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Abstract

Single-cell RNA sequencing (scRNA-seq) has opened new avenues for the characterization of heterogeneity in a large variety
of cellular systems. As this is a relatively new technique, the field is fast evolving. Here, we discuss general considerations
in experimental design and the two most popular approaches, plate-based Smart-Seq2 and microdroplet-based scRNA-seq
at the example of 10x Chromium. We discuss advantages and disadvantages of both methods and point out major factors
to consider in designing successful experiments.

Key words: single-cell RNA sequencing; Smart-Seq 2; 10x Chromium; Drop-Seq; experimental design

Introduction

Single-cell genomic technologies have revolutionized the way
scientists can interrogate heterogeneous tissues or rare subpo-
pulations of cells. Single-cell RNA sequencing (scRNA-seq) has
been at the forefront of method development both in the labora-
tory and computationally to provide robust methods for down-
stream data analysis.

A recent flurry of papers highlighted the potential of this
technology. In haematology, single-cell transcriptomics was
applied to elucidate age-related changes to the blood system
and address heterogeneity of ageing [1, 2]. Signalling pathways
critical to the development of cerebral cortex were recently un-
covered by low coverage single-cell mRNA sequencing [3], and
liver tissue was spatially reconstructed based on transcriptomes
of single hepatocytes, highlighting division of labour within dif-
ferent spatial zones of the organ [4]. While scRNA-seq offers

new avenues to explore thus far unanswerable questions, it is im-
portant to consider experimental design carefully before conduct-
ing the study to avoid confounding factors and to be able to draw
sound conclusions based on biological variation rather than tech-
nical artefacts associated with batch processing of samples.

In this review, we discuss the experimental design for sin-
gle-cell transcriptome analysis based on the two most popular
protocols used for scRNA-seq: Smart-seq2 and 10X Chromium 30

sequencing. We highlight pros and cons of each method and
summarize important considerations to help design successful
single-cell transcriptome experiments.

Smart-Seq 2

One of the most successful methods for single-cell gene expres-
sion was reported by Picelli and colleagues [5]. They optimized
the SMART (Switching Mechanism at 50 End of RNA Template)
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workflow, which is based on high-fidelity reverse transcription,
template switching and preamplification for increased comple-
mentary DNA (cDNA) yield for single-cell analysis. This protocol
takes 2 days hands-on wet-lab work where clean-up steps can
be automated if a robot is available. Typically, this protocol pro-
vides good coverage of the transcriptome with rarer transcripts
being detectable and does not need any specialist equipment.
Therefore, it is readily available to a wide community of re-
searchers. However, because of the manual nature of the proto-
col, processing of cell numbers is limited to the hundreds with
either one 96 or one 384 well plates being processed at the same
time, causing technical variability from experiment to experi-
ment because of the many pipetting steps. Therefore, batch ef-
fects need to be considered in the experimental design. As with
other methods relying on oligo dT priming, Smart-Seq2 tran-
scriptomes show a significant 30-prime bias.

Cell culture-based approaches allow for easy separation of
single cells using routine trypsinization methods, with liver per-
fusions leading to single-cell solutions and blood readily provid-
ing access to single cells. Before conducting a single-cell
experiment, it is recommended to trial single-cell separation
methods and assess cell viability, for example processing a
polymerase chain reaction (PCR) strip of eight cells, instead of a
full 96 well plate. Cell separation for Smart-Seq2 is typically
achieved by fluorescence-activated cell sorting (FACS), enabling
a wide variety of cell types to be isolated in the same experi-
ment if necessary. Single cells are dropped into 96 or 384 well
plates containing a hypotonic lysis buffer containing Triton-
X100 with excess ribonuclease inhibitor to stabilize RNA [5]. Cell
isolation should, therefore, be performed as fast as possible
with all downstream work being carried out on ice. However,
depending on cell type, stronger lysis buffers might need to be
used and trialled before completing a full set of experiments to
ensure compatibility with the downstream protocol. Besides,
we observed cell-type-specific differences in recovery after
FACS sorting, possibly because of cell size, with larger cells re-
sulting in fewer cells recovered. The flow rate and size of nozzle
can be adjusted to improve the sort, increasing recovery or/and
avoiding doublets. Once sorted, plates can be spun down and
stored at �80 �C. In our experience, storage of plates for 6 months
and longer yielded good quality cDNA. Depending on the FACS
sorter, index sorting might be available and is highly recom-
mended for downstream analysis and QC steps, as the transcrip-
tome of individual cells can be linked to the expression of cell
surface protein markers, cell cycle status, cell size or granularity.
In addition, empty wells and wells containing more than one cell
(¼doublets) can be detected by indexing during the sort and wells
either refilled or excluded from downstream processing or analysis.

