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Abstract

Background: Chagas Disease caused by Trypanosoma cruzi infection, is one of the most important neglected
tropical diseases (NTD), without an effective therapy for the successful parasite eradication or for the blocking of the
disease’s progression, in its advanced stages. Due to their low toxicity, wide pharmacologic spectrum, and potential
synergies, medicinal plants as Lippia alba, offer a promising reserve of bioactive molecules. The principal goal of this
work is to characterize the inhibitory properties and cellular effects of the Citral and Carvone L. alba chemotype
essential oils (EOs) and their main bioactive terpenes (and the synergies among them) on T. cruzi forms.

Methods: Twelve L. alba EOs, produced under diverse environmental conditions, were extracted by microwave
assisted hydrodistillation, and chemically characterized using gas chromatography coupled mass spectrometry.
Trypanocidal activity and cytotoxicity were determined for each oil, and their major compounds, on epimastigotes
(Epi), trypomastigotes (Tryp), amastigotes (Amas), and Vero cells. Pharmacologic interactions were defined by a
matrix of combinations among the most trypanocidal terpenes (limonene, carvone; citral and caryophyllene oxide).
The treated cell phenotype was assessed by fluorescent and optic microscopy, flow cytometry, and DNA
electrophoresis assays.

Results: The L. alba EOs displayed significant differences in their chemical composition and trypanocidal
performance (p =0.0001). Citral chemotype oils were more trypanocidal than Carvone EOs, with Inhibitory
Concentration 50 (ICsg) of 14+ 1.5 pg/ml, 22 + 1.4 ug/mL and 74 + 4.4 ug/mL, on Epi, Tryp and Amas, respectively.
Limonene exhibited synergistic interaction with citral, caryophyllene oxide and Benznidazole (decreasing by 17
times its 1Cso) and was the most effective and selective treatment. The cellular analysis suggested that these oils or
their bioactive terpenes (citral, caryophyllene oxide and limonene) could be inducing T. cruzi cell death by an
apoptotic-like mechanism.

Conclusions: EOs extracted from L. alba Citral chemotype demonstrated significant trypanocidal activity on the
three forms of T. cruzi studied, and their composition and trypanocidal performance were influenced by production
parameters. Citral, caryophyllene oxide, and limonene showed a possible induction of an apoptotic-like phenotype.
The best selective anti-T. cruzi activity was achieved by limonene, the effects of which were also synergic with citral,
caryophyllene oxide and benznidazole.
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Background

Chagas Disease is one of the most important Neglected
Tropical Diseases (NTDs) worldwide, and is one of the
most relevant public health problems in Latin America.
This infection, caused by the hemoflagellated protozoan
Trypanosoma cruzi, currently affects an estimated 7 mil-
lion people in the world, with around 99% of all registered
cases occurring in Central and South American countries
[1]. The global costs of this disease are calculated at ap-
proximately USD $7.19 billion per year [2], with regional
economic losses of almost US $1.2 billion, annually [3]. In
Colombia, the prevalence of this trypanosomiasis is esti-
mated to be within a range of 700,000 — 1,200,000 cases,
with more than 8,000,000 persons at risk [4].

In regions where the condition is endemic, disease-control
efforts principally centered on preventing or reducing the T.
cruzi transmission cycle by vector eradication and massive
blood donation screening [5]. However, bigger challenges re-
main; in particular, those associated with the changing epi-
demiological profile of the infection (diversity of vectors,
reservoirs, and modes of transmission), being the most
significant problem, the lack of effective therapies to cure
the T. cruzi infection or to prevent the progression of the
disease, principally in advanced stages.

At present, the conventional Chagas Disease treatments
are etiologic, and are comprised of only two possible op-
tions, Nifurtimox (NFX) (Lampit®, Bayer) and Benznidazole
(BNZ) (Rochagan® in Brazil and Radanil® in Argentina,
Roche). These two treatments have remained the standard
since their introduction into clinical therapy more than
40 years ago [6]. As disadvantages, these treatments are
highly toxic (often accompanied by serious side effects like
digestive intolerance, severe anorexia and neurological dis-
orders) [7]; involve prolonged treatment times; and demon-
strate variable trypanocidal effectiveness in acute stage
(with about 80% being associated with natural resistance).
They also display limited efficacy in the late phase of the in-
fection (in which the benefits of these therapies have not
clearly defined) [8, 9].

In general, these conventional therapies do not take
into account the complex cascade of cellular events lead-
ing to Chagasic cardiomyopathy, which are not only as-
sociated with the parasite’s presence, but also involve
exacerbated and persistent immune response (with cellu-
lar and neuronal damage) [10, 11]. These latter factors
are those which govern the microvasculopathy and
cardiac failure associated with the condition [10, 11].

In this regard, the research and development of new
alternative therapies for Chagas Disease remain press-
ing concerns. New pharmacological approaches should
be more efficient and selective, seeking complete para-
site elimination, but with adequate modulation of the
host immune response and limitation of cellular dam-
age [11]. To this end, in the last two decades, intensive
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research has been focused on the study of the proper-
ties of whole extracts or compounds isolated from
plants or synthesized based on natural prototypes,
which have shown promising results against parasite in-
fections [12, 13].

Essential oils (EOs) extracted from aromatic plants
and their main components have been described as
broad-spectrum antimicrobial agents [14], with signifi-
cant anthelmintic and antiprotozoal activity [15, 16].
Some terpenes of these oils such as citral (Lippia alba
and Cymbopogon citratus), caryophyllene oxide (Aframo-
mum sceptrum, Achillea millefolium, and Piper var brachy-
podon), and limonene (L. origanoides and L. pedunculosa)
have demonstrated efficient trypanocidal activity on extra
and intracellular forms of 7. cruzi [17-20]. In addition,
these terpenes have been found to exhibit other interesting
biological properties, such as being anti-inflammatory im-
munomodulators, selective antioxidants, and cytoprotectors
[21-24]. The presence of citral, caryophyllene and limon-
ene has been identified in EOs isolated from two chemo-
types (Citral and Carvone) of the aromatic shrub Lippia
alba (Miller) N.E. Brown (Verbenaceae), that grows in the
Colombian province of Santander [21, 25]. L. alba repre-
sents the seventh species most cited in traditional Brazilian
medicine [26]. The “healers” use their leaves as an infusion
to treat health problems such as hypertension, digestive,
colds and local wound healing [27, 28]. In the state of
Boyacd, Colombia, it is frequently used as an analgesic, for
digestive (diarrhea, stomach pain) and respiratory problems
(flu and cough) [29]. Previous screening studies with these
oils evidenced selective inhibition and cytotoxicity against
trypanosomatid parasites, in vitro [30]. Taking into consid-
eration their numerous functions, L. alba EOs and their
bioactive terpenes are a promising platform for develop-
ment of holistic therapies to combat Chagas Disease. This
kind of approach could allow for a selective eradication of
the parasite, with less toxicity (even with chemoprotection),
and for controlling the host immune response, through a
possible synergistic interaction of the compounds involved
[22, 31, 32].

