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Abstract

Objective—Hydrocephalus is a medical condition in which there is an abnormal accumulation of 

cerebrospinal fluid (CSF) in the brain. Segmentation of brain imagery into brain tissue and CSF 

(before and after surgery, i.e. pre-op vs. post-op) plays a crucial role in evaluating surgical 

treatment. Segmentation of pre-op images is often a relatively straightforward problem and has 

been well researched. However, segmenting post-operative (post-op) computational tomographic 

(CT)-scans becomes more challenging due to distorted anatomy and subdural hematoma 

collections pressing on the brain. Most intensity and feature based segmentation methods fail to 

separate subdurals from brain and CSF as subdural geometry varies greatly across different 

patients and their intensity varies with time. We combat this problem by a learning approach that 

treats segmentation as supervised classification at the pixel level, i.e. a training set of CT scans 

with labeled pixel identities is employed.

Methods—Our contributions include: 1.) a dictionary learning framework that learns class 

(segment) specific dictionaries that can efficiently represent test samples from the same class 

while poorly represent corresponding samples from other classes, 2.) quantification of associated 

computation and memory footprint, and 3.) a customized training and test procedure for 

segmenting post-op hydrocephalic CT images.

Results—Experiments performed on infant CT brain images acquired from the CURE Children’s 

Hospital of Uganda reveal the success of our method against the state-of-the-art alternatives. We 

also demonstrate that the proposed algorithm is computationally less burdensome and exhibits a 

graceful degradation against number of training samples, enhancing its deployment potential.
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I. Introduction

A. Introduction to the Problem

Hydrocephalus is a medical condition in which there is an abnormal accumulation of 

cerebrospinal fluid (CSF) in the brain. This causes increased intracranial pressure inside the 

skull and may cause progressive enlargement of the head if it occurs in childhood, 

potentially causing neurological dysfunction, mental disability and death [1]. The typical 

surgical solution to this problem is insertion of a ventriculoperitoneal shunt which drains 

CSF from cerebral ventricles into abdominal cavity. This procedure for pediatric 

hydrocephalus has failure rates as high as 40 percent in the first 2 years with ongoing 

failures thereafter [2]. In developed countries, these failures can be treated in a timely 

manner. However, in developing nations, these failures can often lead to severe 

complications and even death. To overcome these challenges, a procedure has been 

developed which avoids shunts known as endoscopic third ventriculostomy and choroid 

plexus cauterization [3]. However, the long-term outcome comparison of these methods has 

not been fully quantified. One way of achieving quantitative comparison is to compare the 

volumes of brain and CSF before and after surgery. These volumes can be estimated by 

segmenting brain imagery (MR and/or CT) into CSF and brain tissue. Manual segmentation 

and volume estimation have been carried out but this is tedious and not scalable across a 

large number of patients. Therefore, automated/semi-automated brain image segmentation 

methods are desired and have been pursued actively in recent research.

Substantial previous work has been done in the past for segmentation of pre-operative (pre-

op) CT-scans of hydrocephalic patients [4]–[7]. It has been noted that the volume of the 

brain appears to correlate with neurocognitive outcome after treatment of hydrocephalus [5]. 

Figure 1A) shows pre-op CT images and Figure 1B) shows corresponding segmented 

images using the method from [4] for a hydrocephalic patient. The top row of Figure 1A) 

shows the slices near base of the skull, second row shows the middle slices and bottom row 

shows the slices near top of the skull. As we observe from Figure 1, segmentation of pre-op 

images can be a relatively simple problem as the intensities of CSF and brain tissue are 

clearly distinguishable. However, post-op images can be complicated by addition of further 

geometric distortions and the introduction of subdural hematoma and fluid collections 

(subdurals) pressing on the brain. These subdural collections have to be separated from brain 

and CSF before volume calculations are made. Therefore, the images have to be segmented 

into 3 classes (brain, CSF and subdurals) and subdurals must be removed from the volume 

determination. Figure 2 shows sample post-operative (post-op) images of 3 patients having 

subdurals. Note that the subdurals in patient-1 are very small compared to the subdurals in 

other two patients. Further, large subdurals are observed in patient-3 on both sides of the 

brain as opposed to patient-2. The other observation we can make is that the intensity of 

subdurals in patient-2 is close to the intensity of CSF, whereas the intensity of subdurals in 
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other two patients is close to intensity of brain tissue. The histogram of the pixel intensity of 

the images remains bi-modal making it further challenging to separate subdurals from brain 

and CSF.

B. Closely Related Recent Work

Many methods have been proposed in the past for segmentation of brain images [4], [8]–

[13]. Most of these methods work on the principles of intensity based thresholding and 

model-based clustering techniques. However these traditional methods for segmentation fail 

to identify subdurals effectively as they are hard to characterize by a specific model, and 

subdurals pose different range of intensities for different patients. For example, Figure 3 

illustrates the performance of [11] on the images of 3 different patients with subdurals. We 

can observe that the accuracy in segmenting these images is very poor. Apart from these 

general methods for brain image segmentation, relatively limited work has been done to 

identify subdurals [14]–[18]. These methods work on the assumption that the images have to 

be segmented into only 2 classes which are brain and subdurals. Therefore, these methods 

are unlikely to succeed for images acquired from hydrocephalic patients where CSF volume 

is significant. Because intensity or other features that can help characterize a pixel into one 

of three segments (brain, CSF and subdurals) are not apparent; they must be discovered via a 

learning framework.

Recently, sparsity constrained learning methods have been developed for image 

classification [19] and found to be widely successful in medical imaging problems [20]–

[23]. The essence of the aforementioned sparse representation based classification (SRC) is 

to write a test image (or patch) as a linear combination of training images collected in a 

matrix (dictionary), such that the coefficient vector is determined under a sparsity constraint. 

SRC has seen significant recent application to image segmentation [24]–[28] wherein a pixel 

level classification problem is essentially solved.

In the works just described, the dictionary matrix simply includes training image patches 

from each class (segment). Because each pixel must be classified, in segmentation problems 

training dictionaries can often grow to be prohibitively large. Learning compact dictionaries 

[29]–[31] continues to be an important problem. In particular, the Label Consistent K-SVD 

(LC-KSVD) [30] dictionary learning method, which has demonstrated success in image 

classification has been re-purposed and successfully applied to medical image segmentation 

[32]–[36].

