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Abstract

Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping
the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand
this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics
data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data
volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell
DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application
of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future.
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Introduction

Gene regulatory networks (GRNs) define and maintain cell-type-
specific transcriptional states, which in turn underlie cellular
morphology and function. Each cell type or stable state is defined
by a particular combination of active transcription factors (TFs)
that interact with a set of cis-regulatory regions in the genome—
in an interplay with chromatin structure—to produce a specific
gene expression profile [1]. The combinations of active TFs and
their target genes are usually represented as GRNs. Unravelling
GRNs is one of the major challenges in the field of genome re-
search. Once key regulators that drive and maintain the behav-
iour of a cell state are identified, they can ultimately be used to

interfere with these regulatory programmes. Examples include
reprogramming fibroblasts to induced pluripotent stem cells (iPS)
by the combination of TFs proposed by Yamanaka et al. [2], many
other reprogramming routes that steer a GRN from one state to
another using specific combinations of TFs [3, 4] and recent at-
tempts in cancer therapy, in which cancer cells are pushed into a
state that is vulnerable to a particular drug [5, 6].

The computational prediction of GRNs based on large-scale
transcriptome and epigenome data is an extensively studied
field [6-8]. However, bulk technologies, such as microarrays,
RNA sequencing (RNA-seq), DHS-seq, ATAC-seq or the different
methylation-seq methods, measure the average signal from all
the cells in a tissue or sample, which is in many cases
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composed of diverse cell types. While in some cases it is pos-
sible to extract specific cell types from a tissue, for instance by
FACS sorting, this requires prior knowledge of specific markers
and does not allow to identify novel cell states. With single-cell
technologies, we can now gather omics-data from individual
cells, allowing unprecedented opportunities to study the het-
erogeneity in GRNs, and to unravel the stochastic (probabilistic)
nature of gene expression and underlying regulatory pro-
grammes. For these reasons, the field of regulatory genomics is
undergoing a strong shift towards single-cell methods.

In this review, we discuss how different single-cell omics
techniques, together with computational methods, can be ex-
ploited to trace regulatory programmes across different layers:
from the chromatin state in regulatory regions to GRNs (See
Figure 1 for an overview). We will start with single-cell RNA-seq
(scRNA-seq), currently the most broadly used and highest
throughput technique, and explain how it can be used to detect
sets of co-regulated genes and to infer potential master regula-
tors. Moreover, we will describe how the latest developments
exploit GRNs to cluster cells and decipher dynamic cell state
transitions. Next, we discuss advances in single-cell epigenomic
assays that provide a different approach to study gene regula-
tion. We will cover in detail single-cell chromatin accessibility
and single-cell methylation, as well as integrated approaches
generating multiple read-outs per cell (multi-omics). The latter
are particularly promising to ultimately lead to an integrated
prediction of GRNs in the same cell, and may even bring the
ultimate goal for a predictive model of gene expression within
reach. Finally, we will cover single-cell perturbation assays that
are being used to perturb GRNs (either at the level of TFs or en-
hancers) to study their influence on the transcriptome. These
perturbation methods can be used to validate predictions, and
potentially in the near future, they will become powerful tools
for high-precision GRN inference. Overall, single-cell sequenc-
ing technologies—specifically scRNA-seq, single-cell ATAC-seq
(scATAC-seq) and single-cell methylation profiling—already
provide satisfactory data that enables network inference. They
have successfully been used to infer regulatory associations in
multiple studies, and even to study regulatory mechanisms [9].
Most other single-cell techniques were developed more recently
and are still at the proof-of-concept stage. We expect that these
methods, upon maturation, will become a disruptive tool in
GRN inference, especially when combined with the develop-
ment of new computational approaches. This will dramatically
change how we study and understand GRNs, and ultimately cell
states and state transitions.

