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ABSTRACT Interactions in the airway ecology of cystic fibrosis may alter organism
persistence and clinical outcomes. Better understanding of such interactions could
guide clinical decisions. We used generalized estimating equations to fit logistic re-
gression models to longitudinal 2-year patient cohorts in the Cystic Fibrosis Founda-
tion Patient Registry, 2003 to 2011, in order to study associations between the air-
way organisms present in each calendar year and their presence in the subsequent
year. Models were adjusted for clinical characteristics and multiple observations per
patient. Adjusted models were tested for sensitivity to cystic fibrosis-specific treat-
ments. The study included 28,042 patients aged 6 years and older from 257 accred-
ited U.S. care centers and affiliates. These patients had produced sputum specimens
for at least two consecutive years that were cultured for methicillin-sensitive Staphy-
lococcus aureus, methicillin-resistant S. aureus, Pseudomonas aeruginosa, Burkholderia
cepacia complex, Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and
Candida and Aspergillus species. We analyzed 99.8% of 538,458 sputum cultures
from the patients during the study period. Methicillin-sensitive S. aureus was nega-
tively associated with subsequent P. aeruginosa. P. aeruginosa was negatively associ-
ated with subsequent B. cepacia complex, A. xylosoxidans, and S. maltophilia. B. cepa-
cia complex was negatively associated with the future presence of all bacteria
studied, as well as with that of Aspergillus species. P. aeruginosa, B. cepacia complex,
and S. maltophilia were each reciprocally and positively associated with Aspergillus
species. Independently of patient characteristics, the organisms studied interact and
alter the outcomes of treatment decisions, sometimes in unexpected ways. By inhib-
iting P. aeruginosa, methicillin-sensitive S. aureus may delay lung disease progres-
sion. P. aeruginosa and B. cepacia complex may inhibit other organisms by decreas-
ing airway biodiversity, potentially worsening lung disease.
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In the United States, cystic fibrosis (CF) affects roughly 30,000 people, reducing life
expectancy by �50% (1). Progressive pulmonary disease, marked by recurrent exac-

erbations, bacterial infection, and declining lung function, drives morbidity and mor-
tality (2–5). Studies of the CF lung reveal a diverse microbiology. Methicillin-sensitive
Staphylococcus aureus (MSSA) and Pseudomonas aeruginosa are the two organisms
most commonly isolated from the airway (1, 2). Opportunistic organisms, including
Burkholderia cepacia complex, Stenotrophomonas maltophilia, Achromobacter xylosoxi-
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dans, nontuberculous mycobacteria, and fungal organisms, commonly colonize and
infect patients with CF.

The presence of different organisms alters long-term outcomes for patients with CF.
MSSA appears to enhance survival, while B. cepacia complex may presage a cata-
strophic decline in health (6, 7). Acquisition of methicillin-resistant S. aureus (MRSA) or
P. aeruginosa is associated with accelerated lung disease (8–12). Published cross-
sectional data from the Cystic Fibrosis Foundation Patient Registry (CFFPR) show that
dominant airway infections differ with age (1). MSSA most commonly infects pediatric
patients, while P. aeruginosa infection increases in frequency with age and commonly
dominates the bacterial community in adult patients (13). Without a clear understand-
ing of the underlying microbial interactions, efforts to prevent, treat, or eradicate
specific organisms, such as P. aeruginosa, may produce unexpected and undesirable
outcomes. A double-blind, randomized controlled study in 2002 showed that prophy-
lactic treatment of MSSA with cephalexin in infants and young children with CF led to
earlier colonization with P. aeruginosa (14). Prophylaxis with ciprofloxacin had no
effects in preventing infection with P. aeruginosa (15). Similarly, eradication therapy for
P. aeruginosa increased the rate of infection with S. maltophilia (15).

While antibiotic therapy may play a role, existing infections themselves appear to
alter the rest of the microbiota (7, 16–19) and may thus alter the clinical disease course.
In vitro and nonhuman in vivo models show evidence of interspecies interaction
between P. aeruginosa and other pathogens, including MSSA and Burkholderia ceno-
cepacia. Mathematical models of disease progression explore potential airway interac-
tions between P. aeruginosa, MSSA, and Burkholderia species; the results from these
models are consistent with observational data on CF (1) and illustrate the potential
impact of managing these organisms (7).

In this study, we focus on eight common CF airway pathogens and show how the
presence of each in a given study year is associated with infections observed in the
following year. By improving our understanding of interactions between organisms, we
seek to enhance understanding of the underlying mechanisms of changing airway
microbial ecology, which may help us anticipate the impacts of changing practice on
clinical outcomes.