Motivation and Contributions—In most existing work on sparsity based segmentation, 

a dictionary is used for each voxel/pixel that creates large computational as well as memory 

footprint. Further, the objective function for learning dictionaries described in the above 

literature (based invariably on LC-KSVD) is focused on extracting features that characterize 

each class (segment) well. We contend that the dictionary corresponding to a given class 

(segment) must additionally be designed to poorly represent out-of-class samples. We 

develop a new objective function that incorporates an out-of-class penalty term for learning 

dictionaries that accomplish this task. This leads to a new but harder optimization problem, 

for which we develop a tractable solution. We also propose the use of a new feature that 
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incorporates the distance of a candidate pixel from the edge of the brain computed via a 

distance transform. This is based on the observation that subdurals are almost always 

attached to the boundary of the brain. Both intensity patches as well as the distance features 

are used in the learning framework. The main contributions of this paper are summarized as 

follows:

1. A new objective function to learn dictionaries for segmentation under a 
sparsity constraint: Because discriminating features are automatically 

discovered, we call our method feature learning for image segmentation (FLIS). 

A tractable algorithmic solution is developed for the dictionary learning problem.

2. A new feature that captures pixel distance from the boundary of brain is 

used to identify subdurals effectively as subdurals are mostly attached to the 

boundary of the brain. This feature also enables the dictionary learning 

framework to use a single dictionary for all the pixels in an image as opposed to 

the existing methods that use a separate dictionary for each pixel type. 

Incorporating this additional “distance based feature” helps significantly reduce 

the computation and memory footprint of FLIS.

3. Experimental validation: Validation on challenging real data acquired from 

CURE Children’s Hospital of Uganda is performed. FLIS results are compared 

against manually labeled segmentation as provided by an expert neurosurgen. 

Comparisons are also made against recent and state of the art sparsity based 

methods for medical image segmentation.

4. Complexity analysis and memory requirements: We analytically quantify the 

computational complexity and memory requirements of our method against 

competing methods. The experimental run time on typical implementation 

platforms is also reported.

5. Reproducibility: The experimental results presented in the paper are fully 

reproducible and the code for segmentation and learning FLIS dictionaries is 

made publicly available at: https://scholarsphere.psu.edu/concern/generic_works/

bvq27zn031.

A preliminary version of this work was presented as a short conference paper at the 2017 

IEEE Int. Conference on Neural Engineering [37]. Extensions to the conference paper 

include a detailed analytical solution to the objective function in Eq. (7). Further, extensive 

experiments are performed by changing various parameters of our algorithm and new 

statistical insights are provided. Additionally, a detailed complexity analysis is performed 

and memory requirements of FLIS along with competing methods is presented.

The remainder of the paper is organized as follows. A review of sparsity based segmentation 

and detailed description of the proposed FLIS is provided in Section II. Experimental results 

are reported in Section III including comparisons against state of the art. The appendix 

contains an analysis of the computation and memory requirements of our method and 

selected competing methods. Concluding remarks are provided in Section IV.
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II. Feature Learning For Image Segmentation (FLIS)

A. Review of Sparse Representation Based Segmentation

To segment a given image into C classes/segments, every pixel z in the image has to be 

classified into one of these classes/segments. The general idea is to collect intensity values 

from a patch of size w × w (in case of 3D images a patch of size w × w × w is considered) 

around each pixel and to represent this patch as a sparse linear combination of training 

patches that are already manually labeled. This idea is mathematically represented by Eq. 

(1). m(z) ∈ ℝ(w2)×1 represents a vector of intensity values for a square patch around pixel z. 
Y(z) ∈ ℝ(w2)×N represents the collection of N training patches for pixel z in a matrix form. 

α ∈ ℝN×1 is the vector obtained by solving Eq. (1). ||•||0 represents l0 pseudo-norm of a 

vector which is the number of non-zero elements in a vector. ||•||2 represents the l2 Euclidean 

norm. The intuition behind this idea is to minimize the reconstruction error between m(z) 

and the linear combination Y(z)α with the number of non-zero elements in α less than L. 

The constraint on l0 pseudo-norm hence enforces sparsity. Often the l0 pseudo-norm is 

relaxed to an l1 norm [25] to obtain fast and unique global solutions. Once the sparse code α 
is obtained, pixel likelihood probabilities for each class (segment) j ∈ {1, …, C} are 

obtained using Eq. (2) and Eq. (3). The probability likelihood maps are normalized to 1 and 

a candidate pixel z is assigned to the most likely class (segment) as determined by its sparse 

code.

arg min‖α‖0 < L
‖m(z) − Y(z)α‖2

2 (1)

P j(z) =
∑i = 1

N αiδ j(V i)
∑i = 1

N αi
(2)

where Vi is the ith column vector in the pre-defined dictionary Y(z), and δj(Vi) is an 

indicator defined as

δ j(V i) =
1, V i ∈ class j

0, otherwise
(3)

Note that training dictionaries Y(z) could grow to be prohibitively large, which motivates the 

design of compact dictionaries that can lead to high accuracy segmentation. Tong [32] et al. 
adapted the well-known LC-KSVD method [30] for segmentation by minimizing 

reconstruction error along with enforcing a label-consistency criteria. The idea is formally 

quantified in Eq. (4). For a given pixel z, Y(z) ∈ ℝ(w2)×N represents all the training patches 

for pixel z. N is the number of training patches. D(z) ∈ ℝ(w2)×K is the compact dictionary 

that is obtained with K being the size of the compact dictionary. ||X||0 < L, a sparsity 
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constraint means that each column of X has no more than L non-zero elements. H(z) ∈ 
ℝC×N represents the label matrix for the training patches with C being the number of 

classes/segments to which a given pixel can be classified. For example in our case C = 3 

(Brain, CSF and Subdurals) and the label matrix for a patch around a pixel which has its 

ground truth as CSF will be [0 1 0]T. W(z) ∈ ℝC×K is the linear classifier which is obtained 

along with D(z) to represent H(z). ||•||F represents the Frobenius (squared error) norm. The 

terms in black minimize reconstruction error while the term in red represents the label-

consistency criteria. When a new test image is analyzed for segmentation, for each pixel z, 