GRN inference from scRNA-seq data

scRNA-seq is the most frequently used single-cell sequencing
technique today. After the first publication by Tang et al. [10] in
2009, many other methods have been introduced (reviewed by
Svenson et al. [11]). Most methods follow a similar scheme, apply-
ing an adapted RNA-seq protocol to single cells that have been
isolated and separated in droplets [12-15] or in microwells [16].
However, a transcriptome obtained from a single cell is currently
not as sensitive or informative as its bulk counterpart: because of
a combination of biological variation (e.g. stochasticity, bursts)
and technical limitations, only a sample of the total mRNA popu-
lation in a single cell will be captured, amplified and sequenced.
The genes that remain undetected because of technical variation
are referred to as dropouts [17, 18]. The level of dropouts is re-
flected by the median number of genes detected per cell (although
this measure is confounding with the cell type), and usually forms
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a trade-off with the scale of the experiment (i.e. the number of
cells sequenced). Larger numbers of cells sequenced will yield
more statistical power to discriminate distinct cell states, and may
compensate for some of the noise, but it will be hard to obtain con-
clusions for lowly expressed genes. This may be a particular prob-
lem when assessing TFs, which are typically lowly expressed [19].

After data processing, scRNA-seq data are represented as a
counts table with the expression value for each gene in each
cell. Most scRNA-seq analyses focus on the identification of cell
(sub-) types or states within a population (e.g. in a tissue, or
cancer), or along a dynamic process, such as differentiation
(e.g. [20]), the cell cycle (e.g. [21]) or stimulus response (e.g. [22]).
The computational methods used to solve these questions in-
clude clustering algorithms to group cells into distinct cell types
or states (reviewed by Andrews et al. [23]) or trajectory inference
methods to sort cells along a pseudo-time axis (reviewed by
Canoodt et al. [24]).

GRN inference from transcriptomics data typically relies on
the assumption that regulatory information can be extracted
from the expression patterns. For example, those genes with
similar behaviours are regulated by a common mechanism,
such as a specific TF. In this way, the aim of network inference
can be (a) to model the sequence of TF activation events that
lead from one state to another, (b) to identify potential targets
for TFs or (c) to identify specific (combinations of) master regu-
lators for a cell state. Many of the single-cell GRN inference
methods (see Figure 2 for a summary) are based on the same
principles as tools developed for bulk data (bulk methods are
reviewed in [7, 25-27]).

One class of GRN inference methods focuses on deciphering
the logical combinations of TFs required to transit from one
state to another in a dynamic process. This is typically achieved
through Boolean network models, like in Single-Cell Network
Synthesis (SCNS) toolkit [28] and BoolTraineR [29]. Boolean net-
works are built by classifying each cell into a state (based on the
TF expression) and connecting cells that have a limited number
of differences. The resulting state-graph provides insight into
key TFs involved in state changes, and can be used to predict
the effect of over-expression or knock-down of a TF. However, it
does not provide information about target genes. In addition,
computational demands increase rapidly with network size;
hence, these tools can model only a small number of genes
(<100). For this reason, these approaches are normally applied
to dynamic processes after a trajectory inference step and se-
lecting a subset of relevant TFs. Another drawback of Boolean
networks is the conversion of expression levels to a binary state
(active/not active, based on a threshold), which makes them un-
able to reliably model dose response relationships [30], and they
are sensitive to dropouts. Examples of applications of these
methods include modelling the reprogramming of iPS [31] and
the work of and Moignard et al. [9], where the authors modelled
the regulatory network of blood development using a branched
trajectory with diffusion maps and SCNS toolkit.