(Some of the data and results of this study were reported by A. M. Granchelli in
preliminary form at the 37th European Cystic Fibrosis Society Meeting, 11 to 14 June
2013, in Gothenburg, Sweden. F. R. Adler and T. G. Liou had full access to all the data
in the study and take responsibility for the integrity of the data and the accuracy of the
data analysis.)

MATERIALS AND METHODS
Study design and data. We analyzed data for the years 2003 to 2011 from the CFFPR, which contains

prospectively collected patient data from 257 Cystic Fibrosis Foundation-accredited care centers and
affiliated programs in the United States. Data for the ongoing CFFPR study are gathered according to a
defined protocol after obtaining written consent from adult patients or parental consent with assent
from minors. The data include patient demographics, clinical measurements of CF disease, treatment
information, the number of clinic visits, and culture results from routine quarterly and acute-illness
samples. These data were monitored to confirm fidelity to medical charts (20).

We obtained approval from the University of Utah Investigational Review Board (IRB) for the
performance of this study, with a waiver of informed consent and approval from the Data Use Committee
of the U.S. Cystic Fibrosis Foundation for access to and use of the CFFPR. We continue to participate in
data collection for the CFFPR after obtaining written informed consent, with separate approval from
the IRB.

Study population and definitions. Our study cohort included all CFFPR subjects for whom data
were available for at least two consecutive years between 2003 and 2011. Since 2003, the CFFPR has
recorded each culture result separately for every patient; previously, the CFFPR had reported only a single
annualized result per year, thus guiding our study period selection. Patients younger than 6 years were
excluded because they cannot reliably perform pulmonary function testing and usually do not produce
sputum. We used sputum culture results to determine the presence of infection. The CFFPR records
organisms as present or absent for each culture and records the number of cultures obtained in each
given year. The presence of infection with a particular organism within a given calendar year was defined
as at least one positive culture for that organism within that year. We focused on eight common
infections on which the CFFPR contains sufficient data for analysis: MSSA, MRSA, B. cepacia complex, P.
aeruginosa, S. maltophilia, A. xylosoxidans, Candida species, and Aspergillus species. We identified, and
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adjusted for, the following patient characteristics as potential confounders in statistical models: age, age
at CF diagnosis, sex, CF-related diabetes, pancreatic sufficiency, weight-for-age Z-score, percentage of
predicted forced expiratory volume in 1 s (FEV1%), and acute pulmonary exacerbations (APE). Most of
these characteristics have been found previously to predict 5-year survival (6). We defined patients as
diabetic in a given year if the condition was present at any time during that year. We defined patients
as pancreatic sufficient in a given year if they were noted to be sufficient for all encounters and did not
use pancreatic enzymes during that year. For sensitivity analyses to determine the effect of adjustment
of associations for different interventions, we used treatment data on oral azithromycin, inhaled
aztreonam, tobramycin, recombinant human DNase, and hypertonic saline, days per year of therapy with
home intravenous (i.v.) antibiotics, hospitalization days for pulmonary exacerbation treatment, and lung
transplantation.

Statistical analysis. We fitted cross-sectional univariable logistic regression models (21) with the
presence of each organism in a given year as the outcome and every other organism studied as an
individual explanatory variable. Cross-sectional multivariable models were then fitted with the presence
of each organism as the outcome and with all other organisms as explanatory variables with and without
additional adjustment for clinical characteristics. These models were fitted separately in each calendar
year, from 2003 to 2011. We fitted similar multivariable logistic models relating organisms in each year
t to the presence of each organism in year t�1, where t is a particular year from 2003 to 2010. We fitted
these models with and without additional adjustment for clinical characteristics. Finally, we fitted a single
combined model across all observation years for each patient using generalized estimating equations
with an independence working correlation matrix. This model uses multiple observations per individual
across the study years. The use of the combined model increases the power of our analysis and reduces
the size of confidence intervals (22, 23). It makes the assumption that the associations between
organisms from one year to the next are the same across the calendar years. See Text S1 in the
supplemental material for detailed methods and the individual steps to fitting the combined model.
Sensitivity analyses examined the impact of adjusting for the treatments used. All analyses were
performed using the R statistical system (24).