D(z) and W(z) are invoked and the sparse code α ∈ ℝK×1 is obtained by solving Eq. (5) 

which is an l1 relaxation form of Eq. (1). Unlike the classification strategy used in Eq. (2), 

we use the linear classifier W(z) on sparse code α to classify/segment the pixel which is 

shown in Eq. (6). Note that β is a positive regularization parameter that controls the relative 

regularization between reconstruction error and label consistency.

arg min
D(z), W(z), X

{ min‖X‖0 < L
{‖Y(z) − D(z)X‖F

2 + β‖H(z) − W(z)X‖F
2 }} (4)

arg min
α > 0 ‖m(z) − D(z)α‖2

2 + λ‖α‖1 (5)

Hz = W(z)α, label(z) = arg max
j

(Hz( j)), (6)

where Hz is the class label vector for the tested pixel z, and the arg max reveals the best 

labelling achieved through applying α to the linear classifier W(z).

Tong [32] et al.’s work is promising for segmentation but we identify two key open 

problems: 1.) learned dictionaries for each pixel lead to a high computational and memory 

footprint, and 2.) the label consistency criterion enhances segmentation by encouraging 

intra- or within-class similarity but inter-class differences must be maximized as well. Our 

proposed FLIS addresses both these issues.

B. FLIS Framework

We introduce a new feature that captures the pixel distance from the boundary of the brain. 

This serves two purposes. First, as we observe from Figure 2, subdurals are mostly attached 

to the boundary of the brain. Adding this feature along with the vectorized patch intensity 

intuitively helps enhance the recognition of subdurals. Secondly, we no longer need to 

design pixel specific dictionaries because the aforementioned “distance vector” (for a patch 

centered around a pixel) provides enough discriminatory nuance.

Notation—For a given patient, we have a stack of T CT slice images starting from base of 

the skull to top of the skull which can be observed from Figure 1. The goal is to segment 
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each image of the stack into three categories: brain, CSF and subdurals. Let YB ∈ ℝd×NB, 

YF ∈ ℝd×NF and YS ∈ ℝd×NS represent the training samples of brain, CSF and subdurals 

respectively. Each column of Yi, i ∈ B, F, S represents intensity of the elements in a patch of 

size w × w around a training pixel concatenated with the distances from boundary of brain 

for each pixel in the patch (described in detail in Section II-E). Ni represents the number of 

training patches for each class/segment. They are chosen to be same for all the 3 classes/

segments. We denote the dictionaries learned as Di ∈ ℝd×K. K is the size of each dictionary. 

Xi ∈ ℝK×Ni represents the matrix that contains the sparse code for each training sample in 

Yi. Hi ∈ ℝ3×Ni represents the label matrices of the corresponding training elements Yi. For 

example, a column vector of HB looks like [1 0 0]T and finally, Wi denotes the linear 

classifier that is learned to represent Hi.

C. Problem Formulation

The dictionary Di should be designed such that it represents in-class samples effectively and 

poorly represent complementary samples along with achieving the label consistency criteria. 

To ensure this, we propose the following problem:

arg min
Di, Wi

1
Ni

min‖Xi‖0 < L
{‖Y i − DiXi‖F

2 + β‖Hi − W iXi‖F
2 } − ρ

Ni
min

‖Xi‖0 < L
{‖Y i − DiXi‖F

2

+ β‖H∼i − W iXi‖F
2 }

(7)

The terms with (●̂) represent the complementary samples of a given class, ||●||F represents 

Frobenius norm and ||X||0 < L implies that each column of ||X|| has non-zero elements not 

more than L. The label matrices are concatenated, H̃
i = [Hi Hi], to maintain consistency with 

the dimension of WiX̂
i, because there are two complimentary samples. β and ρ are positive 

regularization parameters. ρ is an important parameter to obtain a solution for the objective 

function that we discuss in subsequent sections.

Intuition behind the objective function—The term in black makes sure that intra-class 

difference is small and the term in red enforces label-consistency. These two terms make 

sure that in-class samples are well represented. To represent the complementary samples 

poorly, the reconstruction error between the complementary samples and the sparse linear 

combination of in-class dictionary samples should be large. This is achieved through the 

term in blue. Further, a ”label-inconsistency term” is added (in brown) utilizing the sparse 

code for out of class samples, which again encourages interclass differences. Essentially, the 

combination of terms in blue and brown enables us to discover discriminative features that 

differentiate one class (segment) from another effectively. Note that the objective functions 

described in [32]–[36] are special cases of Eq. (7) since they do not include terms that 

emphasizes inter-class differences. The visual representation of our idea in comparison with 

the objective function defined in [32] (known as discriminative dictionary learning and 

sparse coding (DDLS)) is shown in Figure 4. The problem in Eq. (7) is non-convex with 
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respect to its optimization variables; we develop a new tractable solution which is reported 

next.

D. Proposed Solution

For simplifying notation in Eq. (7), we replace Yi, Ŷi, Xi, X̂
i, Hi, H̃

i, Wi, Ŵi, Ni, N̂
i with Y, 

Ŷ, X, X̂, X̂, H, H̃, W, Ŵ, N, N̂ respectively. Therefore, the cost function becomes

arg min
D, W

1
N min‖X‖0 < L

{‖Y − DX‖F
2 + β‖H − WX‖F

2 } − ρ
N

min
‖X‖0 < L

{‖Y − DX‖F
2

+ β‖H∼ − WX‖F
2 }

(8)

First, an appropriate L should be determined. We begin by learning an “initialization 

dictionary” using the well-known online dictionary learning (ODL) [38] given by:

(D(0), X(0)) = arg min
D, X

{‖Y − DX‖F
2 + λ‖X‖1} (9)

where λ is a positive regularization parameter. An estimate for L can then be obtained by:

L ≈ 1
N ∑

i = 1

N
‖xi

(0)‖0 (10)

where xi
(0) represents the ith column of X(0).

