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Magnetic resonance (MR) imaging is a powerful technique for non-invasive in-vivo imaging of the
human brain. We employed a recently validated method for robust cross-sectional and longitudinal
segmentation of MR brain images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort.
Specifically, we segmented 5074 MR brain images into 138 anatomical regions and extracted time-

© point specific structural volumes and volume change during follow-up intervals of 12 or 24 months.

. We assessed the extracted biomarkers by determining their power to predict diagnostic classification
and by comparing atrophy rates to published meta-studies. The approach enables comprehensive
analysis of structural changes within the whole brain. The discriminative power of individual biomarkers
(volumes/atrophy rates) is on par with results published by other groups. We publish all quality-checked
brain masks, structural segmentations, and extracted biomarkers along with this article. We further
share the methodology for brain extraction (pincram) and segmentation (MALPEM, MALPEM4D) as
open source projects with the community. The identified biomarkers hold great potential for deeper
analysis, and the validated methodology can readily be applied to other imaging cohorts.

. Non-invasive magnetic resonance (MR) brain imaging can support the quantitative characterization of neu-

. rological conditions such as Alzheimer’s disease (AD). MR imaging can provide informative biomarkers even

. before clinical symptoms are apparent or irreversible neuronal damage has occurred!2. The diagnostic potential
of biomarkers based on structural imaging has been outlined by Frisoni et al.*> and Kloppel et al.%. Automatically
extracted biomarkers can provide diagnostic decision support, increase objectivity in the disease assessment and
improve differential diagnosis®-%. Another important avenue is the use of biomarkers for AD screening or for
enrolling suitable participants for pharmaceutical trials*’. Clinical trials can also benefit from MR biomarkers
as they enable enrichment strategies® or more rigorous inclusion criteria, leading to more homogeneous study
groups' ™.

Subjects with mild cognitive impairment (MCI) do not fulfil the diagnostic criteria for AD?, but are at
increased risk of developing AD'?. Predicting conversion to AD is of particular importance to patients, clinicians
and caregivers, but also for clinical trials**'°. An illustration of anatomical changes over a period of two years

. is shown in Fig. 1 for a healthy control (HC) subject, a progressive MCI (pMCI) subject converting to AD and a
. patient with AD. Modern neuroimaging can help to improve the accuracy of MCI diagnosis by adding positive
. predictive value when combined with other diagnostic criteria®>*!'"2. It is, however, uncertain whether infor-
mation based on individual brain structures is sufficient to fully characterize the complex progression of AD or
even to enable a differential dementia diagnosis”'®. Recent studies further suggest that structural MR imaging in
combination with other diagnostic procedures, such as positron emission tomography (PET) or chemical analysis
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Figure 1. Three examples of MR images (brain-extracted) of subjects from the ADNII cohort in coronal
section. Top row: a healthy control subject (male, 84.8 years at baseline); middle row: MCI subject (female,
71.8 year at baseline) who converted to AD after three years; bottom row: an AD patient (male, 77.5 years at
baseline). Left: baseline; middle: 2-year follow-up; right: baseline with overlaid difference image of rigidly
aligned images (blue: volume loss/atrophy, red: positive volume change). The differences are visually subtle, but
the increased atrophy in the medial temporal lobe and the enlarged ventricles are apparent in the difference
image.

of cerebrospinal fluid (CSF), can detect pathological AD-related change years before the onset of AD dementia®'4.
Many studies have shown that with progression of the disease, there is significant atrophy in structures of the
medial temporal lobe (MTL) such as the hippocampus, amygdala, and entorhinal and parahippocampal corti-
ces®>717 In the future, structural MR imaging will thus play an important role not only in the diagnosis of AD,
but also in monitoring its treatment* . The development of automatic, robust, quantitative techniques to assess
MR images of the brain is therefore an important factor to further increase the utility of structural imaging in the
context of neurocognitive disorders.

A vast number of studies have shown correlations between quantitative measures calculated from brain MR
images with AD progression. Automatic methods perform similarly to trained radiologists when classifying MR
images of patients with AD>. There is strong evidence that different anatomical brain structures are affected at
different stages of the disease'®, with early involvement of the hippocampus, amygdala and entorhinal cortex
consistently shown in the literature®!>'”. Although sensitive to dementia, these markers may yet not be suffi-
ciently specific to AD*2. A uniform approach that considers pathological changes of multiple structures within
the whole brain promises to increase specificity in dementia diagnosis and to support differential assessment of
various types of dementia®!. It is thus desirable to follow a holistic approach and to analyse a large number of
structures of the whole brain rather than only a limited selection of brain structures. Due to its early involvement
in dementia, the focus of many published methods lies on the segmentation of the hippocampus to quantify
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its volume or shape!»!#-2, Grey matter (GM) tissue maps'®!® and cortical thickness have also been shown to
be of high predictive value in the context of AD'>**. Other approaches are based on voxel-based morphometry
(VBM)?!, deformation-based morphometry (DBM)*, or tensor-based morphometry (TBM)*? to study group
differences. In general, methods exploring the whole brain outperform those focusing on individual structures
such as the hippocampus'>*,

Many studies have shown that biomarkers of morphometry, such as volume or shape, correlate with AD pro-
gression. However, intersubject variability can lead to substantial overlap with the healthy population and thus
limit the discriminative power of these features®'. Temporal change of the whole brain or individual structures
tends to be more consistent between subjects. Atrophy rates are usually given as a percentage per year. Popular
approaches rely on 3D + t optimization using graph cuts®?, expectation maximization®, or the boundary shift
integral?**%*. The measurable increase in GM atrophy in patients with AD is a consequence of a substantially
accelerated, regionally selective loss of neurons*>*”. Most of the published studies can, however, only be compared
qualitatively. In many cases, different features, a different methodology to extract the features and different clas-
sification techniques are used’. In addition, methods are applied to different cohorts or different subsets thereof.
Most studies lack histopathologically confirmed ground truth diagnoses. Instead of seeing subjects as being either
healthy or diseased, the diagnosis of AD is a dynamic process in which biomarkers gradually begin to change
before current diagnosis criteria are met***%. Advances in machine learning, e.g. Gaussian process modelling,
have also introduced novel opportunities for personalized healthcare, shifting from “one-size-fits-all” population
modeling towards personalized models**-,

Of particular importance for routine use in clinical practice is the interpretability of biomarkers’. Many
recently developed methods rely heavily on machine learning techniques, e.g. learned manifolds***, multiple
instance learning®, or region grading®. Even though these methods are often highly accurate, the interpreta-
tion of their results can be difficult, and this impedes their adoption into clinical practice. Thus, it is desirable to
calculate biomarkers that are easy to interpret, but at the same time as informative as features obtained through
such sophisticated machine learning techniques. A further overview can be found in numerous surveys*”12%2,