A pre-PCR, amplicon-free environment is essential for suc-
cessful separation of high-quality cDNA from single cells to
avoid contamination and can either be achieved by providing a
dedicated pre-PCR room or by using a pre-PCR bench mounted
hood together with pipettes and a thermal cycler dedicated to
pre-PCR work. Once cDNA is obtained, all follow-on clean-up
steps and library work can be performed on a standard labora-
tory bench. Overall, Smart-Seq 2 is a robust and reliable method
for single-cell transcriptome profiling using little or no specialist
equipment. As the field continues to evolve, methods will con-
tinue to push the envelope increasing the number of cells cap-
tured at single-cell resolution in an experiment. One such
evolving method involves the use of a combinatorial indexing
scheme, in which a series of unique barcodes are sequentially
added to pools of cells that are randomly sorted into wells be-
tween each barcode addition [6].

Microfluidics-based approaches

Alternatives to the Smart-Seq 2 workflow are microfluidics
methods, which use a similar molecular biology (they also rely
on template switching, for example), but are different in their
cell capture and throughput. During the droplet-based workflow
[7, 8] individual cells are encapsulated into nanoliter droplets
containing DNA-barcoded reads for reverse transcription. For
cDNA, recovery droplets are broken up, and cDNA is subjected
to library preparation. This method allows for thousands of cells
to be profiled simultaneously, but it initially required specialist,
custom-designed equipment, which made it difficult to access.
Recently, several microdroplet-based instruments were
released offering convenient platforms for droplet-based single-
cell analysis with a tunrover of 2–3 days. For example, BioRad
offers a ddSeq single-cell isolator, which is linked to the
Illumina Nextera kits. The InDrop by 1CellBio offers another al-
ternative microfluidics system. The Fluidigm C1 platform offers
low-throughput microfluidics with the advantage of being able to
visually control for empty wells or doublets following the capture.
However, the most commonly used platform at the moment is
the single-cell controller from 10x Genomics, and we will discuss
its properties further in this review. Microdroplet-based
approaches are designed to assess large numbers of cells and lend
themselves for tissue profiling and detection of new cell types.

Important factors for successful, high-quality data gener-
ation using microdroplet technology are the quality of cells and
the cell numbers used per experiment. Ideally, only live cells are
fed into the system, and therefore, quick isolation and mild dis-
sociation of cell types is essential and should be trialled before
committing to the actual experiment (see above). Viability can
reliably be tested using dye exclusion methods or FACS sorting
using a live/dead cell marker before loading of cells onto the
chip. The number of doublets encapsulated in the same droplet
increases (�0.8%/1000 cells) with rising cell numbers and needs
to be considered. Recently, Alles and colleagues [9] reported a
methanol-based fixation method for single-cell transcriptome
profiling using microfluidics. This method ensures preservation of
transcriptome properties and is particularly useful when working
with rare clinical samples or time course samples, where down-
stream processing needs to occur at the same time.