The principal goal of this work is to characterize
the inhibitory properties and cellular effects of the
Citral and Carvone L. alba chemotype EOs and their
main bioactive terpenes on 7. cruzi epimastigotes,
trypomastigotes, and amastigotes cyclic forms. The
IC5o was determined for each of these compounds,
and possible pharmacologic interactions were defined
by a matrix of combinations of the trypanocidal com-
pounds (from Carvone chemotype: limonene and car-
vone; and from Citral chemotype: citral and
caryophyllene oxide). The phenotype of the parasites
and mammal cells treated with EOs or terpenes was
followed by fluorescent and optic microscopy, flow
cytometry, and DNA electrophoresis assays.
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Methods

Plant material

In this study, specimens of the Citral and Carvone che-
motypes of Lippia alba (Miller) N. E. Brown (Verbena-
ceae) were planted in the National Research Center for
Agroindustrialization of Aromatic Medical and Tropical
species (CENIVAM, in Spanish) located in Bucaramanga,
Santander, Colombia, at an altitude of 960 m above sea
level. The formal identification of the plant specimens
used in this study was provided by Prof. Jorge Luis
Ferniandez Alonso and the vouchers were deposited at
the Colombian National Herbarium (Universidad Nacio-
nal de Colombia) under Herbarium Codes COL480750
and COL512077, for Carvone and Citral chemotypes of
L. alba, respectively. A range of environmental and pro-
duction conditions were used in order to produce 76
EOs with possible diversity in their main compounds. In
this regard, the vegetal material was grown, collected,
and extracted under the following factors. 1) season:
defined as dry (January to March, 26.3 °C temperature,
with 68.9% relative humidity, and 1.05 mm/day precipi-
tation) and rainy (April to November, mean temperature
of 24.5 °C, relative humidity of 81.3%, and 4.13 mm of
daily precipitation); 2) L. alba chemotypes (53 from
Carvone and 23 from Citral); 3) part of plant harvested
(root, stem, fresh and mature leaves, and flowers); 4)
vegetal material conditions (fresh and dry); and 5) ex-
traction time (from 30 to 90 min).

Essential oils extraction and characterization

The oil extraction was performed by microwave-assisted
hydrodistillation (MWHD), as described elsewhere [25, 29].
Briefly, a domestic microwave oven (Kendo, 245 GHz,
800 W) was modified with a side orifice through which an
external Dean-Stark trap joined a round flask that con-
tained the plant material (100 g) and water (0.5 L), inside
the oven. Three 15 min heating periods at full power were
used to perform the hydrodistillation. The Dean-Stark trap
permitted to decant the essential oil from the condensate.
A gas chromatograph GC 7890 (Agilent Technologies, AT,
Palo Alto, CA, U.S.A.) coupled to a mass selective detector
MSD 5975C (AT, Palo Alto, CA, U.S.A.), using electron
impact ionization (EI, 70 eV) was used for essential oil
characterization. This system included a split/splitless in-
jector (1:30 split ratio), and a MS-ChemStation G1701-DA
data system, with the WILEY, NIST and QUADLIB 2007
spectral libraries. For their GC-MS assays, individual essen-
tial oil samples (50 pL) were mixed with n-tetradecane
(2 pL, internal standard) and diluted with dichloromethane
to a final volume of 1.0 mL. Helium (99.9995%) was used
as the carrier gas, with 155 kPa column head pressure and
27 cm s~ ' linear velocity (1 mL minute-1, at constant flow),
in two columns of different polarities (DB-5MS and
DB-WAX from J&W Scientificc, USA). The GC oven
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temperature was programmed from 50 °C (5 min) to 150 °C
(2 min) at 5 °C min~ %, then to 230 °C (10 min) at
5 °C min~'. When the DB-5MS column was used, a
final heating to 275 °C (15 min) at 10 °C min~ ' was added.
The temperatures of the injection port, ionization chamber
and of the transfer line were set at 250, 230 and 285 °C,
respectively. For the polar DB-WAX column, the transfer
line temperature was set at 230 °C. Mass spectra and recon-
structed (total) ion chromatograms were obtained by auto-
matic scanning in the mass range m/z 30—400 at 4.5 scan
s '. Compound relative abundances were calculated from
the chromatographic area of profiles obtained with an AT
7890 gas chromatograph provided with flame ionization de-
tection (FID, 250 °C). The chromatographic columns, car-
rier gas and oven temperature programs employed in
GC-FID analysis were the same as described previously for
the GC-MS system. The EO compounds were identified
using mass spectra and linear retention indices relative to
Cs-Cs3p n-alkanes [33]. Several terpenoid standard com-
pounds, such as limonene, carvone, geranial, geraniol,
[-caryophyllene, and [-caryophyllene oxide, obtained from
Sigma-Aldrich (St. Louis, MO, U.S.A., with purities above
98%) were used. The extracted EOs were preserved at 4 °C
and protected from light before GC-MS and cellular ana-
lysis. Finally, the 76 EOs were arranged into 12 groups, ac-
cording to the significant differences in the percentages of
their major terpenes and one oil of each group was arbitrar-
ily selected for further biological analysis, comprising six
EOs from Citral chemotype (A13, A20, A23, A24, A25, and
A28), and six from the Carvone chemotype (B7, B16, B37,
2B8, 2B18, and 2B19).

Terpenes and drugs

The terpenes S (+) carvone, D (+) limonene, (-) caryo-
phyllene oxide, and citral were purchased from
Sigma-Aldrich (St. Louis, MO). The reference medica-
tion BNZ (Radanil’, Roche) was donated by Santander’s
State Secretary of Health, and purified by Dr. Leonor
Yamile Vargas, from the Environmental Chemistry Pro-
gram at Universidad Santo Tomds de Aquino (Bucara-
manga). Concentrations ranging from 1.85 to 50 pg/mL
were used for epimastigote (Epi) and amastigote (Amas)
assays and 0.39 to 3.12 pg/mL for trypomastigote (Tryp)
assays. The oils (at a density of 0.9 g/mL) and terpene
stock solutions were prepared in dimethyl-sulfoxide
(DMSO, Sigma-Aldrich (St. Louis, MO)), to get a 10%
(v/v) solution, without exceeding a DMSO final concen-
tration of 0.1%, in any solution. Working solutions (3.7
to 300 pg/mL) were diluted immediately prior to use
with Liver Infusion Tryptose (LIT, Becton Dickinson,
FL, USA) media and Dulbecco’s Modified Eagle’s
Medium (DMEM, Life Technology, CA, USA) for T.
cruzi cells and Vero lineage, respectively.
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Cell cultures