We develop an iterative method to solve Eq. (8). The idea is to find X, X̂ with a fixed values 

of D,W and then obtain D,W with the updated values of X, X̂. This process is repeated until 

D,W converge. Since, we have already obtained an initial value for D from Eq. (9), we need 

to find an initial value for W. To find an initial value for W, we obtain the sparse codes X 
and X̂ by solving the following equations:

arg min‖X‖0 ≤ L
‖Y − DX‖F

2 ; arg min
‖X‖0 ≤ L

‖Y − DX‖F
2

The above can be combined to find X̄ in Eq. (11) using orthogonal matching pursuit (OMP) 

[39].

arg min
‖X‖0 ≤ L

‖Y − DX‖F
2 (11)
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where, Ȳ = [Y Ŷ], X̄ = [X X̂]. Then, to obtain the initial value for W, we use the method 

proposed in [30] which is given by:

W = HXt(XXt + λ1I)−1
(12)

where H̄ = [H H̃]. λ1 is a positive regularizer parameter. Once the initial value of W is 

obtained, we construct the following vectors:

Ynew =
Y
βH

, Ynew = Y

βH∼
, Dnew =

D
βW

As we have the initial values of D,W, we obtain the values of X, X̂ by solving the following 

equation:

arg min
‖X‖0 ≤ L

‖Ynew − DnewX‖
F
2 (13)

where Ȳnew = [Ynew Ŷnew], X̄= [X X̂].

With these values of X and X̂, we find Dnew by solving the problem in Eq. (14) which 

automatically gives the values for D,W.

arg min
Dnew

1
N ‖Ynew − DnewX‖

F
2 − ρ

N
‖Ynew − DnewX‖

F
2

(14)

Using the definition of Frobenius norm, the above equation expands to:

arg min
Dnew

1
N (Ynew − DnewX)(Ynew − DnewX)T − ρ

N
(Ynew − DnewX)(Ynew − DnewX)T

(15)

Applying the properties of trace and neglecting the constant terms in Eq. (15), solution to the 

problem in Eq. (14) is equivalent to

arg min
Dnew

{ − 2trace(EDnew
T ) + trace(DnewFDnew

T ))} (16)

where, E = 1
N YnewXT − ρ

N
YnewXT; F = 1

N XXT − ρ
N

XXT. The problem in Eq. (16) is convex if 

F is positive semidefinite. However, F is not guaranteed to be positive semidefinite. To make 
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F a positive semidefinite matrix, ρ should be chosen in a way such that the following 

condition is met:

1
N λmin(XXT) − ρ

N
λmax(XXT) > 0 (17)

where λmin(•) and λmax(•) represent the minimum and maximum eigenvalues of the 

corresponding matrices. Once an appropriate ρ is chosen, Eq. (16) can be solved using 

dictionary update step in [38]. After we obtain Dnew, Eq. (13) is solved again to obtain new 

values for X and X̂ and we keep iterating between these two steps to obtain the final Dnew. 

The entire procedure is formally described in Algorithm 1, which is used on a per-class basis 

to learn 3 class/segment specific dictionaries corresponding to brain, CSF and subdurals.

After we obtain class specific dictionaries and linear classifiers, we concatenate them to 

obtain D = [DB DF DS] and W = [WB WF WS].

Assignment of a test pixel to a class (segment)—Once the dictionaries are learned, 

to classify a new pixel z, we extract a patch of size w×w around it to collect the intensity 

values and distance values from the boundary of the brain for the elements in the patch to 

form column vector m(z). Then we find the sparse code α in Eq. (18) using the learned 

dictionary D. Once α is obtained, we classify the pixel using Eq. (19).

arg min
α > 0 ‖m(z) − Dα‖2

2 + λ‖α‖1 (18)

Hz = Wα, label = arg max
j

(Hz( j)) (19)

Algorithm 1

FLIS algorithm

1: Input: Y, Ŷ, H, ρ, β, dictionary size K

2: Output: D, W

3: procedure FLIS

4:  Find L and an initial value for D using Eq. (9) and Eq. (10)

5:  Find X and X̂ using Eq. (11)

6:  Initialize W using Eq. (12)

7:

 Update Ynew =
Y
βH

, Ynew = Y

βH∼
, Dnew =

D
βW

8:  Update X, X̂ using Eq. (13)

9:  while not converged do
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10:
  Fix X, X̂ and calculate E = 1

N YnewXT − ρ
N

YnewXT; F = 1
N XXT − ρ

N
XXT

11:   Update Dnew by solving

arg min
Dnew

{ − 2trace(EDnew
T ) + trace(DnewFDnew

T ))}

12:   Fix Dnew, find X and X̂ using Eq. (13)

13:  end while

14: end procedure

15: RETURN: Dnew

E. Training and Test Procedure Design for Hydrocephalic Image Segmentation

Training Set-Up—In selecting training image patches for segmentation, it is infeasible to 

extract patches for all the pixels in each training image because that would require a lot of 

memory. Further, it is desired that patches used from training images should be in 

correspondence with the patches from test images. For example, training patches collected 

from the slices in the middle of the CT stack cannot be used for segmenting a slice that 

belongs to top or bottom. To address this problem, we divide the entire CT-stack of any 

patient into P partitions such that images belonging to a given partition are anatomically 

similar. For each image in a partition (i.e a sub collection of CT image stack), we must 

carefully extract patches to have enough representation from the 3 classes (segments) and 

likewise have enough diversity in the range of distances from the boundary of the brain.

Patch Selection Strategy for each class/segment—First we find a candidate region 

for each image in the CT-stack by using an optical flow approach as mentioned in [4]. The 

candidate region is a binary image which labels the region of an image that is to be 

segmented into brain, CSF and subdurals as 1. Then, the distance value for each pixel z is 

given by DT(z) = min(d(z,q)) : CR(q) = 0, where d(z,q) is the Euclidean distance between 

pixel z and pixel q and CR is the candidate region. For a pixel z, it is essentially the 

minimum distance calculated from all the pixels that are not part of the candidate region. 

The candidate region of a sample image and its distance transform is shown in Fig. 5. A 

subset of “these distances” should be used in our training feature vectors. For this purpose, 

we propose a simple strategy wherein first we calculate the maximum and minimum 

distance of a given label/class in a CT image and pick patches randomly such that the 

distance range is uniformly sampled from min to max values. The pseudo-code for this 

strategy and more implementation details can be found in [40].

