ; { } )k k

K
1
1  and a C C( ; { } )k k

K
1
1

=
− .

	 2.	 Evaluate the clinical utilities U∼, UI
∼ and ∼Uc using cross-validation.

	 3.	 Update the posterior means and variances μ and σ.
	 4.	 Update the acquisition functions and repeat step 1.

After convergence, AutoPrognosis constructs an ensemble of pipelines, which we call a super-pipeline, by assign-
ing every pipeline with a weight that is equal to the probability that the pipeline has the highest clinical utility among 
all the ones that have been evaluated, i.e. the weight of pipeline P is given by > U P U P({ ( ; ) ( ; )} )k k  , where {Pk}k 
is the set of all the evaluated pipelines. The probability  U P U P({ ( ; ) ( ; )} )k k >  can be easily evaluated by virtue 
of the conjugacy of the Gaussian process posterior. We defined the clinical utility as the average of the area under 
precision-recall curve and the average precision metrics in order to maximize the model’s positive predictive 
values.

The interpreter.  The interpreter module is a post-processing algorithm that takes as an input the optimized 
super-pipeline (P*) found by the Bayesian optimization module, and risk strata decided by clinicians. The risk 
strata is defined as a set  comprising M intervals that partition the [0, 1] interval, and represent distinct sets of 
actionable risk groups for which different clinical decisions would be made, i.e.

= … ∈ > ∀ ∈ … > .−r r r r r r r r k j M k j{[0, ), [ , ), , [ , ]}, [0, 1], , , {1, , },M M k k j1 1 2 1

A potential risk stratification for the CF population is the one given in Fig. 11, which can be represented by the 
set = . . . . . .{[0, 0 05), [0 05, 0 33), [0 33, 0 5), [0 5, 1]} . This strata divides the CF population into low risk, mod-
erate risk, high risk and very high risk groups. The corresponding actions could be: continue annual follow-ups, 
administer a drug (e.g. inhaled antibiotic), refer to a LT, refer to a LT with a high priority allocation in the waiting 
list. The interpreter’s objective is to interpret the complex risk scoring function embedded in the super-pipeline 
P* through easy-to-understand logical associations between clinical conditions and the predefined risk strata. 
The outputs of the interpreter are of the form:

C C C R R, ,l R1 2 ( )∧ ∧ … ∧ ⇒ ∀ ∈

where {C1, C2, …, Cl(R)} is a set of the l(R) boolean conditions associated with risk group R. An example for an 
association discovered by the interpreter, which is depicted in Fig. 11, is

(FEV 30%) (No Oxygenation) (No IV antibiotics) Low risk,1 < ∧ ∧ ⇒

where for this risk group we have that l(Low risk) = 3, i.e. three clinical conditions are associated with member-
ship in the low risk group. The association rules are aimed at explaining the reason why AutoPrognosis makes 
certain predictions, which conjunctions of medical conditions lead to higher risk predictions, and which vari-
ables are more important for assessing a patient’s short-term risk for adverse outcomes. These explanations are 
not only useful for debugging the clinical sensibility of the knowledge that AutoPrognosis has acquired from the 
data, but it can also help clinicians make decisions by presenting them with a simple rules that map conditions 
to outcomes. In other words, the interpreter tries to present the clinicians with a “data-driven practice guideline”.
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The interpreter mines for association rules through the following three-step associative classification 
procedure59,64:

•	 Step 1: Discretize continuous variables.
•	 Step 2: Mine for all class association rules.
•	 Step 3: Prune the discovered association rules using minimum support and minimum confidence constraints.

Step 1 involves discretizing the continuous variables using the minimum description length principle65. 
AutoPrognosis uses the CBA (Classification Based on Associations) classifier to implement the three steps 
above64, with the exception of the FEV1 biomarker which is discretized using the 30% threshold. The discretiza-
tion process conducted by AutoPrognosis allows the user to either let the variables be discretized automatically 
or manually of clinicians are interested in particular ranges of the given biomarkers. Through the CBA classifier, 
the class association rules are identified as follows. After discretizing the continuous variables in Step 1, we have 
a relational dataset with categorical attributes and risk strata as classification targets. Every possible realization 
of a categorical variable and risk category corresponds to an association rule, or a ruleitem. An association rule 
holds with confidence c% and support s% if it holds for c% of the patients in the dataset, and the corresponding 
risk group has a prevalence of s%. We use the greedy k-ruleitem algorithm to implement steps 2 and 3 jointly, by 
sequentially identifying increasing sets of variables that create association rules satisfying predefined minimum 
confidence and support requirements. The association rules in Fig. 11 shows associations that hold with confi-
dence 0.8 and support 0.2. AutoPrognosis uses an RPy2-based wrapper to implement the CBA algorithm through 
the R package arulesCBA.
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