Vero lineage derived from African Green Monkey Kidney
(Vero, ATCC CCL-81) was used for selectivity index deter-
mination and for Tryp and Amas production. These cells
were grown on DMEM (Life Technology, CA, USA) media,
pH: 7.4; supplemented with 10% of inactivated Fetal Bovine
Serum (FBSi), 1000 U/mL of penicillin, and 100 pg/mL of
streptomycin; and incubated at 37 °C with 90% humidity and
a 5% CO, atmosphere. Epi of T. cruzi 1 (TcI) SYLVIO-X10
strain, were donated by Dr. Marcos Lépez-Casillas, from
Fundacién Cardiovascular de Colombia and grown in LIT
medium (Merck) supplemented with 10% FBSi, and incu-
bated at 28 °C. The Trypomastigotes Derived from Cells
(TDC) were obtained by infection of a confluent monolayer
of Vero cells with 12 day-old stationary growth phase Epi
and incubated under the same conditions described above
for Vero cells.

Cytotoxic activity on Vero cells

Vero cells (3 x 10° cel/mL) were incubated at 37 °C in a
5% CO, atmosphere and at 95% humidity for 24 h to en-
sure the formation of a confluent monolayer. After this
time, the cells were treated with the EOs or their ter-
penes in four different concentrations (11.1, 33.3, 100,
and 300 pg/mL). Thereafter, the lineages were incubated
for 70 h at 37 °C in a 5% CO, atmosphere and
re-incubated 2 more hours with WST-1 (Roche, Mann-
heim, Germany), after which Optical Density (OD) mea-
surements were analyzed by spectrophotometry. The
cytotoxicity percentage was calculated using [(ODgysonm
Control — ODy50nm treatment) / ODysonm treatment)] x
100. The results were expressed as Cytotoxic Concentra-
tion 50 (CCSO)'

Anti-parasitic activity on T. cruzi

T. cruzi Epi (5 x 10° Epi/mL) and TDC (5 x 10° cells/mL) in
the exponential growth phase were plated in a 96-well stand-
ard microplate in LIT medium (at 28 °C) and in D-MEM
medium (at 37 °C in a 5% CO, atmosphere), respectively.
Both cultures were supplemented with 10% FBSi. For the try-
panocidal assays, the EOs or their terpenes were added at
varying concentrations (3.7 to 100 pg/mL) and incubated at
the same culture conditions for 72 (Epi) or 24 h (Tryp). The
growth inhibition was estimated by light microscopy through
a differential count using the Trypan Blue (Gibco) dye exclu-
sion technique. The results were expressed in terms of
Inhibitory Concentration 50 (ICsp) or the concentration at
which parasite growth is inhibited by 50%. For Amas assays,
a monolayer of Vero cells (3 x 10° cel/mL) was infected with
TDC in a 1:3 cell:parasite ratio and incubated for 24 h until
Amas development occurred. Then, these intracellular forms
were exposed for 120 h to EOs or terpenes in a treatment
applied in two doses (at 0 and 48 h), under the same condi-
tions described above. Growth inhibition analysis was

Page 4 of 16

assessed in Giemsa-stained films using light micros-
copy to determine the infected and uninfected cell
percentage in a total of 300 cells. Cells without treat-
ment and those treated with BNZ were used as nega-
tive and positive controls, respectively.

Pharmacological interaction among terpenes on T. cruzi
A matrix of pharmacological interactions between limonene
(the most selective terpene) and the other major EO terpenes
was created for the three cyclic forms of T. cruzi, using the
fixed-ratio isobologram method, as described previously by
Fivelman et al. [34] with some modifications (Table 1). In the
interaction matrix, the estimated ICs for each terpene was
used as fixed-value for the combinations. In addition, a mix-
ture of limonene and BNZ was also evaluated.

The susceptibility evaluation was performed following the
protocol described above for in vitro anti-parasitic activity.
The Fractional Inhibitory Concentration (FIC) was calculated
by: (Compound X (FIC) = Compound X (ICs) in combin-
ation) / (Compound X (ICsy) alone); and the sum of FIC
(XFIC) was determined by: XFIC = Compound X (FIC) +
Compound Y (FIC). In this manner, synergistic, antagonist,
or additive interactions were defined by 5 ZCIF <1, £ XCIF

>1or xXCIF =1, respectively [31].

Analysis of cell death

The death phenotype was analyzed by optical and fluor-
escent microscopy using phase contrast (fluorescence
microscopy, Nikon Eclipse Ni). The cell morphology in
Epi treated with two doses of the IC5y (2xICs), was ex-
amined by the 4 ‘6diamidino-2, phenylindole probe
(DAPI, 1 pg/mL, Sigma Aldrich) and a TUNEL assay
(Molecular Probes, Invitrogen) for DNA fragmentation
using a Terminal desoxynucleotidyl Transferase (TdT)
label with d-UTP fluorescein. Determination of an
oligonucleosomal-DNA ladder in treated parasites was
also evaluated through DNA gel electrophoresis. Evalu-
ation of the mitochondrial potential membrane in living
parasites was performed with MitoTracker Red CMXRos
(579 nm/599 nm emission/excitation wavelength) [35].
As a positive and negative apoptosis control, a 15 day-old

Table 1 Interaction matrix among terpenes

Combination ID Number Limonene (Compound X) Compound Y
1 00 8% 1Cso

2 1 1Csp 4% |Csp

3 ICs 2% 1Csg

4 2x ICs ICso

5 4% 1Csp 1 ICs

6 8% ICso 0.0

ICsp Inhibitory Concentration 50, x Number of times
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Epi culture and an untreated fresh parasite culture were
used, respectively.

Flow cytometry analysis

For cell death characterization, an Annexin V/Dead with
SYTOX® Green (Molecular Probes, Invitrogen) kit was used
following the procedure specified in the manufacturer’s in-
structions. The phosphatidylserine externalization was deter-
mined by employing a recombinant Annexin V conjugated
to the Orange Fluorescent phycobiliprotein R-PE, and to the
necrotic cells using SYTOX™ Green nucleic acid stain.
Briefly, 1 x 10° Epi per mL were treated with 2xICs, for 48 h,
washed, and suspended in 1X Annexin-Binding Buffer. Next,
R-PE Annexin V and SYTOX® Green Stain were added and
incubated at 37 °C, 5% CO,, and 95% humidity, and analyzed
in a FACSCanto II Flow Cytometer (provided by Dr. Marcos
Lépez from Fundacién Cardiovascular de Colombia), with
488 nm/575 nm Excitation/Emission filters for R-PE and
503 nm/524 nm Excitation/Emission filters for SYTOX.