In this manuscript we employ multi-atlas label propagation with expectation-maximisation based refine-
ment (MALPEM)*, a state-of-the-art automatic segmentation method for robust segmentation of whole-brain
MR images into 138 distinct anatomical structures. Johnson et al.> recently validated a number of established
segmentation methods (SPM>"*, ANTs Atropos>*, MALP-EM>*, FSL FAST, FreeSurfer*) in the context of
Huntington’s disease and found that “MALP-EM appeared to be the most visually accurate tool, [...]” In 2015,
an entry based on MALPEM won a third prize in the CADDementia disease classification challenge held in con-
junction with MICCAT*2. We applied MALPEM to a set of 5074 images of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) cohort with the goal to identify biomarkers that characterize the whole brain, specifically struc-
tural volumes and atrophy rates. Our main contributions are:

«  We confirm the accuracy and robustness of MALPEM/MALPEM4D in a cross-sectional/longitudinal study
based on a large number of images from the ADNI database.

o We assess the quality of extracted biomarkers with a clear clinical interpretation (volumes/atrophy rates) and
show that their discriminative value is on par with published literature in the context of AD.

o We share the employed methodology for brain extraction (pincram) and segmentation (MALPEM,
MALPEM4D) as open source projects. The validated methodology can readily be applied to other imaging
cohorts.

o We share quality-checked brain masks, structural segmentations and extracted biomarkers for 5074 ADNI
images with the community. This resource holds great potential for a deeper analysis and enables training of
sophisticated model-based approaches by interested research groups.

Results

Cross-sectional analysis. In a cross-sectional analysis, we investigated the potential to discriminate AD
disease stages based on the volumes of individual brain regions. An example segmentation result of a healthy con-
trol subject and a patient diagnosed with AD is shown in Fig. 2. The distribution of the measured s of six selected
structures is shown in Fig. 3 for the four disease groups: HC, stable MCI (sMCI), pMCI and AD. The reduced
GM volume of structures in the medial temporal lobe and the increased ventricular volume in patients with AD
is apparent. All cross-sectional volumetric measurements were corrected for the nuisance variables subject age,
gender, and intracranial. In the following, these corrected volumes will be employed to investigate their potential
to classify relevant disease stages in AD.

Disease classification using structural volumes. An overview of the results of the classification experiments is
given in Table 1. The volume of the amygdala allows the strongest distinction between AD and HC with an effect
size (Cohen’s d) of 1.56 and a balanced classification accuracy (bACC) of 80%, a sensitivity (SENS) of 76% and
a specificity (SPEC) of 84%. Other structures in the MTL region such as the hippocampus (bACC: 78%) or the
entorhinal area (bACC: 78%) were similarly discriminative (d > 1.5). Established findings that total brain vol-
ume, and cortical grey matter in particular, are smaller in patients with AD were confirmed in our experiments.
Accuracy was further improved by combining all structural volumes as features in a support vector machine
(SVM; bACC: 89%, SENS: 86%, SPEC: 92%) or random forest (RF; (bACC: 86%, SENS: 83%, SPEC: 90%). As
indicated in Table 1, numerous structural differences were highly significant even after Bonferroni correction for
multiple comparisons. The structural volumes of the amygdala (bACC: 65%, SENS: 63%, SPEC: 68%) and inferior
lateral ventricle (bACC: 64%, SENS: 54%, SPEC: 74%) were most discriminative for the classification of pMCI
vs. sMCI. Combining all extracted structural volumes into a single RF classifier further increased classification
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Figure 2. Example cross-sectional segmentation results of a patient diagnosed with AD (ADNI_018_S_0286,
male, 66 years of age) in axial (left), coronal (middle) and sagittal (right) view-plane.

accuracies (bACC: 68%, SENS: 72%, SPEC: 64%). The classification results for all structures can be found in the
supplementary material.

Longitudinal analysis. In a further longitudinal analysis we investigate the volume change of individual
anatomical regions with respect to disease stage. Atrophy was measured for the month-12 (m12) or month-24
(m24) follow-up images with respect to their corresponding baseline (bl) images. In the following, we show
atrophy rates with their corresponding sample sizes as well as discriminative power to distinguish between
disease stages. Sections from an example segmentation obtained on a subject diagnosed with AD are shown
in Fig. 4.

Atrophy rates and sample sizes. ~ Atrophy rates for selected structures can be found in Table 2 as well as in Table 3
for AD/HC and in Table 4 for pMCI/sMCI. The distribution of the volume change of six selected structures is
shown in Fig. 5 for the four investigated clinical groups (HC, sMCI, pMCI and AD). In AD patients, GM struc-
tures such as the hippocampus (HC: —1.1%, AD: —4.8%) or the medial temporal gyrus (HC: —1.1%, AD: —3.8%)
are subject to significant volume loss between baseline and m12. Concurrently, ventricles expand rapidly in AD
patients (HC: 2.8%, AD: 7.2%). Overall, sMCI subjects show atrophy patterns similar to HC, while atrophy pat-
terns in MCI subjects converting to AD are similar to those in AD patients. The amount of atrophy measured
between the baseline and m24 are on the order of twice those measured between baseline and m12. The results
indicate that the atrophy rate in the entorhinal region is slightly higher in pMCI subjects than in patients with
AD. A volume change rate of —4.0% (+£3.7) for pMCI subjects and —3.7% (£4.1) for AD patients was measured
at m12. Respectively, a volume change rate of —7.4% (+4.7) for pMCI subjects and —7.0% (£5.5) for AD patients
was measured at m24.

Based on the atrophy rates, sample sizes were calculated to detect a 25% change in atrophy rate with 80%
power at a 5% significance level. The atrophy rates and sample sizes for selected structures are shown in Table 2.
The smallest sample sizes (corrected for normal aging) were computed for the inferior lateral ventricles with 228
subjects for bl —m12 and 126 subjects for bl — m24. The measured atrophy rates of other structures such as the
hippocampus or the medial temporal gyrus yielded sample sizes at a similar level. Atrophy rates for all investi-
gated structures can be found in the supplementary material.

Disease classification using structural volume change. ~We further investigated the potential of structural atrophy
rates to distinguish between the clinical groups AD vs. HC and pMCI vs. sMCI. P-values, effect sizes and classifi-
cation accuracies were calculated to quantify group separation. The results are shown in Table 3 (AD vs. HC) and
Table 4 (pMCI vs. sMCI).