An alternative approach to regulatory network inference
consists of linking TFs to candidate target genes with the ultim-
ate goal of identifying ‘master regulators’ driving a specific
cell state. A major family of methods in this category is based
on co-expression analysis (reviewed in [32]), and has been
broadly used on bulk gene expression data (e.g. GENIE3 [33] and
WGCNA [34], see [27, 35] for benchmark comparisons). Recent
studies have successfully applied similar approaches to single-
cell data, for example, by Patel et al. [36] to identify gene signa-
tures and TFs that correlate with the stemness gradient in
glioblastoma; by Gaublomme et al. [37] to identify pathogenicity
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Figure 1. Single-cell GRNs. The goal of many single-cell studies is to understand which cell states are present in a heterogeneous sample; how these states differ from
each other; how (and if) cells can switch from one state to another; and which states are relevant to the biological process under study. Cell states can be defined by
GRNs, which can be inferred from scRNA-seq and scEpigenomics methods such as scATAC-seq and scMethyl-seq data. The two main classes of GRN inference meth-
ods are dynamic GRN methods that predict trajectories; and static GRN methods that can be used to predict cell states. Perturbation experiments can be used to con-

firm regulatory relationships.

regulators that co-vary with pro-inflammatory genes; and by
Pina et al. [38] to reconstruct a GRN of haematopoiesis based on
pairwise associations. Elements that need to be taken into ac-
count when using these approaches include the assumption
that variation in the expression level of the regulator directly in-
fluences the expression of downstream targets, ignoring (for ex-
ample) post-transcriptional regulation, or the fact that not all
co-varying genes are necessarily direct targets. In addition,
these methods are sensitive to normalization and batch-effects,
which may introduce artificial co-variation [39].

A specific subgroup of co-expression-based methods is
geared specifically towards building GRN models from single-
cell transcriptome data from dynamic processes. These meth-
ods combine an initial ordering of cells along a time axis (or a
predicted trajectory) while modelling the expression dynamics
between genes and regulators, using techniques such as (non-
linear) correlation [40, 41], regression [42], covariance analysis
[43], multivariant information [44], ordinary differential equa-
tion (ODE) models [45, 46] and others [44, 47, 48] (see Figure 2 for
an overview). A special category within these is the ODE models,
which reconstruct expression profiles over time to detect and
merge similar profiles. The systems of ODEs allow inferring
some causality, and are more realistic and detailed than alter-
native approaches. However, they require a large amount of in-
put data to reliably estimate their parameters, and they are
computationally intensive, so they can only be applied to a lim-
ited number of TFs and targets.

When studying a system without trajectory information,
such as a tissue consisting of multiple distinct (static) cell types,
a different approach needs to be taken. Studies characterizing
the heterogeneity of complex tissues typically focus on identify-
ing the cell types and the gene signatures or markers that char-
acterize them (e.g. [49-51]), but further regulatory analysis is not
common. Some recent tools that attempt to bridge this gap are
SINCERA [52] and ACTION [53], two pipelines for the analysis of
scRNA-seq data that include an extra step to search for key
regulators of the cell-type-specific signatures. Finally, SCENIC
[54]—developed in our laboratory—infers a GRN directly from
the data, identifying direct regulatory interactions between TFs

and targets by integrating co-expression with motif enrichment
analysis. The activity of this GRN in each cell is then used to
identify cell types/states, and key TFs that characterize each
state with higher accuracy.

In conclusion, early results show that it is possible to recon-
struct GRNs from single-cell transcriptomics data. Moreover, it
can even be advantageous to use (predicted) regulatory relation-
ships into the clustering of single-cell data, and it will ultim-
ately be vital in understanding cellular heterogeneity.