Statistical analysis

Each treatment was tested in triplicate in three inde-
pendent assays. The ICsy, and CCs, were calculated by
sigmoidal regression using the statistical software
Msxlfit™ (ID Business Solution). The cytotoxicity analysis
and statistically-significant difference determinations
were performed using a Welch’s test for analysis of vari-
ances using SPSS 15.0 Software (IBM). Multiple com-
parison analysis was accomplished using a Tukey test
with a 95% confidence level.

Results

Chemical composition and trypanocidal activity of L. alba EOs
This work studied the trypanocidal properties of 12 EOs
isolated from Citral and Carvone L. alba chemotypes
produced under an array of standardized conditions for
planting, collecting and extracting of the vegetal mater-
ial. A typical chromatographic profile for each chemo-
type essential oil, obtained by mass spectra and linear
retention indices, is showed in Fig. 1a and b, for Carvone
and Citral oils, respectively. The corresponding peak as-
signment of these chromatograms are listed in Table 2.

All the EOs presented diversity in their chemical com-
position, and this variety also appeared as significant dif-
ferences in their trypanocidal performance on the three
cyclic forms of the parasite (Epi: F =1320.080; p = 0.000;
Tryp: F =628.786; p = 0.000; Amas: F = 853.422; p = 0.000)
(Tables 3 and 4, Fig. 2a).

The best trypanocidal performance was observed in
oils isolated from Citral chemotype plants, with ICsq
values of 14+ 1.5, 22+ 1.4, and 74 + 4.4 pug/mL on Epi,
Tryp, and Amas, respectively (p <0.05). Among these,
the two lowest ICs, achieved were by A20 (9 +1.2 and
13.9 £ 0.9 pg/mL, on Epi and Tryp, respectively, p < 0.05)
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and A23 (8 +1.3 and 17 + 1.3 pg/mL, on Epi and Tryp,
respectively, p <0.05) (Table 3, Fig. 2a). However, these
oils also displayed a low selectivity, with high toxicity
levels on Vero cells (A20: CCso- 66 +£5.9 pg/mL; A23:
CCso- 51 + 6.2 pg/mL). Alternatively, oil A13 exhibited a
significant level of anti-T. cruzi activity on the three cyclic
forms (with ICs5q of 17 +1.7 pg/mL, (SI=7); ICs5y 21+
1.6 pg/mL, (SI=5.7); and ICs, 88 + 5.4 pg/mL (SI = 1.4), on
Epi, Tryp, and Amas, respectively); high cell death percent-
ages (CDP) (Epi=85+17%; Tryp=100%; Amas=>57+
3.1%; p < 0.05), at 100 pg/mL; and low toxic effect on mam-
mal cells (CCso 120 + 10 pg/mL) (Table 3, Fig. 2a).

In contrast, EOs extracted from Carvone chemotype
plants showed higher mean ICs, values (88 +3.7, 45 +
2.5, and > 150 pg/mL on Epi, Tryp, and Amas, respect-
ively (Table 4)), with a CDP under 60%, even at high
concentrations (100 pg/mL), in both Epi (mean CDP of
56 +2.3%) and Tryp (mean CDP of 81+3.1%) forms
(Table 4). Among Carvone chemotype oils, the best trypa-
nocidal activity was demonstrated by B7 with ICsy 81 +
24 pg/mL, SI=2.5, and a CDP of 60.1% on Epi forms;
and ICs 37 + 2.1 pg/mlL, SI=5.5, and a CDP of 84.5%, on
Tryp stages (p < 0.05) (Table 4, Fig. 2a). On T. cruzi repli-
cative intracellular forms, none of the Carvone oils dem-
onstrated significant activity (mean 1Cso> 150 pg/mlL;
mean CDP 21 + 4.4%). Nevertheless, on host cells (Vero)
these EOs exhibited lower cytotoxicity (mean CCso of
200 + 11 pg/mL) than Citral oils (mean CCsy of 87 +
8.3 pg/mL) (Table 4, Fig. 2a).

Trypanocidal activity of L. alba Terpenes
For further studies using individual compounds, four of the
major terpenes were selected from the L. alba EOs from
both chemotypes, Citral (citral and (-) caryophyllene oxide)
and Carvone (D (+) limonene and S (+) carvone). Table 5
presents the ICs, values obtained on the three studied para-
sitic forms and the CCsy, values estimated on Vero cells.
Among the studied terpenes, D (+) limonene exhibited the
best IC5y on Tryp (IC50 9+ 0.8 pg/mL, SI=32.8, p <0.05),
and Amas (IC5y 29+0.7 pg/mL, SI=10.3, p<0.05) forms,
(Table 5, Fig. 2b), with the most selective and the least toxic
performance on mammal cells (CCsq 297 + 2.4 ug/mL, and
SI=7.1, p<0.05), with a CCs, even lower than the reference
drug (BNZ: CCsq 139 + 2.3 pg/mL). At the other end of the
spectrum, S (+) carvone constituted the terpene with the
worst trypanocidal activity on all evolutionary T cruzi forms
(Epi: ICso 177 7.9 pg/mL, and SI=14; Tryp: ICs, 124 +
7.8 ug/mL, and SI = 1.9; Amas: IC50 > 100 pug/mL) (Table 5).
It is worth pointing out that all the terpenoid fractions,
except carvone, were able to induce significant cell death on
extracellular forms of the parasite at 50 pg/mL (Epi: CDP =
66 +1.9%; Tryp: CDP =90+ 1.2%, p <0.05) with caryophyl-
lene oxide being the terpene with the highest rate of death
on Epi (78 + 2.3%), and Tryp (98 + 0.5%, p < 0.05).
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Fig. 1 Typical gas chromatography-mass spectrometry (GC-MS) profiles, in a DB-5 (60 m) column with a mass selective detector (El. 70 eV), of essential oils
obtained from Lippia alba Carvone (a) and Citral (b) chemotypes by microwave-assisted hydrodistillation (MWHD). The corresponding peak identification is
showed in Table 2

Terpene pharmacological interactions on T. cruzi

Because D (+) limonene demonstrated the best perform-
ance as a selective trypanocidal agent on all the evolu-
tionary forms of T. cruzi, this monoterpene was selected
as a fixed-compound of a pharmacological interaction
matrix among terpenes and BNZ. This matrix was as-
sembled taking the ICs, values determined previously
(Table 5). Following the FIC value interpretation de-
scribed by Azeredo and Soares, (2013) [31], all the evalu-
ated interactions were found to be synergic on both
extra and intracellular forms of the parasite (except lim-
onene with carvone, with ¥FIC =1.10 and 1.04, on Epi
and Tryp, respectively) (Table 6). Figure 3 shows these
pharmacological relations as isobolograms of the mean
FIC of each combination. The highest synergy was exhib-
ited by limonene/BNZ combinations (Epi: XFIC =0.44;
Tryp: ¥FIC =0.42; Amas: XFIC =0.58) (Table 6, Fig. 3),
with the best trypanocidal performance achieved by the