Once training patches for each partition are extracted, we learn dictionaries and linear 

classifiers for each partition using the objective function described in Section II-C. The 

entire training setup and segmentation of a new test CT stack is summarized as a flow chart 

in Figure 6.
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III. Experimental Results

We report results on a challenging real world data set of CT images acquired from the 

CURE Children’s Hospital of Uganda. Each patient (on an average) is represented by a stack 

of 28 CT images. We choose the number of partitions of such a stack P to be 12 based on 

neurosurgeon feedback. The size of each slice is 512×512. Slice thickness of the scans 

varied from 3mm to 10mm. The test set includes 15 patients while the number of training 

patients ranged from 9–17 and were non-overlapping with the test set. To validate our 

results, we used the dice-overlap coefficient, which for regions A and B is defined as

DO(A, B) = 2 ∣ A ∩ B ∣
∣ A ∣ + ∣ B ∣ (20)

Note, DO(A,B) evaluates to 1, only when A = B. The dice-overlap is computed for each 

method by using carefully obtained manually segmented results under the supervision of an 

expert neurosurgeon - (SJS). The proposed FLIS is compared against the following state of 

the art methods:

• SRC [19] based segmentation was implemented in [25] by using pre-defined 

dictionaries for each voxel/pixel in the scans. The objective function and 

classification procedure proposed in their work is implemented on our data set.

• LC-KSVD [30] based dictionary learning method was used to segment MR brain 

images in [32] for hippocampus labeling. Two types of implementations were 

proposed in their paper which are named as DDLS and F-DDLS. In Fixed-DDLS 

(F-DDLS) dictionaries are learned offline and segmentation is performed online 

to improve speed of segmentation whereas in DDLS both operations are 

performed simultaneously. In this paper, we compare with the DDLS approach, 

as storing a dictionary for each pixel offline requires a very large memory.

Apart from these two methods, there are few others that use dictionary learning and a 

sparsity based framework for medical image segmentation [26]–[28], [33]–[36]. The 

objective function used in these aforementioned methods is similar to the above two 

methods with the application being different. We chose to compare against [25] and [32] 

because they are widely cited and were also applied to brain image segmentation.

A. The need for a learning framework

Before we compare our method against the state of the art in learning based segmentation, 

we demonstrate the superiority of the learning based approaches in comparison to the 

traditional intensity based methods. It was illustrated visually in Fig. 3 in Section I that 

intensity based methods find it difficult to differentiate subdurals from brain and CSF. To 

validate this quantitatively, we compare dice-overlap coefficients obtained by using the 

segmentation results of [11]1 which is one of the best known intensity based methods and 

addressed as Brain Intensity Segmentation (BIS). The comparisons are reported in Table I. 

1Note that the method in [11] was implemented for MR brain images. We adapted their strategy for segmenting our CT images.
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The learning based methods use a patch size of 11×11 with number of training patients set to 

15 and the sizes of individual class specific dictionaries set to 80.

The results in Table I confirm that learning based methods clearly outperform the traditional 

intensity based method, esp. in terms of the accuracy of identifying subdurals. Note that the 

dice overlap values in Table I for each class/segment are averaged over the 15 test patients. 

This will be the norm for the remainder of this Section unless otherwise stated. We 

performed a balanced two-way Analysis of Variance (ANOVA)2 [42] on the dice overlap 

values across patients for all 3 classes (Brain, CSF and Subdural). Fig. 7 illustrates these 

comparisons using posthoc Tukey range test [42] and confirms that SRC, DDLS and FLIS 

(learning based methods) are significantly separated from BIS. p values of BIS compared 

with other methods are observed to be much less than .01 which emphasizes the fact that 

learning based methods are more effective.

B. Parameter Selection

In our method, several parameters have to be chosen carefully before we start 

implementation. Some of the important parameters are patch size, dictionary size, number of 

training patients and regularization parameters ρ and β. ρ and β are picked by a cross-

validation procedure [43], [44] such that ρ is in compliance with Eq. (17). The best values 

are found to be ρ = .5 and β = 2. Our algorithm is fairly robust to other parameters such as 

patch size, number of training patients and length of dictionaries which is discussed in the 

subsequent sub-sections.

C. Influence of Patch Size

If the patch size is very small, namely a single pixel in the extreme case, the necessary 

spatial information to accurately determine its class/segment is unavailable. On the other 

hand, a very large patch size might include pixels from different classes. For the experiment 

performed, the dictionary size of each class/segment and number of training patients for 

performing experiments are set to 120 and 17 respectively. Experiments are reported for 

square patch windows with size varying from 5 to 25. The mean dice overlap values for all 

the 15 patients that are shown in Fig. 8 reveal that the results are quite stable for patch size 

in the range 11 to 17, indicating that while patch size should be chosen carefully, FLIS is 

robust against small departures from the optimal choice.

D. Influence of Dictionary Size

Dictionary size is another important parameter in our method. Similar to patch size, very 

small dictionaries are incomplete and can not represent the data accurately. However, large 

dictionaries can represent the data more accurately, but at the cost of increased run-time and 

memory requirements.

In the results presented next, varying dictionary sizes of 20, 80, 120 and 150 are chosen. 

Note that these dictionary sizes are for each individual class. However, DDLS does not use 

class specific dictionaries. Therefore, to maintain consistency in both the methods, the 

2Prior to application of ANOVA, we rigourously verified that the observations (dice overlap values) satisfy ANOVA assumptions [41].
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overall dictionary size for DDLS is fixed to be 3 times the size of each individual dictionary 

in our method. Table II compares FLIS with DDLS for different dictionary sizes. We did not 

compare with [25] as dictionary learning in not used in their approach. Experiments are 

conducted with a patch size of 13×13 and with data from 17 patients used for training.

From Table II, we observe that FLIS remains fairly stable with the change in size of 

dictionary whereas the DDLS method performed better in identifying subdurals as the size 

of dictionary is increased. For a fairly small dictionary size of 20, the performance of both 

methods drops but FLIS is still relatively better. Further, to compare both the methods 

statistically, a 3-way balanced ANOVA is performed for all the 3 classes as shown in Fig. 9. 