Single-cell epigenomics

Single-cell epigenomics provides a complementary descrip-
tion of transcriptional states, now represented as epigenomic
landscapes. While the transcriptome is the result of transcrip-
tion, post-transcriptional regulation and RNA degradation, the
epigenome provides a perspective that is closer to the tran-
scriptional process. An epigenome reveals which regulatory
regions (e.g. enhancers and promoters) are operational in
each state. Single-cell epigenomes are bound to increase the
insight into the cellular (transcriptional) heterogeneity and
are starting to provide valuable additions to scRNA-seq when
mapping GRNs. Although multiple approaches for single-cell
epigenomics exist, we will mainly discuss accessible chroma-
tin profiling, specifically ATAC-seq, and DNA methylation be-
cause these have already been applied to multiple biological
systems. Other epigenomic methods have also been adapted
to single-cell levels, for instance, scDNase-seq [55] for open
chromatin profiling, scDamID-seq [56] for mapping genome-
nuclear lamina interactions and scChIP-seq [57] for TF binding
or histone modifications. However, we will not discuss these,
as they are still in the proof-of-principle phase or not widely
adopted yet.

There are two experimental methods to perform scATAC-
seq, either based on a microfluidic platform (Fluidigm C1) for
physical isolation of single cells [58] or on combinatorial cellular
indexing of sorted nuclei (sciATAC-seq) [59]. Both methods
are derived from the original ATAC-seq protocol, using a
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Figure 2. Tools for GRN inference from scRNA-seq data.

hyperactive Tn5 transposase for simultaneously cutting and
tagging accessible chromatin. These methods have been re-
viewed by Pott and Lieb [60]. There are three main differences
between the microfluidics- and combinatorial indexing-based
methods: (i) combinatorial indexing has a higher throughput of
500-1500 single cells per run, as compared with 96 cells with the
microfluidics-based platform; (ii) but the number of reads per
single cell reported by Cusanovich et al. [59] for combinatorial
indexing (median of 2503 reads per cell) is considerably lower
than those obtained via the microfluidic approach (73 000 reads
per cell); and (iii) the microfluidics approach of Buenrostro et al.
can use a commercially available Tn5 transposase, whereas
combinatorial indexing requires a self-made Tn5 transposase
tagged with different barcodes. Both methods have already
been used to study gene regulation, e.g. Buenrostro et al. [58]
showed that chromatin accessibility variance in K562 myeloid
leukaemia cells was associated with specific TF-binding

sites (including GATA1/2, JUN and STAT?2). Cusanovich et al.
illustrated that sciATAC-seq is not only able to uncover
different combinations of TF activity between cell lines but also
between cells within an apparently homogeneous population.
For instance, by grouping coordinated combinations of
accessible regions, they identify subtypes in the lymphoblastic
cell line GM12878, of which the variability is driven by activity of
the nuclear factor-kappa B pathway. Recently, scATAC-seq was
also used to study the epigenomic landscape of human
haematopoietic differentiation [58, 61]. These studies revealed
regulatory heterogeneity within immunophenotypically sorted
cellular populations that are governed by diverse regulatory
programmes at individual cis-regulatory elements and by rela-
tively simple TF motif dynamics. Interestingly, scATAC-seq was
able to capture the distinct regulatory states and trajectories,
leading to the finding of a continuous regulatory landscape that
underlies human haematopoiesis [58].
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It is important to note that single-cell chromatin accessibil-
ity data are even more sparse than scRNA-seq. As in a diploid
genome there are (usually) two copies of a regulatory element,
the read-out of chromatin accessibility is nearly binary, and has
a large amount of dropouts. Therefore, these data require speci-
alized analysis methods that generate accessibility measure-
ments either across groups of cells [62] or across sets of
genomic features (e.g. based on ChIP-seq data or TFs) [63]. For
example, Cusanovich et al. [59] adapted a previously existing
text clustering method called latent semantic indexing to un-
ravel different cell types based on their accessibility profile
patterns and to identify sets of co-accessible regions. An alter-
native approach is taken by scABC that applies an initial
K-medoids clustering on read depth corrected data to extract
'landmarks’ or average profiles of the different cell clusters,
which are used to reassign the cells to the clusters [62].
Similarly, Cicero [64] performs cell clustering on scATAC-seq
trajectories (constructed with an adaptation of Monocle 2 [65]),
determines co-accessible regions within each of these groups
and finally infers chromatin hubs by taking into account the
correlation between nearby regions. On the other hand,
chromVAR uses predefined cistromes (defined as a set of cis-
acting targets of a TF) or determines them ab initio based on
motif enrichment to calculate average bias-corrected Z-scores
[63]. Next to the computational challenges, there is still room
for experimental improvements towards a sc-chromatin acces-
sibility method that combines both high-throughput and high
per-cell read coverage, ideally in a droplet microfluidic format
to increase the scale. In any case, single-cell chromatin accessi-
bility technologies are already great tools to study regulatory
programmes in single cells.

