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(:5757:0 Amendments from Version 1

The individual workflow steps now contain more detailed discussions of the code. We also try to explain the statistics
behind the individual steps carefully and in a non-technical way. Where appropriate, we provide suitable references and
weblinks.

As version 2 has been substantially revised, and most parts of the workflow have been clarified and extended, a new
co-author has been added to this version: Stefanie Reisenauer.

In general, the new version should be much more accessible to beginners in R/Bioconductor with a working knowledge
in statistics.

Furthermore, we want to highlight the following specific changes:

e The workflow has been wrapped into an R package "'maEndToEnd" and the package dependencies are now
grouped by keywords.

e Relative Log Expression (RLE) analysis has been implemented as another data quality control step. Combined
with clustering heatmaps, it can be used as a basic tool to detect low quality arrays. A section on how to
interpret these two kinds of plots has also been added.

e The method for intensity-based filtering of genes prior to the differential expression analysis has been changed.
We now filter using a more intuitive, visually chosen cutoff instead of fitting a normal distribution and setting the
5 % quantile as a threshold.

e The rather theoretical section on the mathematical background of linear regression models has been removed.

e [nstead, we explain the principles of differential expression analysis using a specific gene. We fit the linear
model to this gene, explain its rationale and compare it to the standard t test.

e A section on the use of False Discovery Rate (FDR) control in multiple testing problems has been added: We
illustrate the benefits of FDR control using p-values from the data at hand.

See referee reports

Introduction
In this article we introduce a complete workflow for a typical (Affymetrix) microarray analysis. Data import,
preprocessing, differential expression and enrichment analysis are discussed.

The data set used' is from a paper studying the differences in gene expression in inflamed and non-inflamed tissue.
14 patients suffering from Ulcerative colitis (UC) and 15 patients with Crohn’s disease (CD) were tested, and from
each patient inflamed and non-inflamed colonic mucosa tissue was obtained via a biopsy. This is a typical clinical
data set consisting of 58 arrays in total. Our aim is to analyze differential expression (DE) between the tissues.
Our results show a substantial overlap with the results of the original paper.

Workflow package installation
The workflow is wrapped in a package called maEndToEnd.

The maEndToEnd package can currently be obtained from GitHub and is available via the current development
version of Bioconductor (3.8) (see here: http://bioconductor.org/packages/devel/workflows/html/maEndToEnd.html).

Workflow package installation from Bioconductor
You can install the package via the biocLite function.

## try http:// if https:// URLs are not supported
source ("https://bioconductor.org/biocLite.R")
biocLite ("maEndToEnd")

Currently, the workflow is available in the development version of Bioconductor (3.8), which will become the
release version in October 2018.

For details on how to use this version of Bioconductor see: http://bioconductor.org/developers/how-to/useDevel/
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Workflow package installation from Github

#In order to download the package from GitHub, we need the "install github"
#function from the "remotes" package. We download the latest developer
#version of "remotes" from GitHub with the devtool::install github
#function; note that this is necessary as the current "remotes" version on
#CRAN doesn’t allow us to correctly download the "maEndToEnd" package:

install.packages ("devtools")
library (devtools)

devtools::install github("r-lib/remotes")
library (remotes)
packageVersion ("remotes") # has to be 1.1.1.9000 or later

remotes::install_github("b—klaus/maEndToEnd", ref="master")

Workflow package import
Once the workflow package has been successfully installed, we can use a call to Library () in order to load it. This
will also load all the other packages neccessary to run the workflow.

suppressPackageStartupMessages ({library ("maEndToEnd") })

List of packages required for the workflow
Below, you find a list of packages that are required by the workflow. Some Helper/Styling packages have been com-
mented here, as they are not strictly neccesary to execute the workflow.

#General Bioconductor packages
library (Biobase)
library(oligoClasses)

#Annotation and data import packages
library (ArrayExpress)
library(pd.hugene.1.0.st.v1l)
library (hugenelOsttranscriptcluster.db)

#Quality control and pre-processing packages
library(oligo)
library(arrayQualityMetrics)

#Analysis and statistics packages
library (limma)
library (topGO)
library (ReactomePA)
library(clusterProfiler)

#Plotting and color options packages
library(gplots)
library(ggplot2)
library (geneplotter)
library (RColorBrewer)
library (pheatmap)

#Formatting/documentation packages
#library (rmarkdown)
#library (BiocStyle)
library (dplyr)
library (tidyr)

#Helpers:
library(stringr)
library(matrixStats)
library(genefilter)
library (openxlsx)

#library (devtools)
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Downloading the raw data from ArrayExpress

The first step of the analysis is to download the raw data CEL files. These files are produced by the array
scanner software and contain the measured probe intensities. The data we use have been deposited at ArrayExpress
and have the accession code E-MTAB-2967.