RESULTS
Participants. We found 28,042 patients aged 6 years or older from 257 care centers

and affiliated programs accredited by the U.S. Cystic Fibrosis Foundation who were
included in the CFFPR between 1 January 2003 and 31 December 2011 with at least two
consecutive years of culture data (Table 1). These patients had a total of 538,458 sets
of sputum culture results, of which 537,396 (99.8%) were included in our analysis (see
Fig. 1). Culture results were excluded only for lack of same-patient cultures in contig-
uous years. From 2003 to 2011, the median cross-sectional age of patients increased
from 16.6 to 19.1 years (Table 1). The prevalence of CF-related diabetes nearly doubled
over this period, from 9.62% to 17.5%. A minority of patients were pancreatic sufficient;
this proportion increased between 2003 and 2011 from 6.53% to 11.2%. There were
marginal changes in the median FEV1% and the mean number of APE during the study
period. The changes in pediatric and adult groups were similar (see Tables S1 and S2
in the supplemental material).

Infection prevalence. There were changes in the percentages of patients with
positive cultures for the eight most common infections recorded in the CFFPR between
2003 and 2011 (Table 1 and Fig. 1; also Tables S1 and S2 in the supplemental material).
The percentages of patients infected by MRSA and Candida species more than doubled,
and the percentages of patients with S. maltophilia, A. xylosoxidans, and Aspergillus
species also increased. Between 2003 and 2011, there were small, statistically significant
decreases in the percentages of patients infected by MSSA (from 50.2% to 49.2%) and
P. aeruginosa (from 63.8% to 57.3%).

Cross-sectional associations between airway infections. Figure 2 shows esti-
mated odds ratios from multivariable logistic regression models fitted in each year from
2003 to 2011 with each organism as an outcome and the set of all other organisms as
explanatory variables, with or without adjustment for clinical variables and the number
of cultures. The estimates were remarkably consistent across calendar years. P. aerugi-
nosa infection was negatively associated with MSSA, B. cepacia complex, S. maltophilia,
and A. xylosoxidans and was positively associated with Aspergillus species infections for
every study year, with or without adjustment for the presence of other organisms (Fig.
2A, D, E, F, and H, respectively). P. aeruginosa and B. cepacia complex were negatively
associated in every study year with or without adjustment for other organisms, and
additional adjustments for clinical characteristics intensified these associations (Fig. 2B
and D). After adjustment for other organisms, with or without adjustment for clinical
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characteristics, P. aeruginosa infection was negatively associated with MRSA for each
year from 2004 through 2011 (Fig. 2C). A. xylosoxidans infections and B. cepacia
complex infections showed large negative coefficients in every study year, suggesting
that such coinfections are uncommon (Fig. 2D). In contrast, S. maltophilia was associ-
ated with Aspergillus species infections every year with large positive coefficients,
suggesting that such coinfections are common (Fig. 2H). The odds ratios from logistic
regression models examining univariable, unadjusted associations between organisms
are similar to the fully adjusted results (see Fig. S1 in the supplemental material).

Associations between present and future airway infections. Figure 3 shows the
estimated odds ratios from multivariable models for the association of microbial
infection status for each of the years 2004 through 2011 (years t�1) with infections in
the previous year (where t is a particular year from 2003 to 2010) (21). Associations were
similar for every 2-year period examined, with some variation in the degree of statistical
significance for individual relationships.

For each organism, the predictor most strongly associated with its presence in year
t�1 was the presence of the same organism in year t (see Fig. S2 in the supplemental
material). MSSA, B. cepacia complex, S. maltophilia, and A. xylosoxidans in each year t
were all negatively associated with P. aeruginosa in the subsequent year t�1 (Fig. 3B).
Candida or Aspergillus species were not typically associated with subsequent P. aerugi-
nosa (Fig. 3B). Organisms other than MSSA and B. cepacia complex in each year t were
infrequently associated with MRSA in each year t�1. MSSA in 3 years t (2005, 2008, and
2010) and B. cepacia complex infections in 2 years t (2005 and 2007) had potentially
significant negative statistical and clinical associations with MRSA (Fig. 3C). Adjustment
for clinical variables did not substantially change the estimates or their statistical
significance (Fig. 3).

When all observations are used simultaneously in the combined model, the rela-
tionships between an organism seen in year t with a different organism in year t�1 (Fig.
4; see also Tables S3 and S4 in the supplemental material) are similar to all relationships
seen in multivariable logistic regression models for each of the 2-year models reported

FIG 1 Percentages of patients with positive cultures for the infections studied, 2003 to 2011. Eight curves
show the changing percentages of cultures for the organisms studied, in each of the years from 2003
through 2011, for the patients in the CFFPR who were able to produce sputum samples for microbiologic
cultures. The figure is similar to prior figures showing the data in somewhat different ways (59).