A second epigenomics technique that is gaining traction is
single-cell DNA methylation profiling. DNA methylation is one
of the most studied regulatory mechanisms, especially in lin-
eage commitment during development and diseases such as
cancer [66, 67]. Increasing the resolution of DNA methylation
measurements to the level of single cells allows the discovery of
methylation marks that identify regulatory programmes under-
lying subpopulations or particular cell states. Several single-cell
whole methylome technologies exist, namely, scRRBS-seq [68],
scBS-seq [69], scWGBS-seq [70] and single-cell CpG island
sequencing (scCGI-seq) [71]. scRRBS-seq is based on reduced
representation bisulphite sequencing that enriches CpG dense
sites in the genome [68]. Therefore, only a low number of reads
are required to get a high coverage at CpG islands (CGIs), leading
to a reduced cost per cell with high information of CpG-dense
sites. However, this comes with the disadvantage that only 10%
of all CpG sites in the genome (0.5-1.5 CpGs per single cell) is de-
tected, and importantly, CGI are mostly found at gene promo-
tors, whereas a large part of cis-acting regulatory elements
(e.g. enhancers) are CpG-poor (reviewed by Jones et al. [72]).
The same is true for scGCl-seq, which combines methylation-
sensitive restriction enzyme digestion and multiple displace-
ment amplification to selectively detect methylated CGlIs, going
up to 76% of all CGIs detected on average per cell with high con-
sistency among cells [71]. Two other single-cell methylome
methods (scBS-seq and scWGBS-seq) give a broader picture of
the entire methylome by aiming to measure DNA methylation
at all CpG sites (as opposed to only CGIs). scBS-seq [69] is best
suited for deeply sequencing sc-methylomes with maximum
coverage, whereas scWGBS [70] is optimized to profile many
samples at low coverage. These two methods have been used
to analyse DNA methylation heterogeneity at several classes of
cis-elements, showing that regions with active enhancer marks

have a high variance in DNA methylation between single cells
[73], and regions with a quick loss of DNA methylation during
cell state transitions contained lineage-specific enhancer elem-
ents and TF-binding sites [70]. These methods are already able
to capture DNA methylation changes during a state transition
by sampling at different time points. However, precise investi-
gation of the dynamics of these epigenetic changes is cumber-
some with sequence-based techniques. For this purpose,
reporter-based assays are more suited. Stelzer et al. [74] estab-
lished a reporter of genomic methylation (RGM), allowing real-
time tracking of changes in DNA methylation at a specific locus,
both in vitro and in vivo, with single-cell resolution. RGM was
used to monitor the DNA methylation status of non-coding
regulatory elements during different biological processes, such
as cellular reprogramming, tracking the enhancers associated
with Sox2 and miR290. They show that de-methylation of both
these enhancers is a late event in the reprogramming process.
As with other single-cell methods, there are different sc-
methylation approaches yielding different results. Differences
can be because of (different levels of) technical dropouts, vari-
ation in detection power (e.g. scRRBS is able to detect 10% of
CpG sites [68], whereas scBS-seq can detect up to 48% [73]) and
different analysis approaches. This makes it, without extensive
benchmarking studies, difficult to determine which method
performs best. One possible way to deal with technical dropouts
is proposed by Angermueller et al. [75] by developing DeepCpG,
a computational approach based on deep neural networks, to
predict missing methylation states and link methylation states
to motifs. They showed that regions with increased methylation
variability associate significantly more strongly to gene expres-
sion, indicating functional relevance.