Comparison of Smart-Seq2 and 10x Chromium
30 sequencing platforms

Deciding on a platform ultimately depends on the question
addressed. An outline of features for both platforms is
summarized in Table 1. Studying blood is a good example of a
tissue where both Smart-Seq2 and 10x Chromium approaches
have successfully been used. Blood offers the advantage of ac-
cess to single-cell solutions without requiring additional tissue
dissociation steps making it easy and quick to load a 10x con-
troller, and data sets on several thousand peripheral blood
mononuclear cells are available on the 10x Genomics website.
However, it is often necessary to enrich for rare subpopulations
[1, 2, 10].

Depending on the method used to generate scRNA-seq data
sets, some distinct characteristics of the data become apparent,
which might influence experimental design. A key difference
between Smart -Seq2 and the 10x Chromium protocol lies in the
way the RNA is processed to cDNA. Smart-seq2 captures the
full-length mRNA, although with significant 30 bias because of
oligo dT primers used during cDNA generation, while the 10x
protocol is based on a 30-tag sequencing method (Figure 1A).

234 | Baran-Gale et al.

Deleted Text: -
Deleted Text: single 
Deleted Text: two 
Deleted Text: wet 
Deleted Text: due to
Deleted Text: due to
Deleted Text: &hx2019;
Deleted Text: culture 
Deleted Text: trypsinisation 
Deleted Text: single 
Deleted Text: Prior to
Deleted Text: single 
Deleted Text: single 
Deleted Text: -
Deleted Text: 8 
Deleted Text:  
Deleted Text: stabilise 
Deleted Text: cell 
Deleted Text: type 
Deleted Text: due to
Deleted Text: -
Deleted Text: six 
Deleted Text: single 
Deleted Text: single 
Deleted Text: b
Deleted Text: B
Deleted Text: a
Deleted Text: A
Deleted Text: DNA 
Deleted Text: custom 
Deleted Text: microdroplet 
Deleted Text: single 
Deleted Text: -
Deleted Text: &hx2009;
Deleted Text: single 
Deleted Text: low 
Deleted Text: single 
Deleted Text: prior to
Deleted Text:  
Deleted Text: single 
Deleted Text: &hx2019;
Deleted Text: s
Deleted Text: S
Deleted Text: p
Deleted Text: P
Deleted Text: summarised 
Deleted Text: single 
Deleted Text: &hx2019;
Deleted Text: due to
Deleted Text: &hx2019;


Accordingly, it is important to consider the aim of the study
when selecting a method for single-cell RNA-seq. For example,
full-length capture is needed for studies concerned with iso-
forms or gene fusions, while 30-tag methods can capture more
cells and thus give an aggregate view of the transcriptional het-
erogeneity of a given cell population.

As part of the quality control process, spike-in controls are
often used to assess differences in RNA content between indi-
vidual cells in the same experiment [11, 12]. The usefulness of
spike-in controls remains highly debated, with the main criti-
cisms of its use including (1) uncertainty about variation in
spike-in concentration between cells, (2) concerns that the syn-
thetic spike-ins will not be processed in a manner similar to en-
dogenous RNAs and (3) difficulty in finding the correct spike in
concentration per sample to normalize the data without under
or overwhelming the signal with reads associated with spike-
ins. A recent paper by Lun et al. [13] assessed some of these
main concerns and demonstrated that the variance in the
spike-in concentration and processing is a small part of the
total technical variation. We find spike-in controls useful when
determining empty wells or dead cells within a sequencing
experiment, as high External RNA controls Consortium (Ercc)
content correlates with low-quality data and is usually an ex-
clusion criterion (Figure 1B). However, other methods such as
low numbers of transcripts can be used in a similar fashion;
hence, the usefulness of inclusion of Ercc spike ins should be
determined individually, as sequencing output can be reduced
depending on the level of spike-ins. In summary, properly used,
Ercc spike-ins can improve RNA normalization, particularly in
data sets where total RNA content varies across cells and to de-
tect multiples, which often have unusually high numbers of tran-
scripts. However, optimization is necessary to ensure that the
ratio of spike-ins is in the correct range. While both Smart- Seq2
and the 10x Chromium approaches allow using spike-in controls,
spike-ins are more commonly used in the Smart-Seq2 protocol.