The most discriminative structure to distinguish between AD and HC was the hippocampus (d,,,, = 1.40,
d;24=1.88). Based on m12 atrophy a bACC,,,;, of 78% (SENS: 67%, SPEC: 88%) was calculated, for m24 atrophy
a balanced accuracy of 85% respectively. Combining all derived atrophy features in a RF classifier substantially
increased classification results to bACC,,;,: 84%; bACC,,,,4: 88%. Hippocampal atrophy was also a very good fea-
ture for classifying progressive versus stable MCI subjects: bACC,,,;,: 67%; bACC,,,4: 74%. However, the highest
individual classification accuracy was obtained at m12 for the medial temporal gyrus (bACC,,,,: 70%, SENS: 65%,
SPEC: 75%) and the inferior lateral ventricles (bACC,,;,: 69%, SENS: 63%, SPEC: 75%). Over 24 months, atrophy
in the fusiform gyrus was most informative for classifying MCI subjects (bACC,,,,: 76%). Exploiting all available
longitudinal features in an RF classifier increased MCI classification accuracy to bACC,,,,: 73%; bACC,,,4: 78%.
Ventricular enlargement is more discriminative than a reduction in brain tissue for both AD versus HC and
PMCI versus sMCI classification. An overview over all considered features and their individual classification
performance can be found in the supplementary material.

Discussion
In this study, sets of 1069 baseline, 802 m12, and 532 m24 follow-up images from the ADNI-1/-GO/-2 cohort
were analyzed. Considering the size and heterogeneity of the database, we expect our findings to be applicable to
other cohorts.
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Figure 3. Boxplots of structural volumes at baseline for six selected structures before correcting for nuisance
factors for distinct disease groups. Structures were selected based on their performance in classifying the
investigated disease groups (c.f. Table 1).

A selection of articles is listed in Table 5 to present our classification results in the context of those reported
in the literature. When comparing results to other studies it must be noted that these did not use identical data
subsets from the ADNI cohorts. A further potential confounding factor is the definition of the sMCI and pMCI
disease groups. In our study, the stratification of MCI subjects in sMCI and pMCI is well-defined. However, this
definition is not identical across published studies.

Our cross-sectional classification results are very similar to those presented in Wolz et al.*, which are based on
the ADNI-1 cohort. Wolz et al.* classified AD vs. HC (bACC: 89%, SENS: 93%, SPEC: 85%) and pMCI vs. sMCI
(bACC: 68%, SENS: 67%, SPEC: 69%) based on a multitude of features, including more abstract criteria derived
from TBM and manifold-learning based methods. Other studies report even higher classification results of up to
bACC: 92.4% for AD vs. HC and bACC: 74.0% for pMCI vs. sMCI classification®. Unlike our study, most studies
shown in Table 5 analyzed the 1.5 Tesla (T) images of ADNI-1 only. Also usually more complex features such as
cortical features®*%°-¢2, textural features®’, manifold-based features**¢! or grading based features®® are employed.
In summary, the results presented in this study are comparable to the state of the art. This is encouraging, as we
analyzed a large and heterogeneous dataset acquired at both 1.5T and 3T using structural volumes only, which are
features with clear biological interpretations. Furthermore, structures that were found to be most discriminative
agree well with those highlighted in Fennema et al.2. Examples are the hippocampus, amygdala, entorhinal area,
and regions within the temporal gyrus in general.

Based on hippocampal atrophy alone a bACC,,;, of 78% and bACC,,,,, of 85% was calculated for classifying
AD vs. HC. These results are similar to those obtained on a different ADNI subset with a method dedicated
to hippocampal atrophy measurement®*: bACC,,;, of 82% (SENS: 81%, SPEC: 83%); bACC,,,4 of 86% (SENS:
85%, SPEC: 87%). The results for AD vs. HC classification using all longitudinal features are also on par with
those using all structural volumes at baseline. However, classification accuracies substantially above 90% were
not expected due to potential bias in the study data caused, for example, by diagnostic misclassification, vari-
ations in scanner type and field strength, as well as possible remnant differences between participating centres
that even strict protocols such as ADNT’s cannot prevent. Using longitudinal information available at the month
24 follow-up visit increased accuracy for classifying sMCI vs. pMCI groups from 68% at baseline to 78%. This
confirms the discriminative value of higher structural atrophy rates in MCI subjects who progress to AD. Unlike
in patients with AD, atrophy in MCI subjects has not yet manifested itself in substantially reduced structural
volumes at baseline.

In Barnes et al.** the authors concluded in a large meta-analysis that the annualized hippocampal volume
change of healthy elderly people is —1.4% compared with —4.6% for patients with AD. Our results are similar:
—1.1% (£1.7) for HC and —4.8% (+£3.7) for AD subjects. A mean change of —0.5% (£0.8) and —1.3% (£1.1)
from bl to m12 was observed for HC and AD groups for brain tissue. These results are also in line with previously
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}{andomForest (all 87 (86) 83 %0

eatures)

SVM (all features) 90 (89) 86 92

(surrogate structures)

BrainTissue 72 (71) 63 78 —17942.8 [ —1.5%)] (22718.7) | 0(17403.6) 0.900 <0.00001 | 4+ (++)
CorticalGreyMatter 68 (67) 63 72 —23635.9 [= —4.6%] (28907.3) | 0(24078.1) 0.898 <0.00001 | ++ (++)
Ventricles 72 (71) 63 79 17757.3 [£ 46.2%] (22639.6) 0(17293.9) 0.895 <0.00001 | ++ (++)
WhiteMatter 57 (56) 51 61 7242.2 [%1.7%] (29309.8) 0(28686.1) 0.250 0.00086 ++ (o)
DeepGreyMatter 52 (52) 50 54 —1549.1 [£ —0.9%] (13310.2) 0(11142.2) 0.127 0.08834 o (o)
Brain 54 (55) 56 53 1199158.5 (132290.9) 1212115.6 (118623.9) 0.104 0.16526 o (o)
(selected individual structures)

Amygdala 80 (80) 76 84 —452.0 [= —20.0%] (332.0) 0(250.5) 1.561 <0.00001 | 4+ (++)
Hippocampus 78 (78) 75 80 —1115.4 [ —17.0%] (817.7) 0 (660.7) 1.519 <0.00001 | 4+ (++)
EntA 78 (78) 76 80 —801.3 [= —19.0%] (583.3) 0 (485.3) 1.509 <0.00001 | ++ (++)
LeftHippocampus 79 (78) 76 81 —588.1 [= —18.4%] (423.1) 0(364.6) 1.502 <0.00001 | 4+ (++)
RightAmygdala 80 (80) 77 83 —232.2 [£—20.2%] (182.6) 0(139.4) 1.452 <0.00001 ++ (++)
LeftAmygdala 78 (78) 75 81 —219.8 [ —19.7%] (179.7) 0(135.5) 1.403 <0.00001 | 4+ (++)
RightHippocampus 76 (75) 71 79 —527.3 [& —15.7%] (488.0) 0(339.1) 1.280 <0.00001 ++ (+4)
InfLatVent 78 (77) 65 89 1330.8 [ 65.8%] (1367.4) 0(702.2) 1.267 <0.00001 | ++ (++)
LeftInfLatVent 77 (76) 66 86 649.5 [= 68.2%) (677.1) 0(360.6) 1.237 <0.00001 | ++ (++)
ITG 71 (71) 69 73 —2588.0 [ —10.7%] (2506.9) | 0 (1954.5) 1.168 <0.00001 | 4+ (++)
progressive MCI (N =177, Positives®) vs. stable MCI (N = 166, Negatives®) (baseline analysis, 'volumes corrected for age/gender/brain size)

structure ACC (bACC) SENS SPEC I[I:Ia;;][pﬂel' to HC] (SD) l[';:x][),lfl' to HC] (SD) ?‘Iif)ect size p-value sig. (corr.)
ERSzxtl;lrc:Sl;Forest (all 68 (68) 7 64