We observe that FLIS exhibits superior segmentation accuracy compared to DDLS although 

there is significant overlap between confidence intervals of FLIS and DDLS. This can be 

primarily attributed to the discriminative capability of the FLIS objective function which 

automatically discovers features that are crucial for separating segments. Visual comparisons 

are available in Figure 10 when size of dictionary is set to 120. Visual results from Figure 10 

show that both the methods performed similarly in detecting large subdurals, but FLIS 

identifies subdurals more accurately in Patient 3 (3rd column of Fig. 10) where the subdurals 

have a smaller spatial footprint.

E. Performance variation against training

For the following experiment, we vary the number of training and test samples by dividing 

the total 32 patients CT stacks into 9–23, 11–21, 13–19, 15–17, 17–15, 19–13 and 21-11 

configurations (to be read as training-test). Figure 12 compares our method with DDLS and 

patch based SRC [25] for all these configurations. Note that, the results reported for each 

configuration are averaged over 10 random combinations of a given training-test 

configuration to remove selection bias. The per-class dictionary size was fixed to 80 for our 

method and DDLS, whereas for [25], the dictionary size is determined automatically for a 

given training selection. The patch size is set to 13×13.

A plot of dice overlap vs. training size is shown in Fig. 12. Unsurprisingly, each of the three 

methods shows a drop in performance as the number of training image patches (proportional 

to the number of training patients) decreases. However, note that FLIS exhibits the most 

graceful degradation.

Fig. 13 represents the gaussian fit for the histogram (for all 10 realizations combined) of 

dice-overlap coefficients for the configuration 13–19. Two trends may be observed: 1.) FLIS 

histogram has a mean higher than competing methods, indicating higher accuracy, 2.) the 

variance is smallest for FLIS confirming robustness to choice of training-test selection.

Comparisons are visually shown in Figure 11. A similar trend is also observed here where 

patch based SRC and DDLS improve as the number of training patients increase. We 

observe that DDLS and SRC based methods performed poorly in identifying the subdurals 

for Patient 3 (column 3) in Figure 11. We also observe that both DDLS and FLIS outperform 

SRC implying that dictionary learning improves accuracy significantly.
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F. Discriminative Capability of FLIS

To illustrate the discriminative property of FLIS, we plot the sparse codes that are obtained 

from the classification stage for our method and DDLS for a single random pixel with a 

dictionary size of 150 in Fig. 14. The two red lines in the figure act as a boundary for the 3 

classes. For each of the three segments, i.e. brain, CSF and subdurals, we note that the active 

coefficients in the sparse code are concentrated more accurately in the correct class/segment 

for FLIS vs. DDLS.

To summarize the quantitative results, FLIS stands out particularly in its ability to correctly 

segment subdurals. The overall accuracy of brain and fluid segmentation is better than the 

accuracy of subdural segmentation for all the 3 methods. This is to be expected because the 

amount of subdurals present throughout in the images is relatively small compared to brain 

and fluid volumes.

G. Computational Complexity

We compare the computational complexity of our FLIS with DDLS method. We do not 

compare with [25] as it does not learn dictionaries. Complexity of dictionary learning 

methods is estimated by calculating the approximate number of operations required for 

learning dictionaries for each pixel. Detailed derivation of complexity is presented in 

Appendix A. The run-time and derived complexity per pixel are shown in Table III. The run-

time and computational complexity are derived per pixel. The values of parameters are 

defined as follows: The number of training patches N = 4700 for each class and the patch 

size is 11×11. Sparsity level L is chosen to be 5. The run time numbers are consistent with 

the estimated number of operations shown in Table III obtained by plugging in the values of 

above parameters in to the derived complexity formulas. FLIS is substantially less expensive 

from a computational standpoint. This is to be expected because DDLS uses pixel specific 

dictionaries, whereas FLIS dictionaries are class or segment specific but do not vary with the 

pixel location.

H. Memory requirements

Memory requirements are derived in Appendix B. The memory required for storing 

dictionaries for all the 3 methods are reported in Table IV. These numbers are obtained 

assuming each element requires 16 bytes, and the following parameter choices: Number of 

training patients, Nt = 15, patch size = 11×11, K = 80 and Ix = Iy = 512. Consistent with 

Section III-G, the memory requirements of FLIS are also modest.

I. Comparison with deep learning architectures

A significant recent advance has been the development of deep learning methods, which 

have recently been applied to medical image segmentation [45], [46]. We implement the 

technique in [45] which designs a convolutional neural network (CNN) for segmenting MR 

images. This method extracts 2D patches of different sizes centered around the pixel to be 

classified and a separate network is designed for each patch size. The output of each network 

is then connected to a single softmax layer to classify the pixel. Three different patch sizes 

were used in their work and the network configuration for each patch size is mentioned in 

Table V. We reproduced the design in [45] but with CT scans for training. We address this 
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method as Deep Network for Image Segmentation (DNIS). Results in terms of comparisons 

with FLIS are shown in Table VI. Note that the training-test configuration of this experiment 

is the same as the one performed in subsection III-E. Unsurprisingly, FLIS performed better 

than DNIS for low training scenarios and DNIS performed slightly better than FLIS with an 

increase in number of training samples. Further, to confirm this statistically, a 3-way 

balanced ANOVA is performed for all the 3 classes as shown in Fig. 15. It may be inferred 

from Fig. 15 that FLIS outperforms DNIS in the low to realistic training regime, while DNIS 

is competitive or mildly better than FLIS when training is generous. An example visual 

illustration of the results is shown for 3 patients in Fig. 16 where the benefits of FLIS are 

readily apparent. Also, note that the cost of training DNIS is in hours vs. the training time of 

FLIS which takes seconds – see Table VI.

IV. Discussion and Conclusion

In this paper, we address the problem of segmentation of post-op CT brain images of 

hydrocephalic patients from the viewpoint of dictionary learning and discriminative feature 

discovery. This is very challenging problem from the distorted anatomy and subdural 

hematoma collections on these scans. This makes subdurals hard to differentiate from brain 

and CSF. Our solution involves a sparsity constrained learning framework wherein a 

dictionary (matrix of basis vectors) is learned from pre-labeled training images. The learned 

dictionaries under a new criterion are shown capable of yielding superior results to state of 

the art methods. A key aspect of our method is that only class or segment specific 

dictionaries are necessary (as opposed to pixel specific dictionaries), substantially reducing 

the memory and computational requirements.