Finally, the protocols differ in the inclusion of unique mo-
lecular identifiers (UMIs) as a means to correct for amplification
bias [14]. Protocols for Smart-Seq 2 and other full-length
approaches make the inclusion of UMIs difficult, as each ‘full
length’ transcript is fragmented following reverse transcription,
and each fragment would need to be linked to the single UMI for
that transcript. In the 10x system a 10 bp UMI is included in
each read at the beginning of the protocol facilitating the calcu-
lation of estimated molecule counts and of sequencing satur-
ation through the examination of UMI duplicates. The fraction
of UMI duplication in UMI-based data sets depends on the depth
of sequencing, with standard rates of duplication for representa-
tive data sets exceeding 60%. Thus, the inclusion of UMIs can be
particularly useful to eliminate overrepresentation of certain gene
loci for absolute quantification. However, Tung and colleagues [15]
recently investigated the use of UMIs on the C1 Fluidigm platform
to account for batch effects. They conclude that the use of UMIs,
although useful at correcting for amplification bias, cannot be
used as a completely unbiased estimator of gene expression [15].

Major differences between the two protocols include: (1) the
10x protocol often captures more cells than the Smart-seq2

protocol, and thus library sizes can differ by several orders of
magnitude depending on the sequencing design (Figure 1C and
F). (2) Smart-seq2 data sets often capture more genes per cell
than their 10x counterparts (Figure 1G and D). (3) Despite having
fewer cells, Smart-seq2 data sets, in aggregate, are more com-
plex than the 10x data sets, although many of these genes may
be below the limit of detection needed to make meaningful ob-
servations about expression in that cell (Figure 1E and H).
Overall, the 10x Chromium system offers convenience and re-
quires less manual handling compared with Smart-Seq2, sim-
plifying the collection of data sets containing large numbers of
cells. However, as one increases the numbers of cells in the data
set, one also increases the required depth of sequencing, sacri-
fice the complexity of the library and lose the ability to easily
customize the workflow.

Experimental design considerations
Avoiding technical biases

Experimental design papers span the evolution of transcriptome-
wide methods beginning with microarray studies and continuing
to the present with the introduction of single-cell RNA-seq [15–
21]. Sound experimental design begins with three principles
formalized by R. A. Fisher in 1935: replication, randomization and
blocking. Therefore, use of biological replicates, random assign-
ment of groups and a balanced block design are essential factors
underlying a successful sequencing experiment (Figure 2).

Often, the most difficult principle to adhere to is the blocking
principle. In the context of RNA sequencing, the blocking prin-
ciple is most frequently violated by a need to separate the ex-
periment into batches, thus introducing a source of technical
variation. To avoid confounding factors, batches should be con-
structed such that the experimental conditions are evenly or at
least randomly spread across all samples. In an unblocked de-
sign, it is possible to mask biological variation with technical
variation resulting in a confounded experiment. For example,
imagine an experiment where cells are collected from mice
under two experimental conditions (N¼ 3, Figure 2). In a con-
founded design, cells from a single mouse/condition group
would be sorted onto a single plate, and the library for cells on
that plate would be prepared in one batch. Finally, the libraries
are sequenced in one lane, while the libraries from the other
condition are sequenced in another (Figure 2). In this example,
it is not possible to tell whether the differences in gene expres-
sion are because of the experimental condition or the technical
variation introduced by the confounded experimental design.
This experiment could be redesigned using a balanced block de-
sign by having samples from each of the six mice on each plate
and lane of the sequencer. FACS sorting for Smart-seq2 allows to
select individual wells to be filled with cells, making a balanced
approach easy. For the 10x Chromium, one needs to ensure to pro-
cess samples on different chips during the initial encapsulation
and for further downstream handling to balance the experiment.
When the number of conditions exceeds the number of samples
in a batch, it is still possible to design a balanced experiment that