Single-cell multi-omics

Transcriptome and epigenome provide different viewpoints of a
GRN; therefore, obtaining both of them simultaneously from
the same cell population, and ultimately from the same cell,
would provide a comprehensive view of the cell’s regulatory
states, and would allow studying the interplay between differ-
ent regulatory layers. Litzenburger et al. [76] combined scATAC-
seq and scRNA-seq data from the same cell population to study
effects of variation in DNA accessibility at GATA-binding sites
and identified co-varying expression of cell surface markers.
However, computationally combining several omics data sets
only provides indirect links. To obtain these measures from the
same cell, several technologies are emerging [77, 78] (Table 2).

The first methods developed for integrated multi-omics
allow parallel interrogation of the genome and transcriptome of
the same cell (G&T-seq [79], DR-seq [80] and single-cell tran-
scriptogenomics [81]). These methods typically focus on the tran-
scriptomic consequences of chromosomal abnormalities such as
copy number variation (CNV) or single-nucleotide variation. For
example, Macaulay et al. [79], using G&T-seq, observed higher ex-
pression of genes on chromosome 11 in cells with trisomy of this
chromosome, unambiguously linking chromosomal amplifica-
tions with effects on gene expression in a single cell.

Several other methods have been published to simultan-
eously measure several omics features from one cell (all of them
including DNA methylation). scM&T-seq [82] measures DNA
methylome and transcriptome via a similar protocol as G&T-seq
for physically separating mRNA and DNA, but instead of perform-
ing WGS on the DNA fraction, it undergoes scBS-seq to profile the
methylome. In contrast, scMT-seq [83] and scTrio-seq [84] use
scRRBS-seq (for single-cell methylome profiling), after a mild
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ligation protocol that leaves the nuclear membrane intact so that
the cytosolic fraction can be separated from the nucleus. In add-
ition, scTrio-seq determines CNVs through computational ana-
lysis of the methylome data [84]. The last method, scNOMe-seq
[85], achieves simultaneous measurement of DNA methylation
and chromatin accessibility in single cells using a CpG methyl-
transferase that methylates CpGs in non-nucleosomal DNA fol-
lowed by bisulphite sequencing [85]. Based on this, Clark et al. [86]
developed scNMT-seq (a combination of scM&T-seq and
scNOMe-seq), and show that, globally, single-cell methylation
and open chromatin data are highly anti-correlated and thus
contain similar information. Next to studying how different regu-
latory layers affect one another or looking at cellular heterogen-
eity between these different levels, most of these studies provide
good examples on how single-cell multi-omics techniques im-
prove our understanding of the role of epigenetic modifications
of cis-elements in GRNs. For instance, Angermueller et al. [82]
studied associations between changes in methylation and ex-
pression of individual genes. They detected 1493 associations,
both positive and negative, highlighting the complexity of the
methylome-transcriptome interaction. Negative correlations
were predominantly found for non-CGI promotors, as expected
from literature [72] and matching the findings from scMT-seq
[83], but distal regulatory elements showed a more even distribu-
tion of positive and negative associations. scTrio-seq shows a
correlation between CNV and mRNA expression, but no effect on
DNA methylation. scNOMe-seq describes the relationship be-
tween DNA methylation and chromatin accessibility in single
cells. By detecting footprints of TFs, scNOMe-seq predicts TF ac-
tivity in individual cells, and how this is affected by DNA methy-
lation, thus studying cell-to-cell variation at the regulatory level.
These examples illustrate a great potential for single-cell multi-
omics to build complex models of gene regulation. However, cur-
rent multi-omics techniques still present a high cost per cell and
have a limited throughput. This makes them currently rather
suited for studying unique cells (e.g. embryos with chromosomal
abnormalities) or rare (sorted) cell types. For large-scale studies,
computational integration of independent layers of omics re-
mains the only solution until droplet-based methods or methods
based on combinatorial indexing can deliver single-cell multi-
omics measurements. One example of a computational approach
is shown by Welch et al. [87], using the MATCHER tool, which in-
tegrates multiple omics layers, e.g. scCRNA-seq with scMT-seq. In
summary, single-cell multi-omics promises to become a power-
ful method integrating multiple regulatory layers into GRNs.