Our method was tested on real patient images collected from CURE Children’s Hospital of 

Uganda and the results outperformed well-known methods in sparsity based segmentation.
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Appendix A. Complexity analysis

We derive the computational complexity of our FLIS and compare it with DDLS [32]. 

Computational complexity for each method is derived by finding the approximate number of 

operations required per pixel in learning the dictionaries. To simplify the derivation, let us 

assume that number of training samples and size of dictionary be same for all the 3 classes. 
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Let they be represented as N and K. Let us also assume that sparsity constraint L remains the 

same for all the classes. Let the training samples be represented as Y and the sparse code be 

represented as X.

Two major steps in most of the dictionary learning methods are the dictionary update and 

sparse coding steps, which in our case are l0 minimization. The dictionary update step is 

solved either by using block coordinate descent [38] or the singular value decomposition 

[47]. The second step which involves solving an Orthogonal Matching Pursuit [39] is the 

most expensive step. Therefore, to derive the computational complexities, we find the 

approximate number of operations required to solve the sparse coding step in each iteration.

A. Complexity of FLIS

As discussed above, we find the approximate number of operations required to solve the 

sparse coding step in our algorithm. To do that, first we find the complexity of the major 

sparse coding step which is given by Eq. (21).

arg min‖X‖0 ≤ L
‖Y − DX‖F

2 (21)

where the dimension of Y is equal to ℝd×N and dimension of D is equal to ℝd×K. For a 

batch-OMP problem with the above dimensions, the computational complexity is derived in 

[48] and it is equal to N(2dK+L2K+3LK+L3)+dK2. Assuming L ≪ K ≈ d ≪ N, it 

approximately simplifies to

NK(2d + L2) . (22)

The sparse coding step in our FLIS algorithm requires us to solve 

arg min‖X‖0 ≤ L ‖Ynew − DnewX‖
F
2  where Ȳnew ∈ ℝ(d+3)×3N and Dnew ∈ ℝ(d+3)×K which can 

be solved from Eq. (13). Substituting these values into Eq. (22), we get the complexity of 

learning dictionary for a single class as 3NK(2(d+3)+L2). Since we have 3 classes, the 

overall complexity of learning is multiplied by 3: CFLIS = 9NK(2(d +3)+L2). As the same 

dictionary is used for all the pixels in an image I with dimension Ix×Iy, 

CFLIS = 9NK(2(d + 3) + L2)
Ix × Iy

.

B. Complexity of DDLS [32]

We already showed that by removing the discriminating term from FLIS in Eq. (7), it turns 

into the objective function described for DDLS in Section II-C. Therefore, the most complex 

step remains the same for DDLS as well. However, since DDLS does not include distance 

feature the size of d changes to d
2  and also it computes the dictionaries for all the classes at 
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once. Keeping these two differences in mind, the computational complexity of DDLS is: 

CDDLS = 9NK(2(d
2 + 3) + L2). In addition, a separate dictionary is computed for each pixel in 

DDLS, which means the complexity scales with the size of the image.

Appendix B. Memory Requirements

We now calculate the memory required for our method and compare it with DDLS [32] and 

patch based SRC [25]. Memory requirement for all the methods is calculated by estimating 

the number of bytes required to store the dictionaries. In the case of FLIS and DDLS, the 

size of the dictionary plays an important role in calculating memory requirement whereas in 

SRC, the number of training images plays an important role as it uses pre-defined 

dictionaries. Another point to note is, as the entire CT stack is divided into P partitions and a 

dictionary is stored for each partition, we derive the memory required for storing dictionaries 

for each individual partition. To obtain the total memory required, the formulas derived in 

the subsequent sections have to be multiplied by P.

A. Memory required for FLIS

Suppose the length of each dictionary is K and the size of the column vector is d, then the 

size of the complete dictionary for all the 3 classes combined is d×3K. Further, we also store 

linear classifier W for classification which is of size 3×3K. Therefore, the complete size of 

the dictionary is (d +3)× 3K. Assuming each element in dictionary is represented by 16 

bytes, the total memory in bytes required for storing FLIS dictionaries is MFLIS = (d+3)

×3K×16.

B. Memory required for DDLS [32]

One major difference between FLIS and DDLS is the size of the column vector in DDLS is 

approximately half of the size in FLIS’s case as the distance values are not considered in 

DDLS. The other major difference is a dictionary is stored for each individual pixel. 

Keeping these two differences in mind and with the same dictionary length, the total 

memory in bytes required for storing DDLS dictionaries is 

MDDLS = (d
2 + 3) × 3K × 16 × Ix × Iy where Ix×Iy is the image size.

C. Memory required for Patch based SRC [25]

In SRC method, predefined dictionaries for each pixel are stored instead of compact 

dictionaries. For a given pixel x in an image, a patch of size w×w is considered around the 

same pixel location in training images and then a patch of size w×w around new pixels form 

the dictionary of pixel x. Assuming there are Nt training images, the total size of the 

dictionary for a given pixel is d
2 × d

2 × N as the size of the patch in this method is 

approximately half of the size of column vector in FLIS method. Therefore, the total 

memory in bytes required for this methods is MSRC = d
2 × d

2 × Nt × Ix × Iy × 16.
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Fig. 1. 
A) Sample Pre-operative (pre-op) CT scan slices of a hydrocephalic patient B) Segmented 

CT-slices of the same patient using [4]
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Fig. 2. 
Sample post-op CT-images of 3 patients. Top row shows the original images. Bottom row 

shows subdurals marked in blue. A shunt catheter is visible in patients 2 and 3.
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Fig. 3. 
Demonstration of segmentation using a traditional intensity based method [11]. Top row 

represents original images of 3 patients. Second row represents manually segmented images. 