Table 1. Comparison of Smart-Seq2 and 10x Chromium platform

Company Protocol Cost per cell US$ Number of cells Characteristics Library Sequencing

SmartSeq2 11 96–384 full length capture Nextera HiSeq 2500 or 4000
10x Genomics Chromium 12 for 1000 cells per run 100–100 000 30-tag method 10x Genomics HiSeq 2500 or 4000
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limits confounding factors [11, 16]. In reality, it is well documented
in the literature that failure to design experiments in a balanced
manner results in artefacts. Typically, a paper is first published
identifying differences in expression between conditions [22–25],

followed by the eventual release of a second or series of publica-
tions reanalysing the data while properly accounting for the con-
tribution of batch effects, concluding that the study in the original
study was confounded [19, 26, 27].

Figure 1. Comparison of 10x and SMART-seq2. (A) The protocols differ in the fraction of the gene covered by reads. While full-length protocols (such as Smart-Seq2)

have reads covering the entire gene body, 30-tag methods (such as 10x) concentrate reads upstream of the polyA tail or internally upstream of A-rich regions of the

transcript. (B) Percentages (%) of reads aligning to ERCCs can be used in Smart-Seq2 data sets to identify high-quality cells. In comparison, non-ERCC data sets rely on

library size/total UMI counts and the number of features detected. (C–E) Characteristics of a representative 10x data set of 1384 growing IMR90 cells. (F–H)

Characteristics of a representative Smart-Seq2 data set of 75 growing IMR90 cells. (E and H) The cumulative number of genes detected at>0 reads (black) or>1 UMI or

10 reads (red) across cells in each data set.
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In summary, failing to balance conditions and samples across all
stages of the experiment will result in the introduction of additional
sources of technical variation associated with batch preparation of
libraries or sequencing. Batch effects can be introduced at any stage
of the experiment by unbalanced batch processing of samples,
libraries or unbalanced distribution of samples across sequencing
lanes and are therefore important factors to consider. To deal with
batch effects in single-cell data, novel tools are required. Hagverdi
and colleagues [28] recently presented a new tool dealing with batch
effects based on the detection of mutual nearest neighbours in high-
dimensional expression space. Here, neither predefinition of the
population nor composition thereof is necessary. Instead, a subpo-
pulation needs to be shared between batches [28].

Deciding on appropriate cell numbers

One consideration during the experimental design process is
determining the number of cells that need to be sequenced per
experiment. This parameter can be estimated based on the ex-
pected heterogeneity of all cells in a sample, the minimum fre-
quency expected of a particular cell type within the sample and
the minimum number of cells of each type desired in the result-
ing data set. With this information, a negative binomial distri-
bution can be used to estimate the number of cells likely to
capture at least a set number of cells from your rarest cell type.
The number of cells captured from the rarest cell type can be
modelled as a negative-binomially distributed random variable.
Next, we estimate a lower bound on the probability of capturing
at least a certain amount of cells from any of the more abun-
dant cell types in the same experiment by observing that that
probability is greater or equal to that of the probability of cap-
turing rarest cell type. Therefore, the probability of sequencing
at least k cells of each type is greater or equal to the product of
those probabilities. For example, if we sequence a mixture of
�10 cell types where the frequency of the rarest cell type is
�0.03, then we would need to sequence �2200 cells to have a
90% chance of capturing at least 50 of those rare cells (Figure 3A
and B).The Satija lab now provides an online tool to estimate
cell numbers based on number of cell types and diversity (www.
satijalab.org/howmanycells). In cases where no previous

knowledge exists about the heterogeneity of the population, the
best solution is to perform a pilot-level study with high cell
number and lower sequencing depth. In such a study, the 10x
platform could be used with an input of 10 000 cells isolated
from your population of interest, and the recommended min-
imum sequencing depth of 50 000 raw reads per cell.