SVM (all features) 67 (67) 70 64

(surrogate structures)

BrainTissue 60 (60) 51 69 —12652.2 [ —1.1%] (20144.6) | —4372.1 [ —0.4%] (20741.3) | 0.405 0.00021 ++(+)
Ventricles 60 (60) 51 70 12483.5 [£ 35.6%] (20045.3) 4427.7 [£9.7%)] (20676.8) 0.396 0.00029 ++(+)
CorticalGreyMatter 56 (56) 55 56 —16743.9 [= —3.2%] (27348.8) | —6929.4 [= —1.3%] (26948.6) | 0.361 0.00091 ++ (0)
Brain 51 (51) 52 49 1222424.9 (131084.2) 1238635.5 (118830.2) 0.129 0.23200 o (o)
WhiteMatter 48 (48) 47 49 5966.3 [ 1.3%] (27919.1) 4607.3 [= 1.0%) (26735.5) 0.050 0.64592 0(0)
DeepGreyMatter 47 (47) 46 48 —1874.6 [= —1.0%] (11838.0) —2050.0 [= —1.1%] (11988.8) 0.015 0.89167 o (o)
(selected individual structures)

Amygdala 65 (65) 63 68 —387.4 [= —16.5%] (308.7) —149.4 [= —6.4%] (352.2) 0.720 <0.00001 | ++ (++)
LeftAmygdala 62 (62) 61 64 —191.6 [= —16.7%] (161.2) —70.4 [= —6.0%)] (189.7) 0.690 <0.00001 ++ (++)
InfLatVent 64 (64) 54 74 1034.0 [=53.8%] (1097.9) 358.6 [=17.4%] (903.1) 0.670 <0.00001 ++ (++)
LeftInfLatVent 65 (65) 56 75 480.0 [= 53.9%) (538.2) 156.3 £ 15.8%] (451.1) 0.650 <0.00001 | ++ (++)
RightAmygdala 65 (65) 63 67 —195.8 [= —16.4%] (176.7) —79.0 [= —6.7%] (184.1) 0.648 <0.00001 ++ (+4)
EntA 61 (61) 61 60 —678.3 [= —15.6%] (565.7) —294.0 [= —6.7%] (622.8) 0.647 <0.00001 ++ (++)
RightInfLatVent 64 (64) 54 74 554.0 [ 53.9%] (689.1) 202.3 [£ 18.9%) (527.5) 0.571 <0.00001 | ++ (++)
Hippocampus 61 (61) 63 60 —1042.8 [= —15.6%] (817.1) —604.7 [= —8.9%] (786.1) 0.546 <0.00001 | ++ (++)
RightHippocampus 63 (63) 61 64 —514.7 [& —15.1%] (442.9) —287.7 [ —8.3%] (408.3) 0.532 <0.00001 | ++ (++)
MTG 60 (60) 59 60 —2305.3 [= —7.9%] (2698.1) —925.8 [= —3.0%] (2708.9) 0.510 <0.00001 +4 (+4)

Table 1. Classification results in % (6-fold cross-validation, LDA 100 runs, RE/SVM 20 runs) obtained distinguishing
between AD and HC (top) and sMCI from pMCI (bottom). Individual structures are sorted by effect size. The 10
structures with largest effect size are listed explicitly. Significant group differences indicated by + (p <0.05) and ++
(p < 0.001). Bonferroni-corrected significance in parentheses. Features were corrected for age, gender and brain size.
Mean also shown in % with respect to sample-specific reference volume used for feature correction.

published annual brain volume change rates of around —0.6% for controls and —1.5% for AD patients®. This
confirms that the employed methodology yields realistic atrophy measurements on individual structures, while
providing a comprehensive overview of structural change throughout the whole brain.
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Figure 4. Example longitudinal segmentation results of baseline (left) and month 24 (middle) follow-up
images of a patient diagnosed AD (ADNI_018_S_0286) in coronal section. Substantial hippocampal atrophy
(measured: —7.81%) and ventricular enlargement (16.5%) are apparent in the difference image after affine
registration (right).

For the four structures hippocampus, amygdala, inferior lateral ventricle, and lateral ventricle, their respec-
tive counterparts in the left/right brain hemisphere were analyzed separately. The results suggest that structural
change in the left hippocampus is slightly more discriminative than change in the right hippocampus. There is no
consistent trend for the other investigated structures. In general, features of left-right paired structures perform
similarly for all investigated structures and combining them seems, in summary, beneficial.

The use of either SVM or RF classifiers provided substantial improvements over the results obtained using
individual features only. Overall SVM and RF performed similarly, with slight advantages for one or the other in
individual experiments.

Our experiments confirm that MALPEM is an accurate and sensitive approach for brain image analysis.
One of MALPEM’s main advantages is that it delivers a full morphometric analysis of all of 138 structures,
unlike specialized methods that only work on a small selected set of individual structures. Another important
strength is that our methods allow both the accurate analysis of single images (MALPEM) as well as image series
(MALPEM4D). Thus, the presented methodology has strong potential to support both cross-sectional and longi-
tudinal studies that include MR imaging of the brain.

As part of this work, we created a morphometry database of unprecedented size and accuracy, which we share
with the community. This database provides pincram brain extractions and MALPEM segmentations of 5074
MR images, as well as longitudinal features extracted from 1334 MR image series. In previous work, we shared a
database built on images from ADNI-1%. The present development differs from this past effort in important ways
that reflect developments of ADNI (data from ADNI-2 and ADNI-GO became available in the meantime) as well
as software improvements (MALPEM yields more accurate segmentations than the MAPER method®” used in the
previous project). The previous database was substantially smaller and contained only cross-sectional data (996
baseline and screening images). Another difference is in the atlas database chosen: compared to the atlases used
for the previous resource®®®, the NMM atlases offer more detailed cortical subdivisions.

We anticipate that our new morphometry database will be an immensely valuable resource for future research
on classification and modeling approaches. It can further enable the optimization of training-data intense deep
learning methodologies.