Third row represents the segmentation using [11]. Green-Brain, Red-CSF, Blue-Subdurals
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Fig. 4. 
Visual representation of our FLIS in comparison with DDLS [32]. a) represents the idea of 

DDLS and b) represents a desirable outcome of our idea which is more capable of 

differentiating in-class and out of class samples.
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Fig. 5. 
Visual representation of obtaining distance values from a CT-slice.
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Fig. 6. 
A) illustrates the procedure for selecting patches for training. B) illustrates the procedure for 

segmentation of a new CT- stack
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Fig. 7. 
Comparison of traditional intensity based thresholding method with learning based 

approaches by a two-way ANOVA. Values reported by ANOVA across the method factor are 

d f =3, F =45.23, p ≪ .01, indicating that results of learning based approaches are 

significantly different and better than BIS. The intervals shown represent the 95 percent 

confidence intervals of the dice overlap values for the corresponding method-class 

configuration. Blue color represents BIS method and Red indicates the learning based 

approaches.
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Fig. 8. 
Mean dice overlap coefficients for all the 15 patients using our method are reported in this 

figure. Results for different square patch sizes varying from 5 to 25 are reported.
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Fig. 9. 
Comparison of FLIS with DDLS for different dictionary sizes by using a 3-way ANOVA. 

The intervals represent the 95 percent confidence intervals of dice overlap values for a given 

configuration of method-class-dictionary size. FLIS is represented in blue and DDLS in red. 

Values reported for ANOVA across the method factor are d f = 1, F = 7.22, p = .0075. 

ANOVA values across dictionary length factor are d f =3, F =9.95, p≪.01. We also 

performed a repeated ANOVA across dictionary size factor for the two methods which 

reported a p–value=1.73×10−10, which confirms that dictionary size has a significant role.
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Fig. 10. 
Comparison of results of the 2 methods for a dictionary size of 120 and training size of 17 

patients. First row represents the original images of 3 patients. Second row represents their 

corresponding manually segmented image. Third row represents segmented images using 

FLIS. Fourth row represent segmented images using DDLS [32]. Green-Brain, Red-CSF, 

Blue-Subdurals.
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Fig. 11. 
Comparison of results of the 3 methods for a training size of 17 patients. First row represents 

the original images of 3 patients. Second row represents their corresponding manually 

segmented image. Third row represents segmented images using FLIS. Fourth and Fifth 

rows represent segmented images using DDLS [32] and patch-based SRC [25] respectively. 

Green-Brain, Red-CSF, Blue-Subdurals.
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Fig. 12. 
Comparing dice-overlap coefficients of FLIS with DDLS [32] and patch based SRC [25] for 

different sizes of training data.
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Fig. 13. 
Gaussian fit for the histogram of dice overlap coefficients for ten random realizations of 

training data.
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Fig. 14. 
Comparing Sparse codes of a random pixel for brain (B), fluid (F) and subdurals (S). Row1: 

Sparse code for FLIS. Row2: Sparse code for DDLS. X axis indicates the dimension of the 

sparse codes. The left side of first red line correspond to brain, middle section corresponds 

to fluid and right side of second red line correspond to subdurals. Y axis indicate the values 

of the sparse codes.
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Fig. 15. 
Comparison of FLIS with DNIS for different training configurations by using a 3-way 

ANOVA. The intervals represent the 95 percent confidence intervals of dice overlap values 

for a given configuration of method-class-training size. FLIS is represented in blue and 

DNIS in red. Values reported for ANOVA across the method factor are d f =1, F = 35.54, p 
≪.01. ANOVA values across training size factor are d f = 3, F = 308.85, p ≪ .01.
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Fig. 16. 
Comparison of results between DNIS and FLIS for training-test configuration of 17–15. 

First row represents the original images of 3 patients. Second row represents their 

corresponding manually segmented image. Third row represents segmented images using 

FLIS. Fourth row represent segmented images using DNIS. Green-Brain, Red-CSF, Blue-

Subdurals.
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TABLE I

Comparison of learning based method with traditional intensity based thresholding method. Values are 

reported in Mean±SD(standard deviation) FORMAT

Method Brain CSF Subdural

BIS [11] .580±0.21 .696±0.18 .226±0.14

Patch based SRC [25] .885±0.15 .805±0.22 .496±0.28

DDLS [32] .932±0.04 .892±0.08 .641±0.2

FLIS (our method) .937±0.02 .908±0.07 .767±0.14
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TABLE II

Performance of our method with different dictionary sizes. Values are reported in Mean±SD(standard 

deviation) FORMAT

Dictionary size Method Brain CSF Subdural

20
FLIS .891±0.04 .833±0.12 .580±0.23

DDLS [32] .887±0.06 .827±0.12 .539±0.30

80
FLIS .939±0.03 .907±0.07 .770±0.13

DDLS [32] .932±0.05 .892±0.08 .641±0.26

120
FLIS .940±0.03 .906±0.07 .768±0.14

DDLS [32] .931±0.04 .890±0.07 .679±0.17

150
FLIS .938±0.03 .911±0.07 .773±0.13

DDLS [32] .921±0.04 .891±0.08 .687±0.19
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TABLE III

Complexity Analysis of methods

Method Complexity Run time Est. Operations

DDLS
9NK(2(d

2 + 3) + L2)
46.66 seconds 1.39 × 109

FLIS
9NK(2(d + 3) + L2)

Ix × Iy

.0003 seconds 1.005 × 104
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TABLE IV

Memory requirements

Method Memory(in bytes) Approx Memory

SRC [25]
d
2 × d

2 × Nt × Ix × Iy × 16
~ 9.2 × 1011 bytes

DDLS [32]
(d
2 + 3) × 3K × 16 × Ix × Iy

~ 1.24 × 1011 bytes

FLIS (our method) (d + 3) × 3K × 16 ~ 4.8 × 105 bytes
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TABLE V

Deep network configuration of DNIS. Note: Conv-Convolutional layer followed by a 2 × 2 Max pool Layer, 

FC-Fully connected layer

Patch Size Layer1 (Conv) Layer2 (Conv) Layer3 (Conv) Layer4 (FC)

25 × 25 24 5 × 5 × 1 32 3 × 3 × 24 48 3 × 3 × 32 256 nodes

50 × 50 24 7 × 7 × 1 32 5 × 5 × 24 48 3 × 3 × 32 256 nodes

75 × 75 24 9 × 9 × 1 32 7 × 7 × 24 48 5 × 5 × 32 256 nodes
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