Microbial Interactions in CF Journal of Clinical Microbiology

August 2018 Volume 56 Issue 8 e00354-18 jcm.asm.org 5

http://jcm.asm.org


above, but with much narrower confidence intervals (Fig. 3). Adjustment for clinical
characteristics produced similar results (Fig. 4; Tables S3 and S4). These models again
showed that the presence of an organism in year t was most strongly associated with
the same organism in year t�1 (see Fig. S3 in the supplemental material). Sensitivity
analyses in which we additionally adjusted for clinical treatments (one at a time) given
in year t showed that the associations were not substantially altered.

Missing data. Our study population included patients who had two consecutive
years of culture data at least once between 2003 and 2011 (Table 1). We analyzed
cohorts and patients for missing data. The proportion of patients excluded from any
2-year cohort ranged from 4.6% to 7.5% (see Table S5 in the supplemental material).
There were small but statistically significant differences between study patients and
patients with missing data. Excluded patients tended to be older, with a higher
prevalence of diabetes and slightly decreased lung function; however, they also
appeared to be healthier in other ways, with better nutritional status, fewer APE, and
higher rates of pancreatic sufficiency (see Tables S6, S7, and S8 in the supplemental
material).

DISCUSSION

Our study of microbiology in the human airway reveals microbial interactions that
may alter therapeutic responses in individuals with CF. The organisms present currently
change the odds of finding other microbes concurrently and in the future. Among the
organisms studied, the likelihood of retention is highest for P. aeruginosa, MRSA, and
especially B. cepacia complex, the most clinically pathogenic organisms. In contrast,
MSSA, the only organism associated with increased 5-year survival in CF (6), is the least

FIG 2 Adjusted cross-sectional associations between airway infections. Forest plots show the adjusted odds ratios (circles) and 99%
confidence intervals (bars) of having a positive culture for each of the eight organisms studied within each study year, comparing the
presence versus absence of a positive culture for each of the other seven organisms in the same year. The outcomes for
methicillin-sensitive Staphylococcus aureus (MSSA) (A), Pseudomonas aeruginosa (B), methicillin-resistant S. aureus (MRSA) (C), Burk-
holderia cepacia complex (BCC) (D), Stenotrophomonas maltophilia (E), Achromobacter xylosoxidans (F), Candida species (G), and
Aspergillus species (H) are shown. Results shown in purple are from models adjusted by the presence of the other six organisms. Results
shown in turquoise are from models additionally adjusted for the following clinical characteristics: age, sex, late diagnosis of CF, best
FEV1% in each year, annual number of APE, pancreatic sufficiency, diabetes status, and weight-for-age Z-score.
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likely to persist from one year to the next. P. aeruginosa, MRSA, and B. cepacia complex
all reduce the likelihood of culturing MSSA in future years, thus likely reducing patient
survival.

Prior studies of small groups of patients using molecular analysis methods have
shown that a patient is more likely to retain current infections than to lose them (25,
26). The chronicity of specific infections (27), their interactions with human host
defenses, and their clinical outcomes have been studied previously (28). Microbial
species-to-species interactions among pathogens similar to those found in the CF
airway have been studied in various in vitro and nonhuman in vivo model systems (17,
18, 29–37), and the clinical effects of the combination of P. aeruginosa and MSSA have
been explored (38), but interspecies microbial interactions in the CF airway have been
minimally explored, and recent calls to expand this knowledge base remain outstand-
ing (16, 39).

Our study answers this call quantitatively by showing precisely that current infec-
tions alter the odds of finding other organisms in subsequent years. Our study uses a
�1,000-fold or larger group of patients than prior studies examining organism persis-
tence alone, thus providing the additional power necessary to explore interspecies
interactions with confidence. We demonstrate these associations in extensive univari-
able and multivariable models (adjusted for other infections and clinical variables), and
we demonstrate a lack of sensitivity to various other clinical statuses and all common
treatments. The stability of the results despite the variability in clinical states and the
prescribing of common treatments underscores the need to understand the potential