Methods

Materials. For this study a subset of T1-weighted (T1w) MR brain images was analyzed from all studies by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) for which data are currently available (ADNI-1/-GO/-2).
The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,
MD. ADNI enrols participants between the ages of 55 and 90 who are recruited at 57 sites in the United States
and Canada. After obtaining informed consent, participants undergo a series of initial tests that are repeated at
intervals over subsequent years, including a clinical evaluation, neuropsychological tests, genetic testing, lumbar
puncture, and MRI and PET scans. Participants were studied under ADNI protocols that were approved by the
Institutional Review Board (IRB) at each recruitment site. A listing of sites with named Site Investigators can be
found online at https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ ADNI_Acknowledgement_List.pdf
(last accessed 30 June 2018). ADNI procedures manuals were developed as a resource for ADNI research sites.
They are tailored to site Study Coordinator and support staff. The ADNI MRI Technical Procedures manuals are
developed by the ADNI Imaging Core to direct MRI technicians in the scanning of ADNI subjects. For further
details and up-to-date information please refer to the supplementary material and http://www.adni-info.org (last
accessed 15 March 2018). All methods described in this study were performed in accordance with relevant guide-
lines and regulations. When the present study was started, we retrieved clinical information and corresponding
MR images based on the ADNIMERGE package. Specifically, 5074 (1674 baseline, 3400 follow-up) images were
processed with MALPEM. Subjects had been scanned up to 10 times, with the last follow-up image acquired 8
years after the baseline. For the present analysis, a subset of these 5074 processed images was selected based on
clinical information. We applied the following criteria for inclusion/exclusion of individual subjects:

SCIENTIFICREPORTS | (2018)8:11258 | DOI:10.1038/s41598-018-29295-9 7


https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pd
http://www.adni-info.org

www.nature.com/scientificreports/

inf. lat. med. temp.
bl - m12 hippocampus vent. lat. vent. gyr. brain tissue | ventricles white matter cort. GM deep GM
HC ~1.1(1.7) 1.8 (3.3) 3.0(3.2) —11(15) | —0.5(0.8) 2.8 (3.0) —0.2(0.7) —0.8(1.4) | —0.8(1.3)
sMCI —-1.7(2.2) 2.6(3.8) 3.6 (3.3) —1.4(1.8) —0.6 (0.8) 3.4(3.1) —0.4(0.7) —0.8(1.3) —0.7(1.3)
Atrophy rates
pMCI —4.1(3.2) 6.7 (5.6) 7.1 (4.6) —3.1(24) —1.2(1.0) 6.8 (4.3) —0.6 (0.9) —-1.8(1.7) —-1.3(1.2)
AD —4.8(3.7) 7.5 (5.5) 7.6 (4.9) —38(27) | -13(L1) 7.2 (4.6) —0.8 (1.0) —1.9(23) | —1.4(L6)
sMCI (uncor.) 412 548 217 384 383 215 966 674 739
sMCI (HC-cor.) 3130 5190 7499 8823 17269 6337 2834 18432936 1429741
pMCI (uncor.) 155 175 104 143 168 100 488 235 218
Sample sizes
pMCI (HC-cor.) 284 321 309 351 535 285 864 813 1349
AD (uncor.) 148 134 104 133 182 101 413 366 336
AD (HC-cor.) 244 228 285 270 493 265 640 640 1133
bl — m24 hippocampus irléf-ltl at. lat. vent. rgr;erd. emp. | ain tissue | ventricles white matter cort. GM deep GM
HC —2.0(23) 3.5(4.5) 6.3 (4.0) —2(1.6) —1.1(0.8) 5.8(3.7) —0.6 (0.8) —1.6(1.7) | —-1.3(1.3)
sMCI —3.7(3.8) 6.2 (6.5) 7.5(6.0) —2.6(2.6) —1.2(1.0) 7.1(5.6) —0.8(1.0) —1.7(1.5) —1.2(1.0)
Atrophy rates
pMCI —8.9(5.1) 14.6 (8.9) 14.4(7.9) —6.1(3.9) —2.3(1.5) 13.7 (7.4) —-1.6(1.3) —3.2(2.5) —2.1(1.4)
AD —10.2(6.2) 15.9 (8.8) 15.4 (8.5) —6.8 (4.1) —2.6(1.3) 14.7 (7.8) —1.8(1.4) —3.5(2.4) —2.3(1.8)
sMCI (uncor.) 264 274 158 246 173 158 370 215 176
sMCI (HC-cor.) 1166 1446 6179 4588 23154 5166 4764 102542 23243
pMCI (uncor.) 82 92 76 105 99 73 163 155 107
Sample sizes
pMCI (HC-cor.) 136 160 241 233 372 220 412 618 782
AD (uncor.) 93 76 75 92 67 71 145 123 162
AD (HC-cor.) 142 126 217 185 216 195 316 420 980

Table 2. Mean volume change of selected structures in % with corresponding sample sizes for different clinical
groups. Standard deviation in parentheses. Measurements based on volume change from baseline to 12 months
(top table) or 24 months (bottom table) follow-up visit. Corrected sample sizes were computed on the excess
change over normal aging.

o All subjects who reverted at any time point from a more severe to a less severe disease stage, i.e. AD — MCI or
MCI — HC, were excluded from both the cross-sectional (N = 68) and the longitudinal analysis.

o All subjects with baseline diagnosis early MCI (N =277) or SMC (N =76) were excluded from both the
cross-sectional and the longitudinal analysis.

o The sMCI group was defined as those subjects who were diagnosed as MCI (called ‘late MCTI’ in ADNI-GO/-2)
at baseline and remained at the MCI stage for at least two years and until the most recent diagnosis which was
available. This means that subjects for whom this information was not available, e.g. because the repository
did not contain a corresponding m24 or later visit, were excluded (N =130).

o The pMCI group was defined as those subjects who were diagnosed as MCI at baseline and converted within
two years follow-up to a diagnosis of probable AD.

o Subjects who were diagnosed as MCI at baseline but converted to probable AD more than two years later
(N =54) were excluded from the analyses and neither considered as sMCI nor pMCL

o The m12 image (I373205) of one subject (ADNI_007_S_4568) was reviewed after irregular volume measure-
ments and excluded manually from the analysis due to poor image quality.

o All subjects listed in Table 6 fulfil the above criteria. For the longitudinal analysis, however, all subjects that
converted at any time of the study from HC to a symptomatic stage (e.g. to MCI or even to AD) were excluded
(N=52).

Table 6 gives an overview over the baseline images considered in the conducted analyses. Note that this is a
well-defined subset of all 5074 images processed. Lists of the processed filenames that also include the unique
image identifier are available online at https://doi.org/10.12751/g-node.aa605a™.

Preprocessing. As preprocessed versions of the images were downloaded from ADNI, no additional pre-
processing was performed”". Brain masks were calculated for all available baseline images using pincram®. Brain
masks were visually reviewed and some were recalculated with an updated pincram atlas database. Follow-up
images were brain-extracted utilizing the corresponding baseline brain masks, which were transformed using
rigid intrasubject registration.