4xIC50 limonene:%ICsy BNZ mixture (4 times 1Csq limon-
ene plus one half of the IC5y of BNZ), which reduced by
14, 16, and 17 times the BNZ ICs5, on Amas, Epi, and
Tryp, respectively. Despite its good performance, this
combination also resulted in an increased cytotoxicity on
Vero cells (XFIC =0.54). On the other hand, limonene
with caryophyllene oxide represented the second-best
combination by anti-parasitic efficacy (Epi ¥ FIC =0.49;
Tryp X FIC = 0.45; and Amas X FIC = 0.71), while offering
an additional advantage of reduction of the individual
cytotoxicity of each terpene on Vero cells (XFIC =1.22)
(Table 6, Fig. 3).

Morphological analysis on T. cruzi forms

The morphological changes induced by the treatments
studied (EOs, terpenes, or BNZ, and their combinations)
were analyzed by optical and fluorescent microscopy
using phase contrast, and nuclear specific (DAPI) and
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Table 2 Peak assignment for GC-MS profiles of essential oils extracted by microwave-assisted hydrodistillation (MWHD) from Lippia
alba Carvone (A) and Citral (B) chemotypes plants growing in Bucaramanga (Colombia)

Peak Compound LRI Relative Quantity, %

DB-5MS? DB-WAX® Carvone (A) Citral (B)
1 6-Methyl-5-hepten-2-one 986 1241 - 33
2 B-Myrcene 991 1064 0.8 -
3 Limonene 1034 1105 29.1 6.6
4 trans-B-Ocimene 1047 1153 0.7 0.2
5 Linalool 1100 1453 0.6 19
6 Citronellal 1154 1381 - 1.1
7 Borneol 1181 1613 0.8 -
8 cis-Dihydrocarvone 1203 1517 0.2 -
9 trans-Dihydrocarvone 1211 1537 0.2 -
10 Nerol 1231 1708 - 0.8
" Neral 1248 1589 - 215
12 Geraniol 1252 1755 - 56
13 Carvone 1258 1653 350 -
14 Piperitone 1264 1641 24 -
15 Geranial 1275 1643 - 28.7
16 Piperitenone 1349 1842 40 -
17 Geranyl Acetate 1379 1662 - 1.5
18 -Bourboneno 1396 1428 1.2 -
19 B-Elemene 1397 1496 1.0 30
20 trans-B-Caryophyllene 1436 1506 0.2 12.1
21 B-Gurjunene 1444 1447 0.2 -
22 a-Guaiene 1447 1498 - 1.8
23 trans-B-Faresene 1456 1570 0.7 -
24 a-Humulene 1471 1580 0.1 2.7
25 y-Gurjunene 1475 1587 04 -
26 Germacrene D 1486 1552 0.1 26
27 Bicyclosesquiphellandrene 1496 1624 8.2 -
28 Bicyclogermacrene 1509 1608 0.5 -
29 a-Bulnesene 1515 1627 - 14
30 Cubebol 1528 1855 0.5 -
31 Germacrene-4-ol 1591 1967 0.6 -
32 Caryophyllene Oxide 1600 1909 - 23

LRI Linear retention index
“Linear Retention Index experimentally determined in DB-5MS (60 m) column
PLinear Retention Index experimentally determined in DB-WAX (60 m) column

mitochondrial membrane potential (Mitotracker Red
CMXRos [35]) stains. As shown in Fig. 4, some of the
tested treatments induced significant changes on parasitic
morphology such as: spherical cell conformation, reduced
cytoplasmic volume (Fig. 4a, DIC), mitochondrial mem-
brane potential deplection (Fig. 4a, MitoTracker), and for-
mation of a nuclear speckled/condensation pattern (Fig. 4a,
DAPI). In one unique finding, the caryophyllene oxide
treatment also caused a flagellum to be lost. Conversely, 7.

cruzi cells treated with BNZ displayed cellular edema and
loss of cellular membrane integrity, but with conserved
mitochondrial energetic potential (Fig. 4a). Under the same
conditions, Vero host cells did not present visible morpho-
logical alterations (data not shown).

DNA fragmentation
A possible endonuclease activation triggered by studied
compounds (oils, terpenes or their combinations) was
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Table 3 Relative chemical composition and anti-proliferative effect on T. cruzi of EOs extracted from the Citral chemotype of L. alba
Season Material EQ® Extra® Part Chemical Composition Epif Tryp/ Amas" Vero
Time  Plant
min® Neral Geraniol Geranial Caryop® CarOx® 1Cs? + S ICs2 S Sl 1Cs + S CCs '+
% % % % % SD" pg/mL ug/mL SD" pg/mL SDM pg/mL
Dry Dry A28 45  Inf™ 193 315 313 23 - 14426 71 31419 31  66+48 15 97+11
Rainy Fresh ~ A25 45  AL" 228 53 275 46 28 18+07 53 194+09 49  >333 ND" 95+ 92
Dry A13 30 YL° 306 - 545 29 - 17417 70 21416 57 88+54 14 121 101
A0 30 MLP 321 - 54 4 24 9+12 78 14+09 47  >333 ND 66+59
A23 90 ML 28 @ - 378 638 29 8+13 62 17+13 30 >333 ND 51+62
A24 90 ML 24 - 343 2 57 16+£16 57 29+18 31 69£30 13 91£71
BNZY - - - - - - - 17409 82 12+01 1163 6+09 224 139+23

°EO Essential oil, PExtra Extraction, “min Minutes, dCaryop Caryophyllene, “CarOx Caryophyllene oxide, fEpi Epimastigote, 9ICs, Inhibitory concentration
50, 'SD Standard deviation, 'S/ Selectivity index (CCso/ICs), ‘Tryp Trypomastigote, “Amas Amastigote, 'CCs, Cytotoxic concentration 50, Minfl
Inflorescences, "AL All leaves, °YL Young leaves, PML Mature leaves, “BNZ Benznidazole, 'ND Not determined

assessed through agarose gel DNA electrophoresis and
TUNEL analyses. DNA degradation was observed by
band disappearance in agarose gel (data not shown) and
confirmed through green fluorescence on nuclei and ki-
netoplasts from Epi forms treated for 48 h with double
doses at IC5o (2xICsp) of limonene, caryophyllene oxide,
and the mix limonene:BNZ; with percentages of 94, 99,
and 98, respectively (Fig. 4b). Non-significant fragmenta-
tion was observed on untreated Epi (Fig. 4b).