FIG 3 Adjusted associations between airway infections in the years from 2003 to 2010 (years t) and infections with other organisms
in subsequent years 2004 to 2011 (years t � 1). Forest plots show the odds ratios (circles) and 99% confidence intervals (bars) of having
a positive culture in year t�1 for each of the eight organisms studied when each of the other organisms was present in the preceding
year t (where t is a particular year between 2003 and 2010). Outcomes from years t�1 are shown for methicillin-sensitive
Staphylococcus aureus (MSSA) (A), Pseudomonas aeruginosa (B), methicillin-resistant S. aureus (MRSA) (C), Burkholderia cepacia complex
(BCC) (D), Stenotrophomonas maltophilia (E), Achromobacter xylosoxidans (F), Candida species (G), and Aspergillus species (H). Results
shown in red are from models adjusted by the presence of the remaining six organisms. Results shown in green are from models
additionally adjusted for the following clinical characteristics in year t: age, sex, late diagnosis of CF, best FEV1% in each year, annual
number of APE, pancreatic sufficiency, diabetes status, and weight-for-age Z-score.
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effects of persistent microbial interactions in order to avoid undesirable clinical out-
comes.

The strongest association between organisms was the negative association between
MSSA in year t and P. aeruginosa in year t�1, or vice versa (Fig. 3 and 4). All associations
were independent of the presence of other organisms (Fig. 3 and 4; also Table S3 in the
supplemental material) and the severity of clinical characteristics (Fig. 3 and 4; also
Table S4 in the supplemental material) and were insensitive to the use of multiple
CF-specific therapies, including chronic and acute antibiotic treatments. MSSA may
limit the acquisition and reduce the persistence of P. aeruginosa infection in some
patients, and P. aeruginosa may supplant MSSA infection in others (1). These observa-
tions are consistent with previous findings that elimination of MSSA leads to more-
rapid infection with P. aeruginosa (14).

The two most harmful bacterial pathogens in CF, P. aeruginosa and B. cepacia
complex, are also the organisms that were associated with the greatest number of
other infections in our study (Fig. 4). The presence of either P. aeruginosa or B. cepacia
complex was associated with lower odds of MSSA, S. maltophilia, and A. xylosoxidans in
the future. B. cepacia complex was additionally associated with lower odds for concur-
rent (Fig. 2C, turquoise cluster) and subsequent (Fig. 4C) MRSA infections. By limiting
the acquisition or persistence of other infections, P. aeruginosa and B. cepacia complex
may decrease microbial diversity. Loss of diversity in CF airway ecology is linked with
worsening lung disease, an observation consistent with the high pathogenicity of P.
aeruginosa and B. cepacia complex in CF (13, 19).

FIG 4 Adjusted associations from the combined model between an organism seen in year t with a different organism in year t�1. Each
forest plot shows the odds ratios (circles) and 99% confidence intervals (bars) from the combined model utilizing the entire 2003–2011
CFFPR data set for each of the eight organisms studied in year t�1 when each of the other organisms was present in the respective
year t (where t is a particular year between 2003 and 2010). Outcomes from years t�1 are shown for methicillin-sensitive
Staphylococcus aureus (MSSA) (A), Pseudomonas aeruginosa (B), methicillin-resistant S. aureus (MRSA) (C), Burkholderia cepacia complex
(BCC) (D), Stenotrophomonas maltophilia (E), Achromobacter xylosoxidans (F), Candida species (G), and Aspergillus species (H). Results
shown in red are from models adjusted by the presence of the remaining six organisms. Results shown in green are from models
additionally adjusted for the following clinical characteristics in year t: age, sex, late diagnosis of CF, best FEV1% in each year, annual
number of APE, pancreatic sufficiency, diabetes status, and weight-for-age Z-score.
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Our study shows that S. maltophilia and A. xylosoxidans each had less influence
on each other and the other six organisms in our study than did P. aeruginosa or B.
cepacia complex (Fig. 2, 3, and 4). The decreased impact on microbial diversity may
help explain, for example, why S. maltophilia seems less pathogenic than many
other organisms in CF (40). Our study supports previous findings that intermittent
infection with S. maltophilia does not substantially affect the progression of lung
disease or survival (41–43).