Cross-sectional and longitudinal segmentation. All 5074 baseline and follow-up images were seg-
mented individually using MALPEM as described in Ledig ef al.>. As the atlas database, we used the manually
annotated Neuromorphometrics (NMM) brain atlases (n = 30; provided by Neuromorphometrics, Inc. under
academic subscription, http://Neuromorphometrics.com/, last accessed 15 March 2018). The atlas label sets con-
tain expert delineations of 40 non-cortical and 98 cortical brain regions. A description of the individual structures
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?e"‘a?jr‘;':;F orest (all 85(84) |78 90

SVM (all features) 84 (82) 71 93

(surrogate structures)
Ventricles 75 (74) 64 83 7.2 (4.6) 2.8(3.0) 1.202 <0.00001 ++ (++)
BrainTissue 70 (70) 67 72 —1.3(1.1) —0.5(0.8) 0.862 <0.00001 ++ (++)
WhiteMatter 73(73) 68 77 —0.8(1.0) —0.2(0.7) 0.736 <0.00001 ++ (++)
CorticalGreyMatter 65 (64) 62 67 —1.9(2.3) —0.8(1.4) 0.585 <0.00001 ++ (++)
Brain 64 (64) 63 65 —0.9 (1.0) —0.4(0.7) 0.574 <0.00001 ++ (++)
DeepGreyMatter 66 (64) 57 71 —1.4(1.7) —0.8(1.3) 0.455 <0.00001 ++ (++)

(selectedindividual structures)
Hippocampus 80 (78) 67 88 —4.8(3.7) —1.1(1.7) 1.400 <0.00001 ++ (++)
InfLatVent 79 (77) 69 86 7.5 (5.5) 1.8 (3.3) 1.334 <0.00001 +4 (++)
LeftHippocampus 80 (78) 70 87 —4.9(4.2) —1.1(1.7) 1.287 <0.00001 ++ (++)
MTG 76 (74) 67 82 —3.8(2.8) —1.1(1.5) 1.274 <0.00001 ++ (++)
RightInfLatVent 77 (75) 65 84 7.4 (6.4) 1.8 (3.3) 1.185 <0.00001 ++ (++)

AD patients (N =117, Positives’) vs. Healthy Controls (N = 168, Negatives™) (longitudinal analysis, bl — m24)

?ez;rtll:‘lrc;rst;Forest (all 89 (88) 81 94

SVM (all features) 89 (88) 80 95

(surrogate structures)
Ventricles 83(81) 70 92 14.7 (7.9) 5.8(3.7) 1.531 <0.00001 ++ (++)
BrainTissue 80 (78) 71 86 —2.6(1.3) —1.1(0.8) 1.353 <0.00001 ++ (++)
WhiteMatter 75 (74) 65 82 —1.8(1.4) —0.6 (0.8) 1.121 <0.00001 ++ (++)
CorticalGreyMatter 73 (73) 69 77 —3.5(2.4) —-1.6(1.7) 0.928 <0.00001 +4 (++)
Brain 68 (67) 65 70 —1.5(1.0) —0.8(0.7) 0.847 <0.00001 ++ (++)
DeepGreyMatter 67 (66) 63 69 —2.3(1.8) —1.3(1.3) 0.604 <0.00001 ++ (++)

(selected individual structures)
Hippocampus 87 (85) 77 94 —10.2(6.2) —2.0(2.4) 1.880 <0.00001 ++ (++)
InfLatVent 84 (83) 76 90 15.9 (8.8) 3.5(4.5) 1.871 <0.00001 ++ (++)
RightInfLatVent 83(82) 73 90 16.1 (9.7) 3.5(4.9) 1.728 <0.00001 ++ (++)
LeftHippocampus 86 (84) 77 92 —9.9 (6.6) —1.9(2.7) 1.701 <0.00001 ++ (++)
LeftInfLatVent 80 (78) 69 88 15.5 (9.5) 3.5(5.2) 1.652 <0.00001 ++ (++)

Table 3. Classification results in % (6-fold cross-validation, LDA 100 runs, RE/SVM 20 runs) for distinguishing
between AD and HC based on volume change from baseline to m12 (top) or m24 (bottom). Individual
structures are sorted by effect size. The 5 structures with largest effect size are listed explicitly. Significant group
differences indicated by + (p < 0.05) and ++ (p < 0.001). Bonferroni-corrected significance in parentheses.

is provided in the supplementary material. MALPEM was recently validated in an independent study led by
Johnson et al.>* where the authors compared state-of-the-art segmentation methods in the context of Huntington’s
disease. The refined, time-point specific probabilistic segmentation output and the intensity-normalized,
brain-extracted images of MALPEM are then employed to perform the consistent longitudinal segmentation
as described in Ledig et al.*> (MALPEM4D). MALPEMA4D is an approach that employs spatially and temporally
varying coupling weights between time points to obtain temporally consistent segmentation estimates. In this
work, MALPEMA4D incorporates symmetric affine intra-subject registration’>”* and corrects for differential bias
between intra-subject acquisitions using unweighted differential bias correction’*. MALPEM4D is run on pairs
of images to separately estimate volume changes bl — m12 and bl — m24.

Features and classification.  For the cross-sectional analysis at baseline, structural volumes were calculated
with MALPEM and not MALPEMA4D, as the latter exploits information of later scanning time points, which was
not available at baseline. For the longitudinal analysis structural volumes were extracted based on the respective
MALPEM4D segmentations.

As features, all available structural volumes were employed. For paired structures, the left and right volumes
were merged (98/2 =49 cortical plus 28/2 4 7 =21 non-cortical features). Note that seven non-cortical structures
are unpaired (3rd ventricle, 4th ventricle, brainstem, CSF, cerebellar vermal lobules I-V, cerebellar vermal lobules
VI-VII, and cerebellar vermal lobules VIII-X). Exceptions were made for the amygdala, hippocampus, inferior
lateral ventricles, and lateral ventricles. As it is expected that these structures are particularly informative, their
left and right volumes were retained as separate features (8 features). This allowed us to investigate asymmetric
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RandomForest (all features) | 74 (73) 77 70

SVM (all features) 74 (74) 72 75

(surrogate structures)
Ventricles 68 (69) 63 74 6.8 (4.3) 3.4(3.1) 0.890 <0.00001 ++ (++)
BrainTissue 63 (63) 64 63 —1.2(1.0) —0.6 (0.8) 0.652 <0.00001 ++ (++)
CorticalGreyMatter 64 (64) 67 61 —1.8(1.7) —0.8(1.3) 0.608 <0.00001 ++ (++)
Brain 58 (58) 62 54 —0.8(0.8) —0.4(0.6) 0.495 0.00002 ++(+)
DeepGreyMatter 64 (64) 62 66 -1.3(1.2) —0.7 (1.3) 0.428 0.00017 ++(+)
WhiteMatter 63 (63) 61 64 0.6 (0.9) —0.4(0.7) 0.310 0.00615 +(0)