Phosphatidylserine externalization

A flow cytometry analysis was carried out to determine the
general mechanism of cell death. As expected, untreated
Epi showed high viability rates (99.7%) (Fig. 5a), whereas
the various terpene treatments (48 h at 2xICsp) caused high
percentages of cell death, with 95.7, 89.2, 78.4, and 95.9%
for cayophyllene oxide, limonene, citral, and the combin-
ation limonene:BNZ, respectively (p =0.0001). No treat-
ment showed statistically significant levels of negative
SYTOX + positive Annexin V (p > 0.05), except the apop-
tosis positive control (15 day-old parasite culture) (13.6%)
(Fig. 5f). On the other hand, all the treated cultures

displayed high percentages of positive SYTOX and positive
Annexin V. These results suggest a possible trigger of a late
apoptosis mechanism (Fig. 5).

Discussion

In Chagas Disease, the pathogen-specific treatments —
such as BNZ — should be prescribed for acute cases and
for younger patients with little or no evidence of estab-
lished cardiomyopathy [36, 37]. On the other hand, re-
cent results from global trials have questioned the
benefit of these therapies in chronic patients [8, 36]. In
the case of BNZ, the drug demonstrated a significant de-
crease of the circulating parasite load, but no substantial
effect in the prevention of the clinical decline [8, 36].
Therefore, most patients with advanced T. cruzi disease
receive only symptomatic treatment for cardiomyopathy
or digestive symptoms. This absence of an association
between parasite clearance by BNZ and the clinical pro-
gression of heart disease has been ascribed to both the
restricted activity of the treatment in the inflammatory
and fibrotic cardiomyopathy lesions, as well as the
irreversibility of this damage [36]. Thus, alternative

Table 4 Relative chemical composition and anti-proliferative effect on T. cruzi of EOs extracted from the Carvone chemotype

of L. alba
Season Material EO®  Extra® Part  Chemical Composition E]oif Tryp/ Amas® Vero
Time  Plant
min© Limonene Carvone Piper® BCE®% ICso? + S 1Cs2 SDM SI 1Cs2 S CCel
% % % SD" pg/mL pg/mL SD" pg/mL SD" ug/mL
Dry Fresh B7 30 AL™ 193 315 313 23 81+24 25 3721 55 > 150 ND° 20375
Rainy Dry 2B8 90 yL" 22.8 53 27.5 46 96 + 44 19 47+£38 40 > 150 ND 186+11.7
Fresh B16 90 AL 306 - 54.5 29 97+32 22 57+30 38 > 150 ND 216+96
Dry B37 30 YL 321 - 54 4 92+39 21 43+18 45 > 150 ND 196+182
Dry 2818 45 AL 28 - 378 68 86+48 19 34+31 49 > 150 ND  165+102
Dry 2B19 90 AL 24 - 343 2 78+£35 29 51+14 44 > 150 ND 226+85

EO Essential oil, bEx_tra Extraction, “min Minutes, dP{'per Piperitenone, °BCE Bicyclosesquiphellandrene, pri Epimastigote, %ICs, Inhibitory concentration 50; hsD
Standard deviation, 'S/ Selectivity index (CCso/ICso), ‘Tryp Trypomastigote, “Amas Amastigote, 'CCs, Cytotoxic concentration 50, ™AL All leaves, "YL Young leaves,

°ND Not determined
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Fig. 2 In vitro trypanocidal and cytotoxic activity of Citral and Carvone chemotype L. alba essential oils (a) and their bioactive terpenes (b) on
cyclic forms of Trypanosoma cruzi. ICsq: Inhibitory Concentration 50 on T. cruzi; CCsq: Cytotoxic Concentration 50 on Vero Cells
A

Table 5 Anti-parasitic effect on Trypanosoma cruzi of the major terpenes of Citral and Carvone chemotype L. alba essential oils
Terpenes  Epi® ICso? £SD° (ug/mL)  SI®  Tryp® ICso® + SDC (pg/mlL)  SI° Amas” IC5o° + SD (ug/mL)  SI°  Vero CCso' + SDC (ug/mL)

CarO¥ 30+ 1.7 43 22+03 59 4710 2.7 128 £ 4.2
Limonene 42+ 25 7.1 9+08 328 29+07 103 297 £24
Citral 37+£07 24 21 £1 43 49+23 1.8 90 + 39

Carvone 177 £79 14 124+8 1.9 > 100 ND' 240 + 4.1
BNZ¥ 17 £09 82 12+£01 1163 62+09 224 139£23

2Epi Epimastigote, °ICs, Inhibitory concentration 50, <sD Standard deviation, @S/ Selectivity index (CCsqo/ICso), °Tryp Trypomastigote, "Amas Amastigote, 'CCs,
Cytotoxic concentration 50, ’CarOx Caryophyllene oxide, BNZ Benznidazole, 'ND Not determinated
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Table 6 Pharmacological interactions among terpenes derived from L. alba

Parasitic Form Limonene + Compound

SFIC" ug/mL + SDY Pharmacological interaction

Epi® Carox?
Carvone
Citral
BNZ®
Tryp® CarOx?
Carvone
Citral
BNZ®
Amas*© CarOx®
Carvone
Citral
BNZ®
Vero CarOx®
Carvone
Citral

BNZ®

05+0.13 Synergism
1.1£0.08 Antagonism
0.7£0.13 Synergism
04+0.13 Synergism
04+0.10 Synergism
1.04 +£0.04 Antagonism
06+0.10 Synergism
04+0.10 Synergism
0.7+0.23 Synergism
ND" NDP
08+0.15 Synergism
06+0.13 Synergism
1.2+0.16 Antagonism
1.0£0.07 Additive
1.0+ 0.07 Antagonism
05+0.18 Synergism

2Epi Epimastigote, ®Tryp Trypomastigote, “Amas Amastigote, “CarOx Caryophyllene oxide, °BNZ Benznidazole, fFIC Fractional inhibitory concentration, 9SD Standard

deviation, "ND Not determinated

approaches for Chagas infection management should aim
to control not only the parasite load, but also all the fac-
tors associated with cardiomyopathy progression (oxida-
tive stress and immune effectors, among others) [36, 38].

Since parasitic protozoa are very sensitive to oxidative
stress [39], the most common trypanocidal and anti-chagasic
drugs like Nitroimidazoles derived (BNZ) and Nitrofurans
(NFX) were developed based on their capability to induce
Reactive Oxygen Species (ROS) production [40]. However,
the clinical use of both medicines has been limited due to
their high toxicity [41], mutagenic potential [42], the severity
of their side effects [38, 41], and the lack of significant effects
on clinical disease progression in the late stages of T. cruzi
infection [8, 37].