Aspergillus and Candida species are the most commonly cultured fungi in the CF
airway (44). The extent and nature of interactions between fungal and bacterial
infectious agents in the CF airway is unclear. Previous in vitro and nonhuman in vivo
model-based research demonstrated inhibition of biofilm formation in both Candida
and Aspergillus species by P. aeruginosa (29, 30, 37). Our study, based on clinical
observations, suggests that P. aeruginosa and S. maltophilia infections are associated
with higher rather than lower odds of concurrent and subsequent Aspergillus infections
(Fig. 2H, 3H, and 4H; also Fig. S1 in the supplemental material). MRSA and S. maltophilia
were associated with slightly higher odds of subsequent Candida infection (Fig. 4G).
Only B. cepacia complex was associated with lower odds of a future fungal infection,
and only for Aspergillus species (Fig. 4G). The discrepancies between our observations
and those from nonhuman models of P. aeruginosa–Aspergillus interactions (29, 30, 37)
may merely reflect differences between model system and human airway conditions
but may, alternatively, indicate the presence of important differences in microbial
virulence (45). Evidence of interspecies interactions may help explain why approxi-
mately one-third of efforts to eradicate pathogens from the CF airway fail (46, 47):
perhaps a nontargeted concurrent infection promotes the persistence of a target
organism. The clinical impacts of these associations remain uncertain, but their poten-
tial for altering disease course and outcomes invites further study.

Our findings suggest that microbial interactions occur in the airways of patients with
CF regardless of treatments and events that may modify the presence of microbes.
Potential interaction mechanisms may be considered. First, microbes produce antimi-
crobial agents (31). The strength of associations between MSSA, P. aeruginosa, and B.
cepacia complex (Fig. 4A, B, and D) is consistent with prior findings that these
organisms produce novel antimicrobials (48–52). Second, organisms may compete for
airway resources, such as iron (32, 53). Third, organisms may interact with human host
defenses or with each other to modify interactions with yet other organisms (35, 54).
Fourth, and finally, our confirmation of the consistency and strength of microbial
interactions regardless of the mechanism suggests additional areas for the investiga-
tion of clinical impacts. Expanded knowledge of microbial interactions may explain
unexpected outcomes of antimicrobial therapy (14, 15), better delineate the pathogen-
esis of pulmonary exacerbations in CF that punctuate and accelerate the course of
disease (55), and improve predictions of long-term outcomes critical to the well-being
of patients (6, 7, 56).

Limitations. Our study has several limitations. First, there may be unrecorded
treatment decisions that affect airway ecology. However, prior studies show that
short-course antibiotic therapy only transiently affects a CF patient’s individual micro-
biota (26, 57). Moreover, our analysis showed that adjustment for various treatments
did not materially alter results. Second, we were limited to studying the eight organ-
isms for which sufficient culture data are present in the CFFPR. This excluded direct
study of many CF airway organisms that are infrequently present, underreported, not
collected during the study period (such as nontuberculous mycobacteria), or identifi-
able only by nonculture methods (58). The use of culture data is subject to variable
rates, by organism, of false-positive or false-negative results; however, similar difficulties
affect the recovery of organisms by nonculture methods (58). Furthermore, results from
conventional sputum cultures for aerobic organisms are the data that drive clinical
decisions in treating patients with CF, are correlated with results from culture-
independent methods for identifying the common aerobic infectious agents in CF
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analyzed in our study, especially P. aeruginosa (26, 58), and provide the basis of prior
reports showing associations between organisms and survival outcomes (6, 9). Third,
and last, there are potential biases from a lack of data that prevented the inclusion of
some patients in the analysis. However, the proportion of patients for whom data were
missing was quite low (Tables S6, S7, and S8 in the supplemental material). The patients
in the CFFPR during the study period who never had sufficient data for inclusion
accounted for 0.2% to 0.9% of all CFFPR patients during each year of the study period
(Tables S7 and S8). There may also be data in the CFFPR that were partially available for
the adjustment of our models but which we excluded from the analysis for various
reasons. For example, we did not use genotype data, because it was unavailable for a
large proportion of the patients studied and because it is less successful as a predictor
of long-term clinical outcomes than clinical phenotype variables such as those we used
previously to predict 5-year survival outcomes (6).

Conclusions. This study helps clinicians understand how current microbiology may
play a role in shaping the overall subsequent microbiology of the CF airway. Mecha-
nistic studies are needed in order to understand specifically how MSSA may limit
infection with P. aeruginosa and how P. aeruginosa and B. cepacia complex may limit
coinfecting organisms. Such understanding has the potential to influence strategic
decisions in CF clinical care. While a bacterial pathogen found in an otherwise healthy
host is often met with an attempt at eradication, this strategy in CF may be defeated
by interspecies interactions that promote the persistence of multiple species and have
unintended consequences even when the treatment seems successful. Eliminating
specific infections within the diverse CF airway ecology may disrupt a delicate balance
and accelerate the time to infection with more-pathogenic organisms. Determining the
potential influence of each organism on the CF microbiome may help clinicians
understand the extended impact of modifying a patient’s airway ecology and ulti-
mately improve patient survival.
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