(selected individual structures)
Hippocampus 67 (67) 59 76 —4.1(3.2) -1.7(2.2) 0.867 <0.00001 ++ (++)
LateralVentricle 67 (68) 61 75 7.1 (4.6) 3.6(3.4) 0.866 <0.00001 ++ (++)
InfLatVent 69 (69) 63 75 6.7 (5.6) 2.6(3.8) 0.845 <0.00001 ++ (++)
LeftHippocampus 67 (68) 60 75 —4.2(3.3) —1.7(2.5) 0.845 <0.00001 ++ (++)
LeftLateral Ventricle 66 (67) 60 73 7.2 (4.8) 3.6 (3.5) 0.836 <0.00001 ++ (++)

progressive MCI (N = 140, Positives®) vs. stable MCI (N = 107, Negatives") (longitudinal analysis, bl — m24)

RandomForest (all features) | 79 (78) 82 74

SVM (all features) 76 (76) 76 76

(surrogate structures)
Ventricles 71(72) 65 80 13.7(7.4) 7.1(5.6) 0.989 <0.00001 ++ (++)
BrainTissue 68 (69) 62 76 —2.3(1.5) —1.2(1.0) 0.845 <0.00001 ++ (++)
DeepGreyMatter 66 (67) 64 69 —2.1(14) —1.2(1.0) 0.714 <0.00001 ++ (++)
CorticalGreyMatter 65 (66) 61 71 —3.2(2.5) —1.7(1.6) 0.707 <0.00001 ++ (++)
Brain 63 (63) 60 67 —1.5(1.1) —0.8(0.7) 0.707 <0.00001 ++ (+4)
WhiteMatter 64 (65) 55 74 —1.6(1.3) —0.8 (1.0) 0.661 <0.00001 ++ (++)

(selected individual structures)
FuG 75 (76) 69 83 —3.1(2.1) —1.0(1.4) 1.141 <0.00001 ++ (++)
Hippocampus 73 (74) 68 80 —8.9(5.1) —3.7(3.8) 1.118 <0.00001 ++ (++)
LeftHippocampus 74 (74) 72 77 —9.3(5.6) —3.8(4.2) 1.083 <0.00001 ++ (++)
EntA 71 (72) 66 77 —7.4(4.7) —2.8(3.6) 1.070 <0.00001 ++ (++)
InfLatVent 70 (72) 62 81 14.6 (8.9) 6.2 (6.6) 1.053 <0.00001 ++ (++)

Table 4. Classification results in % (6-fold cross-validation, LDA 100 runs, RF/SVM 20 runs) for distinguishing
between pMCI and sMCI based on volume change from baseline to m12 (top) or m24 (bottom). Individual
structures are sorted by effect size. The 5 structures with largest effect size are listed explicitly. Significant group
differences indicated by + (p < 0.05) and ++ (p < 0.001). Bonferroni-corrected significance in parentheses.

involvement of these structures in the disease progression. Individual structures were further summarized as
ventricles, cortical grey matter, deep grey matter, white matter, brain tissue and total brain volume (brain tissue
including ventricles/CSF) (6 features). In total 86 features were considered, including age and gender.

For classification, a 6-fold cross-validation (CV) was performed using an linear discriminant analysis (LDA)
classifier for individual features. When combining multiple features, both SVM and RF classifiers were employed.
A classification framework was implemented using MATLAB (The MathWorks Inc, Natick, MA, USA) that relies
onclassify (LDA), TreeBagger (RF 100 trees) and 11ibSVM (linear SVM’?). Features were normalized
(rescaled) individually to a range from 0 to 1 for the SVM classification. In addition to the standard classification
accuracy (ACC), we also quantified the balanced classification accuracy (bACC’®) to account for imbalanced
group sizes. The bACC is calculated as the arithmetic mean of SENS and SPEC.

Significance levels were quantified as p-values of two-sided, unpaired Student’s t-tests. We employed the
conservative Bonferroni correction to correct for multiple comparisons. Further, effect sizes were calculated
as Cohen’s d by dividing the differences of the sample means (absolute value) by their pooled standard devia-
tion*”778, According to Cohen’” an effect size of d =0.2 can be considered as small, of d = 0.5 as medium and of
d=0.8 as large. Reporting the effect size in addition to the p-value is important as it quantifies the magnitude of
a group difference, while a low p-value by itself only confirms its existence”.

Correction for nuisance factors. The volume of many individual brain structures diminishes during the
course of normal, healthy aging. Also, strong correlations between structural volumes and overall head size are
well established®”. This is illustrated in Fig. 6, where linear regressors are fit to hippocampal volumes with respect
to age, gender, and brain volume based on the processed HC subjects.

We followed a multiple linear regression approach as described in Koikkalainen et al.®! and investigated the
nuisance factors age, gender and brain size. Specifically, a separate linear regressor was fit using the processed
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MALPEM ADNI1/Go/2 (1.5/3T) | ROIvolumes RE 86 83 90 322/404 |68 72 64 177/166

MALPEM ADNI1/Go/2 (1.5/3T) | ROIvolumes SVM 89 86 92 322/404 | 67 70 64 177/166

Beheshti efal> | ADNII (3T) Xftﬁ;ROM and intensity | gy g 93 89.1  |968 | 92/94 75 769 |732 | 7165

28 ROI volumes and grading

Coupe et al. ADNII (1.5T) features LDA 90.5 87 94 198/231 735 73 74 167/238
intensity and textural

Chincarini et al.® | ADNI1 (1.5T) features features from 9 SVM 91.5 89 94 144/189 68.5 72 65 136/166
ROIs

Guerr'ero etal.® | ADNII (1.5T) ;"‘Eied ROIs via SR + SVM 85.5 86 85 106/175 71 75 67 116/114

Hu et al.} ADNII (1.5T) Xf& :;‘d wavelet frame | gy 84.1 82.5 85.6 288/188 | 76.7 718 82.3 71/62

Liu et al.s! ADNII (1.5T) ROI volumes, CTH ENR+LLE | 89.5 86 93 86/137 68 80 56 97/93

Tong et al.> ADNII (1.5T) local intensity patches MIL 89 85 93 198/231 70 67 73 167/238

Wee ef al.* ADNII (1.5T) correlative and ROI-based | ¢y ¢ 924 90.4 943 198/200 74.0 63.5 84.4 89/111
morphological features
ROI volumes, CTH,

Westman et al.®> | ADNII (1.5T) curvature and folding OPLS 91.5 90 93 187/225 71.2 75.9 66.5 87/200
features

Wolz et al.** ADNII (1.5T) HYV, CTH, TBM, MBL LDA 89 93 85 198/231 68 67 69 167/238