Single-cell regulatory perturbations

Perturbation experiments are an important tool to assess regu-
latory relationships between genes. For example, if the expres-
sion of a TF or the sequence of an enhancer is altered, the
expression of the target genes is expected to be affected as well.
Standard perturbation-based approaches are widely applied,
but still expensive, time-consuming and difficult to parallelize.
Several methods have been developed using pooled CRISPR/
CAS9 genome editing to introduce a large amount of perturb-
ations in a population of cells, the effects of which can subse-
quently be measured using single-cell transcriptomics. These
methods include CRISP-seq [88], Perturb-seq [89, 90], CROP-seq
[91] and Mosaic-seq [92].

One of the challenges of these methods was how to estab-
lish the link between cells and perturbations. Perturbations
are induced by guide RNAs (gRNAs) that target genome loca-
tions to perturb TFs or enhancers. However, as gRNAs lack a
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poly-adenylated (poly-A) tail, they are not detected by scRNA-
seq methods (as they are all polyA-based). To identify which
perturbation is applied to each cell, CRISP-seq, Perturb-seq and
Mosaic-seq use poly-A barcodes, which are then computation-
ally linked to the gRNA. In contrast, CROP-seq includes the
gRNA in a poly-A mRNA transcript, which is sequenced with
the rest of the mRNA, simplifying the screening of larger libra-
ries of gRNAs [93].

As all four methods are based on CRISPR/CASY, in principle,
any CRISPR-based perturbations could be used, including
knockouts and transcriptional- or epigenetic-based repression
or activation (e.g. CRISPRi, CRISPRa [94]). They can also be used
to perturb promoters, enhancers or non-coding RNAs as well as
protein-coding genes. Indeed, the related publications display a
wide array of applications. CROP-seq was applied to character-
ize transcriptome changes after T-cell receptor pathway induc-
tion in Jurkat cells [91]. Using a gRNA library for 6 high-level
regulators of the pathway and 23 TFs, the authors derived gene
signatures for each of the perturbations in naive cells, and cells
stimulated with anti-CD3/CD28 antibodies. Similarly, CRISP-seq
and Perturb-seq were also applied in a knockout context
focused on identifying key regulators of the immune response
and their combinatorial effects. A companion paper of Perturb-
seq uses CRISPRi to study the epistatic effects of three key
regulators of independent pathways involved in unfolded pro-
tein response. CRISP-seq also shows that it is possible to study
perturbations in vivo, by injecting transduced hematopoietic
progenitor cells into mice. Finally, Mosaic-seq used dCas9
coupled with KRAB, a transcriptional repressor, to study the en-
dogenous activity of enhancers and the individual contribution
of the different constituents of large arrays of enhancers.

With scRNA-seq data being intrinsically noisy and contain-
ing numerous dropout events, the bioinformatics analysis of
sc-perturbation assays is challenging. A barcode or gRNA can
easily be missed, and hence, the measurements from an indi-
vidual cell are not reliable. The CROP-seq authors opted for a
simple approach: deriving the knockout signatures for each
condition from the aggregate of cells targeted by the same
gRNA. The CRISP-seq authors base their analysis on an un-
supervised clustering method, assigning barcodes based on
phenotypic similarity. Perturbation effects are calculated across
groups of cells and controls. In Perturb-seq, a computational
method is developed based on a linear model (Multi-Input-
Multi-Output-Single-Cell-Analysis, MIMOSCA), which allows
studying the impact of individual perturbations on gene expres-
sion and the marginal contributions of the genetic interactions.
Finally, the authors of Mosaic-seq base their analysis on two
key parameters that represent the enhancer activity in individ-
ual cells: the penetrance in the population and the contribution
to expression in these cells.