In general, the development of new trypanocidal
agents has been focused on the use of molecules that
alter the cellular redox potential and take advantage of
the scarce antioxidant defenses of the parasite [39, 40].
A similar anti-protozoal effect has been described for es-
sential oils rich in terpenes extracted from aromatic
plants [43]. In this regard, EOs derived from Cymbopo-
gon citratus showed promising results, with low ICsq
values against 7. cruzi (15.5 pg/mL for Epi and Tryp;
and 5.1 pg/mL for Amas) [17]. These trypanocidal ef-
fects were attributed to the high levels of the oxygenated
monoterpene citral (a mixture of neral and geranial)
[17]. Similar outcomes were obtained with oils extracted
from a Colombian (Santander) variant of L. alba (Citral
chemotype), which were rich in such terpenes as citral,
geraniol, timol, and caryophyllene oxide [30].

In this work, we tested the trypanocidal and cytotoxic
activity of 12 EOs, derived from two different plant che-
motypes (Citral and Carvone) of L. alba, which were pro-
duced under controlled conditions of growth (geographic
location, cultivation environment, and soil), plant parame-
ters (age and part), material state (fresh or dry) and extrac-
tion conditions (time). These standardized procedures
were prepared taking into consideration the recognized
high phenotypical plasticity of the plant in response to
genetic, environmental, and production parameters [25],
which can induce significant variations in its EO constitu-
ents, as well as in their biological activities [25, 44].

In this regard, our results also confirmed significant
differences in the major chemical compounds (terpenes),
and trypanocidal activity of the L. alba oils produced
under varying parameters (Tables 3 and 4, and Fig. 2a).
While mixtures rich in citral and caryophyllene oxide
(Citral chemotype EOs) achieved good performance on
extracellular forms of T. cruzi (mean ICs, values of 13.6
and 21.9 pg/mL on Epi and Tryp, respectively) (Table 3);
EOs of the same plant but rich in carvone and limonene
(Carvone chemotype), displayed poor inhibitory results
(mean ICsq values of 88.2 and 44.9 pg/mL for Epi and
Tryp, respectively) (Table 4). Individual assays with a so-
lution of citral consistently found that this compound
caused an efficient arrest of the parasite’s growth with
ICsp values of 37.2 and 20.8 pg/mL on Epi and Tryp, re-
spectively (Table 5).

With respect to citral, several studies on cancer and im-
mune cell line models have demonstrated its interesting
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biological properties. As an anti-tumoral, this monoterpene
exhibited significant anti-proliferative effects, in vitro and in
vivo [45—48] and this cell growth inhibition was ascribed to
the induction of mitochondrial apoptosis pathways (through
p53 activation triggered by an ROS increase) [45]. In
addition, citral has also been described as anti-inflammatory
agent. In lipopolysaccharide (LPS)-stimulated macrophages,
this terpene was found to suppress the expression of
pro-inflammatory markers such as NLRP2 (NLR Family
Pyrin Domain Containing 2), Interleukin (IL) 6 and IL-1
[24], Tumoral Necrosis Factor (TNF) a [49], as well as to ac-
tivate the Peroxisome Proliferator-Activated Receptor
(PPAR) y dependent-Cyclooxygenase 2 (COX2) promotor
[50]. It is worth mentioning that over a range of different
cells, the expression of COX2 is regulated in a variety of
ways; playing an important role in tumoral genesis, inflam-
mation, development, and circulatory homeostasis. In these
activated macrophages, citral also blocks the genic expres-
sion of the LPS-induced Nitric Oxide Synthase (iNOS) [51]
and, consequently, the production of Nitric Oxide (NO). It
is thought that this inhibition could suppress transcriptional
activation and the translocation of the nuclear factor-kappa

B (NF- B). These results suggest that citral is an
anti-inflammatory agent whose effects could be associated
with NF- B suppression [51], indicating that this com-
pound may be a promising candidate for the treatment of
inflammatory conditions like Chagas Disease.

Similarly, anticancer and anti-inflammatory properties
have also been attributed to caryophyllene oxide, an-
other major and bioactive constituent of Citral chemo-
type L. alba EOs. On human prostate and breast cancer
cells, this sesquiterpene isolated from the EOs of medi-
cinal plants such as guava (Psidium guajava), oregano
(Origanum vulgare L.), cinammon (Cinnamomum spp.),
clove (Eugenia caryophyllata), and black pepper (Piper
nigrum L.), inhibited constitutive survival pathways
(PI3BK/AKT/mTOR/S6 K1) and ROS-dependent MAPK
activation during tumorigenesis; triggering apoptosis on
tumoral lineages and preventing inflammation, angio-
genesis, and metastasis [52]. Furthermore, on stimulated
primary splenocytes, caryophyllene oxide significantly
increases the Th2/Thl coefficient [22].

In our work, caryophyllene oxide was correlated with
a trypanocidal effect, being found to be one of the major
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Fig. 4 Cell morphology changes of Trypanosoma cruzi by fluorescent and optical microscopy. a Cell morphology, mitochondrial membrane potential,
nuclear and kinetoplast DNA of T. cruzi epimastigotes after treatment with essential oils, terpenes, or BNZ. b DNA fragmentation analysis by TUNEL assay on
T.cruzi epimastigotes treated with terpenes. The preserved parasitic DNA was visualized with a blue HOECHST fluorescent probe (negative TUNEL) and the
free DNA strands were observed in green (positive TUNEL). “DIC: Differential Interference Contrast Microscopy; ENT: No Treatment; “CarOx: caryophyllene
oxide; “Limo: limonene: °BNZ: Benznidazole: PC: Positive control: DAP: cells stained with DAPI nuclear fluorescent stain observed in UV filter. MitoTracker: cells
stained with MitoTracker Red CMXRos stain observed in an Excitation/Emission 579/599 (nm) filter. Photographs are representative of 10 observed fields
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components of the most trypanocidal EOs studied: A23
and A20 (L. alba citral chemotype). Similarly, Cheikh
Ali et al, [18], found a minimal lethal concentration of
0.1 pg/mL for EOs extracted from Aframomum scep-
trum on cyclic forms of T. brucei; this trypanocidal ac-
tion being associated with the presence of caryophyllene
oxide. In the present study, this compound demon-
strated a significant anti-proliferative effect against T.
cruzi Epi (ICs50=29.8 pg/mL), Tryp (ICs0=21.6 pg/mL),
and Amas (IC5q = 47.4 pg/mL) (Table 5).