Zu et al ADNII (1.5T+PET) ROI volumes SVM 9% 95.1 945 51/52 69.8 66.7 714 56/43

Table 5. Overview over selected articles that use features from T1w MR images from the ADNI cohort. Table
adapted from Falahati et al.”. CTH: cortical thickness, ENR: elastic net regression, HV: hippocampus, LLE:
locally linear embedding, MBL: manifold-based learning, MIL: multiple instance learning, OPLS: orthogonal
partial least square to latent structure, SR: spare regression, TBM: tensor-based morphometry.
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Figure 5. Boxplots of volume changes for selected brain structures (top) and surrogate structures (bottom)
from baseline to month 24 follow-up image for different clinical groups. Features selected based on their
performance in classifying the investigated disease groups (c.f. Tables 3 and 4).
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# of subjects/images at baseline 1069 404 166 177 322

gender (# male/# female) 581/488 202/202 98/68 104/73 177/145

years of age (median [min; max]) | 74.6 [48.1;91.4] | 74.2[59.8;89.6] | 74.4 [55.9;91.4] 74.3 [48.1; 88.3] | 75.8 [55.1;91.4]
ApoE4 (# 0/# 1/# 2)* 547/407/113 293/101/9 93/60/13 57/91/29 104/155/62
MMSE (median [min; max]) 27 [18; 30] 29 [24; 30] 28 [24; 30] 26 [23;30] 23 [18;27]
FAQ (median [min; max])* 1[0;30] 0[0; 6] 1[0;21] 5105 21] 13 [0; 30]
CDRSB (median [min; max]) 1.5 [0; 10] 0[0;1] 1.5 [0.5; 4] 2[0.5;5] 4.5[1;10]
FieldStrength (1.5T/3T) 653/416 223/181 112/54 129/48 189/133

# of subjects/images at month 12 | 802 195 149 168 290

# of subjects/images at month 24 | 532 168 107 140 117

Table 6. Overview of the analyzed subjects from the ADNI cohort, including age and clinical information at
baseline. "Not available for 2 subjects, *not available for 1 subject.
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Figure 6. Top: Dependence of hippocampal volume on age (left), gender (middle) and brain volume (right).
Bottom: Corresponding s corrected for nuisance factors age, gender and brain size. Overlaid regression lines for
distinct disease groups with corresponding regression lines.

healthy control subjects for each individual structure and the abovementioned predictor variables. Each multivar-
iate regressor is defined by the slope for each predictor g, Cyenger and ¢y, and an intercept b. Assuming M distinct
features, feature m of subject n, denoted by F,”, is corrected as:

E"=F" - (cagedge, + Cgenaergender, + g size, + ™). 1)

To correct for head size, the total brain size (sum of all structures) was used as an approximation of the intrac-
ranial volume. This is a commonly used approximation®.

The effect of correcting for the nuisance factors patient age, gender and head size is shown in Table 7. The
correction substantially increased classification accuracies and effect sizes obtained on individual structures. The
benefit of the correction for all investigated structures, including effect sizes, can be found in the supplementary
material.

The observed benefit of correcting for these confounding factors is in agreement with the literature®’. In the
conducted experiment, correcting for brain size had the biggest effect and correcting for gender had a stronger
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Ventricles 65 (0.70) 65 (0.72) 68 (0.86) 65 (0.71) 71 (0.90)
CorticalGreyMatter 61 (0.53) 62 (0.53) 67 (0.86) 62 (0.67) 67 (0.90)
amygdala 75 (1.35) 76 (1.40) 79 (1.48) 77 (1.42) 80 (1.56)
hippocampus 75(1.33) | 75(1.38) | 77 (1.45) 76 (1.40) 78 (1.52)
EntA 73 (1.28) 74 (1.33) 75 (1.39) 76 (1.41) 78 (1.51)
InfLatVent 72(1.10) | 72(1.16) | 73 (1.19) 72 (1.14) 77 (1.27)
ITG 66 (0.89) 66 (0.89) 71 (1.13) 71 (1.07) 71(1.17)
MTG 64 (0.74) 63(0.73) 69 (0.97) 66 (0.86) 69 (0.97)

Table 7. Balanced classification accuracies in % for distinguishing between HC and AD subjects (effect sizes in
parentheses) after correcting for various nuisance factors (100 runs, 6-fold cross-validation, LDA). Largest effect
size in bold.

impact than correcting for age. Correcting for all three nuisance factors (age, gender and brain size) was most
beneficial in terms of both classification accuracy and effect size.

An illustration of the volumes before and after correction is provided in Fig. 6. Healthy control subjects have
zero mean after correction, and the overall dependence on nuisance factors is clearly reduced.

The corrected volumes were used for the cross-sectional analysis. This means that feature values are no longer
actual volumes, but rather volume differences with respect to a healthy population of matched age, gender and
brain size. Note that the three independent variables patient age, gender, and head size were not corrected for.

Calculation of atrophy rates and sample sizes. For a volume v,1 at baseline and a volume v,z at a
follow-up time point we calculated atrophy rates using the logarithmic transform as A (', t2) = Al (¢!, %)=
In(v,2/v,1) - 100%. Note that atrophy rate and volume change is used interchangeably, which means that a positive
atrophy rate indicates an increase in volume.

For a power (1 — 3) and significance level « the sample size can be calculated® as:

2
(202)
N 2
Here A is the difference in atrophy rate that is to be shown between the clinical groups. In this study sam-
ple sizes were calculated to detect a 25% change in atrophy rate (A =0.25 11,) with 80% power (zy3~0.84) at a
5% significance level (z,_g s, ~ 1.96). These parameter choices are commonly found in the literature?>?*72, It is
important to relate atrophy rates in dementia to normal atrophy during aging, as in the uncorrected case it is
assumed that 100% treatment effect would effectively reduce the structural atrophy to zero®. Sample sizes were
thus corrected for normal ageing by evaluating Equation 2 with A = 0.25(tt;— fineainy) to reduce the maximal
treatment effect to the level of normal ageing. In Equation 2 it is assumed that measurements of healthy atrophy
have the same variance as measurements of diseased subjects (0~ Opeqny)**. This usually leads to a more con-
servative estimate.

N=(z_3+2z_4) -

Data availability
The datasets generated during and/or analyzed in this study are available online (all resources last accessed 15
March 2018).

o The source code of pincram®” and the MALPEM framework® is available at https://github.com/ledigchr/
MALPEM, the MIRTK source for the involved binaries is available at https://github.com/BioMedIA/MIRTK.

o  The binary brain masks (pincram) and structural segmentations (MALPEM) for 5074 images from the ADNI
cohort are available for download at https://doi.org/10.12751/g-node.aa605a”.

o All extracted features and selected clinical information (e.g. disease labels) are also available at https://doi.
org/10.12751/g-node.aa605a”.
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