In conclusion, these four approaches open exciting opportu-
nities for the exploration of GRNs. They present interesting
proof of principle applications, exploring the effect of a few
dozen perturbations per experiment (typically targeting 10-30
genes, TFs or enhancers), and all expect that the number of
elements screened will increase in future applications. One gen-
eral challenge for these CRISPR methods involves the specificity
and efficiency of gRNAs (reviewed in [94]). The aforementioned
methods try to overcome this by increasing biological and tech-
nical replicates: designing multiple gRNAs per target (an aver-
age of three gRNAs per target) and transfecting multiple
samples with the same gRNA. Another challenge is accurate de-
tection of the gRNA barcode, which is limited by the sensitivity
of the scRNA-seq approaches. Also, it is likely that future
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applications multiplex a number of gRNAs [95, 96] to test for
specific combinations.

Future perspectives

The single-cell field is under rapid development, both in terms of
technological advances to acquire single-cell data, and computa-
tional solutions to identify biological novelties in the data. An im-
portant hurdle, currently being tackled at multiple fronts, is how
to overcome the biological and technical noise in a single-cell
data set. Given the experimental nature of methods reviewed
here, and the speed with which developments take place, it will
be interesting to see how future benchmarking studies, compar-
ing different techniques, will eventually yield best practices.

In this review, we have particularly focused on methods that
analyse GRNs and chromatin activity at the single-cell level, both
as a means to identify stable cell states, and as an endpoint to un-
ravel the genomic regulatory logic. Several studies have already
predicted regulatory interactions from single-cell data, where the
ability to study individual cells has been proven to outweigh the
added noise. In the near future, a lot of work will be required to
improve the reconstruction of global GRNs of large single-cell
data sets. Specifically, focusing on methods to distinguish regula-
tory differences between (steady state) cellular (sub-) types, and
to improve and upscale methods to predict the regulatory kinetics
of dynamic processes. One particularly promising application is
merging the prediction of gene regulatory dynamics with single-
cell clustering and trajectory inference. The prediction of tran-
scriptional regulation improves understanding of cellular hetero-
geneity, and vice versa. We expect that further improvements of
single-cell epigenomics methods such as scChIP-seq [57] and
scDamlID-seq [56], and the upscaling of scATAC-seq and
scMethyl-seq—for example towards droplet-based approaches—
will provide an important push in the field. In addition, when
multi-omics approaches get more traction and when they can be
performed at lower cost and higher scale, they may provide the
ultimate data towards understanding GRNs. Indeed, linking epi-
genome changes with transcriptome and proteome changes may
lead to long-awaited single-cell systems biology solutions. A thor-
ough understanding of GRNs will also help us to better under-
stand cellular lineage, identity and variation. With this
knowledge, we will be able to develop a completely new perspec-
tive on (for example) pathology, for instance by observing the first
reaction of a cell to a pathogenic condition with unprecedented
detail, but also by studying cellular population dynamics. In con-
clusion, single-cell technologies represent a disruptive technique
in the prediction and understanding of GRNs, and of cellular biol-
ogy in general.

Key Points

* The field of regulatory genomics is shifting towards
single-cell resolution.
* GRNs can be reverse-engineered from scRNA-seq data.
Single-cell GRNs are useful to identify stable cell states
and cell state transitions.
Single-cell epigenomics, single-cell perturbation
assays and single-cell multi-omics provide exciting
opportunities to unravel transcriptional programmes.
Methods to map GRNs from scRNA-seq data are emerg-
ing quickly; methods to unravel regulatory programmes
from single-cell epigenomics data are lagging behind.
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