Another major L. alba terpene studied herein was limon-
ene. This monoterpene is one of the main components of

the Carvone chemotype oils. Due its beneficial pharmaco-
logical characteristics such as: low toxicity (used as food
additive for decades) [53], high bioavailability [54], and se-
lective anti-tumoral effect on a variety of cancer cell lines
(leukemia, lymphoma, prostate, hepatic, colorectal, pancre-
atic, gastric, and breast, among others [54-57]); several
research efforts have been undertaken with respect to this
monoterpene. Interestingly, on a prostate cancer model,
limonene caused apoptotic programmed cell death by the
induction of a selective oxidative stress on tumoral cells
[57]. As for protozoa, cancer cells are highly vulnerable to
cell death induced by pro-oxidant agents (such as
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Fig. 5 Flow cytometry analysis of phosphatidylserine externalization of T. cruzi epimastigotes treated with terpenes or Benznidazole. a Negative
control (untreated culture). b caryophyllene oxide; ¢ limonene; d citral; e limonene:BNZ; and f apoptosis positive control (15 day-old parasite
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limonene) due their high metabolism and their deficient
antioxidant mechanisms [58]. In this study, limonene was
the best trypanocidal and most selective terpene with the
lowest inhibitory doses (ICso of 9.0, 28.7, and 41.8 pg/mL
on Tryp, Amas, and Epi, respectively). However, this good
performance was not replicated when T. cruzi forms were

treated with oils rich in carvone and limonene (L.
alba Carvone chemotype EOs displayed higher ICs,
levels on Epi=88.2 ug/mL, Tryp=44.9 pg/mL, and
Amas >150 pg/mL) (Table 5). Interestingly, carvone
was the least effective trypanocidal terpene, with the
lowest values of cell death percentage induction and
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highest ICs, results (Table 5). These results were associated
with the strong antioxidant capability previously ascribed to
this monoterpene [59]. Accordingly, a possible antagonism
seems likely between limonene and carvone (which was
present in the oil mixture in levels close to 42%) (Table 4).
Pharmacological interaction tests confirmed that the pres-
ence of carvone in the L. alba Carvone chemotype oils, im-
paired the limonene’s trypanocidal performance on 7. cruzi
Tryp (XCIF: 1.04 pg/mL) and Epi (XCIF: 1.10 pg/mL) forms
(Table 6). In further assays, limonene presented a synergis-
tic pharmacological interaction with the other bioactive L.
alba terpenes (citral and caryophyllene oxide), and with
BNZ, exhibiting XFIC values <0.8 pg/mL on the three
parasite forms analyzed (Table 6). In combination with
BNZ, limonene caused a significant decrease of the
BNZ-ICs, by 14, 16, and 17 times on Amas, Epi, and Tryp,
respectively (Table 6).

These positive interactions could have been due to the
simultaneal action of these compounds on diverse and
additive mechanisms that lead to cell death in susceptible
lineages. Such mechanisms may include: a) polymerization
microtubules disruption (citral) [60]; b) endoplasmic
reticulum stress induction (citral) [60]; ¢) PIP3/AKT sur-
vival pathway inhibition (limonene, citral, and caryophyl-
lene oxide) [52, 61, 62]; d) oxidative stress stimulation
(limonene, citral, and caryophyllene oxide) [52, 57, 63];
and e) apoptosis by caspases activation (citral and limon-
ene) [61-63], among others.

It is important to add that the parasite cells treated for
48 h with some of the studied compounds (A23 oil, citral,
caryophyllene oxide, limonene, and the mixture of limon-
ene and BNZ) evidenced typical characteristics of apop-
tosis, such as cytoplasmic blebbing, cell shrinkage,
flagellum absence, loss of mitochondrial membrane po-
tential, condensation of the nuclear chromatin, and DNA
fragmentation (Fig. 4a). Also, the treatment of parasites
with caryophyllene oxide or limonene (alone, in combin-
ation, or with BNZ) led to positive results in TUNEL as-
says (Fig. 4b). Correspondingly, an impairment of
membrane potential (Fig. 4) and the externalization of
phosphatidylserine (Fig. 5) were observed on T. cruzi cells
treated with citral, limonene, and caryophyllene oxide.
These results suggest a possible activation of an early
apoptosis mechanism that rapidly progresses to late apop-
tosis (positive SYTOX plus positive Annexin V) accom-
panied by DNA fragmentation. In trypanosomatids like
Leishmania donovani, T. brucei, and T. cruzi, these
same characteristics have been reported in parasites
suffering calcium imbalance and oxidative stress (by
ROS) [64], mitochondrial enzyme knockdown [65], or
treatment with sterols [66]. In these studies, the pre-
viously mentioned features were associated with a
possible programmed cell death such as apoptosis or
autophagy [67].
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In an illness with a complex pathogenesis like Chagas
Disease (which involves the parasitic persistence that
triggers and sustains an anti-inflammatory immune re-
sponse), the use of synergic drugs (like limonene/caryo-
phyllene oxide) with several biological advantages
(significant trypanocidal activity [32], low toxicity on
mammal tissues [53]; and anti-genotoxic [68], chemo-
protective [23], and anti-inflammatory activity [22])
could be an interesting platform for the development of
an adjuvant therapy that enhances the therapeutic effects
of the conventional treatments, principally in advanced
stage of the infection (probably improving trypanocidal
action, reducing therapeutic doses, increasing tolerance,
or retarding resistance development) [69].

Conclusions

In this work, a range of growth, plant, and extraction pa-
rameters were found to significantly influence the chem-
ical composition and trypanocidal activity of essential oils
isolated from L. alba Citral and Carvone chemotypes. L.
alba Citral chemotype oils, extracted under known and
controlled conditions, presented significant trypanocidal
activity on three cyclic 7. cruzi forms: epimastigotes, try-
pomastigotes, and amastigotes. Assays using pure solu-
tions of the main terpenes that constitute L. alba EOs,
confirmed an association among parasitological activity
and the presence of citral and caryophyllene oxide. Tests
using EOs extracted from Carvone chemotype (rich in
carvone and limonene), and their most important compo-
nents, established an antagonistic relationship between
carvone and limonene in their trypanocidal performance.
Nevertheless, in this study, the best anti-7. cruzi, and most
selective, activity was achieved by limonene. Citral, caryo-
phyllene oxide, and limonene exhibited the induction of a
possible apoptotic-like phenotype. In the synergistic inter-
action tests, limonene also improved the trypanocidal per-
formance of citral, caryophyllene oxide, and even BNZ, on
the three parasitic forms studied. The best synergic ter-
pene activity was displayed by the limonene and caryo-
phyllene oxide combination. These results should be
confirmed by further pre-clinical studies and could be of
interest for the development of alternative and adjuvant
treatments improving the tolerance and parasitological ef-
ficacy, and broadening the spectrum of the effects, of the
current conventional therapies for late phases of Chagas
Disease. In such research, L. alba EOs represent a renew-
able source for commercial exploitation of these terpenes.
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