Another design consideration is the sequencing depth of the
experiment. Accurate estimation of the sequencing depth per
experiment requires foreknowledge of both total mRNA content
in individual cells and the diversity of mRNA species in those
cells. These parameters are difficult to estimate before conduct-
ing the actual experiment. Svensson and colleagues [29] provide
a useful guideline in a recently published study, where they per-
formed a comprehensive analysis of single-cell data consisting
of 34 unique experiments using 16 different protocols and five
species. They found that while 250 000 reads per cell are suffi-
cient for accuracy, 1 million reads per cell were a good target for
saturated gene detection [29]. While sequencing depth require-
ments may vary from experiment to experiment, these figures
provide a good estimate to selecting the sequencing depth in
most cases. Finally, as statistics continue to be collected regard-
ing single-cell experiments better estimates of required depth
and heterogeneity become available. Dr James Hadfield and col-
leagues have pioneered a Web portal to collect quality control
statistics from the community (http://10xqc.com), which cur-
rently collects statistics about 10x data sets but will hopefully
expand to other single-cell experiments in the future.

Conclusions

Overall, several factors need to be considered before choosing a
method for scRNA-seq. First, costs and availability of equipment
are important factors before starting an experiment. Secondly,
limitations in cell numbers or profiling of large numbers of cells
together with required flexibility in terms of experimental ap-
proach are other factors to determine. Finally, coverage for
downstream analysis plays into the experimental design pro-
cess with all confounding factors to be carefully considered be-
fore the start of an experiment. In some instances, using both
methods to answer the same questions might be the most

Figure 2. Experimental design examples. In the confounded design, cells are isolated from each sample onto separate plates, processed at potentially different times

and the two groups (indicated by different colors) are sequenced on separate lanes of the sequencer. In the balanced design on the right, all samples are evenly distrib-

uted across all stages of the experiment, thus reducing the sources of technical variation in the experiment.

Single-cell RNA sequencing | 237

Deleted Text: ,
Deleted Text: single 
Deleted Text: u
Deleted Text: l
Deleted Text:  
http://www.satijalab.org/howmanycells
http://www.satijalab.org/howmanycells
Deleted Text: pilot 
Deleted Text: k
Deleted Text: k
Deleted Text: prior to
Deleted Text: single 
Deleted Text: , 
Deleted Text: single 
Deleted Text: .
http://10xqc.com
Deleted Text: single 
Deleted Text: single 
Deleted Text: cell RNA-sequencing
Deleted Text: ly
Deleted Text: Lastly


appropriate way to ensure optimal downstream analysis. For
example, a superficial exploratory experiment could be de-
signed using 10x technology to provide estimates of heterogen-
eity within a cell population to then guide a more in-depth
sequencing approach on lower cell numbers to capture more
detail in the analysis. New technical developments in the field
of single-cell genomics will broaden the spectrum of experi-
mental approaches possible over time. In any case, new insights
into cellular and tissue properties on the single-cell level will be
an exciting area of investigation over the next few years.

Data and methods

Two unpublished IMR90 data sets from the Chandra lab were
used to provide a comparison between the 10x and Smart-seq2
protocols. 10x: Growing IMR90 cells were processed using the
10x single-cell 30 protocol (V2; 10x Genomics). In total, 96 cells
were loaded and processed according to the standard V2 proto-
col. The resulting libraries were aligned to the GRCh38 genome,
and gene counts were quantified using the CellRanger pipeline
(VX). Smart-seq 2: Growing IMR90 cells were sorted into two 96
well plates and subjected to the Smart-seq protocol as described
[5]. Data were aligned and to the GRCh38 genome using TopHat,
and gene counts were quantified over the same transcriptome
as the 10x dataset using SeqMonk (1.38.2; https://www.bioinfor
matics.babraham.ac.uk/projects/seqmonk/).

Key Points

• Smart-Seq 2 is a flexible, low-throughput method
without specialist equipment requirements.

• 10x Chromium platform allows for large cell numbers
to be assessed simultaneously with specialist equip-
ment required.

• A balanced experimental design is essential to avoid
technical artefacts and analyse biological signatures
in subsets of cells.
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