We will store these files in the directory raw_data_dir which defaults to a temporary directory.

raw data dir <- tempdir ()

if (!dir.exists(raw data dir)) {
dir.create(raw _data dir)

Each ArrayExpress data set has a landing page summarizing the data set, and we use the getAEfunction
from the ArrayExpress Bioconductor package to obtain the ftp links to the raw data files (Data from Palmieri et. al. on
ArrayEpress).

With the code below, we download the raw data (also including annotation data) from ArrayExpress” by using
the getAE-function. The data are saved in the raw data dir created above. The names of the downloaded
files are returned as a list.

anno AE <- getAE ("E-MTAB-2967", path = raw data dir, type = "raw")
We will now have a closer look at the data we downloaded from ArrayExpress

Background information on the data

Information stored in ArrayExpress

Each dataset at ArrayExpress is stored according to the MAGE-TAB (MicroArray Gene Expression Tabular)
specifications as a collection of tables bundled with the raw data. The MAGE-TAB format specifies up to five
different types of files:

e Investigation Description Format (IDF)

e Array Design Format (ADF)

e Sample and Data Relationship Format (SDRF)
e raw data files

e processed data files

Other than the raw data files, the IDF and the SDRF file are important for us. The IDF file contains top level
information about the experiment including title, description, submitter contact details and protocols. The SDRF
file contains essential information on the experimental samples, e.g. the experimental group(s) they belong to.

Before we move on to the actual raw data import, we will briefly introduce the ExpressionSet class contained
in the Biobase package. It is commonly used to store microarray data in Bioconductor.

Bioconductor ExpressionSets

Genomic data can be very complex, usually consisting of a number of different components, e.g. information
on the experimental samples, annotation of genomic features measured as well as the experimental data itself. In
Bioconductor, the approach is taken that these components should be stored in a single structure to easily manage
the data.

The package Biobase contains standardized data structures to represent genomic data. The ExpressionSet class
is designed to combine several different sources of information (i.e. as contained in the various MAGE-TAB files)
into a single convenient structure. An ExpressionSet can be manipulated (e.g., subsetted, copied), and is the input
to or output of many Bioconductor functions.

The data in an ExpressionSet consist of:

e assayData: Expression data from microarray experiments with microarray probes in rows and sample identifiers
in columns
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o metaData

— phenoData: A description of the samples in the experiment with sample identifiers in rows and description
elements in columns; holds the content of the SDRF file

— featureData: metadata about the features on the chip or technology used for the experiment with same rows
as assayData by default and freely assignable columns

— further annotations for the features, for example gene annotations from biomedical databases (annotation).

e experimentData: A flexible structure to describe the experiment.

The ExpressionSet class coordinates all of these data, so that one does not have to worry about the details. However,
one should keep in mind that the rownames of the phenoData have to match the column names of the assay
data, while the row names of the assay data have to match the row names of the featureData. This is illustrated
in Figure 1.

microarray probes
microarray probes

Figure 1. Structure of Bioconductor’s ExpressionSet class.

You can use the functions pData and fData to extract the sample and feature annotation, respectively, from an
ExpressionSet. The function exprs will return the expression data itself as a matrix.

Import of annotation data and microarray expression data as “ExpressionSet”
We import the SDREF file with the read.delim function from the raw data folder in order to obtain the sample

annotation.

The sample names are given in the column Array.Data.File of the SDRF data table and will be used as rownames for
the SDREF file.

We turn the SDREF table into an AnnotatedDataFrame from the Biobase package that we will need later to create
an ExpressionSet for our data’.
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sdrf location <- file.path(raw data dir, "E-MTAB-2967.sdrf.txt")
SDRF <- read.delim(sdrf location)

rownames (SDRF) <- SDRF$Array.Data.File
SDRF <- AnnotatedDataFrame (SDRF)

We now create the Expression Set object raw_data, which contains array data, pheno data (from the SDREF file) as
well as the information of the chip annotation package used.

The analysis of Affymetrix arrays starts with CEL files. These are the result of the processing of the raw image files
using the Affymetrix software and contain estimated probe intensity values. Each CEL file additionally contains some
metadata, such as a chip identifier.

We use the function read.celfiles from the oligo package’ to import the files:

raw _data <- oligo::read.celfiles(filenames = file.path(raw data dir,
SDRFSArray.Data.File),
verbose = FALSE, phenoData = SDRF)
stopifnot(validObject (raw data))

This automatically creates an ExpressionSet, fills the sections “array data” with the data from the CEL files and uses the
correct chip annotation package, in this case pd./ugene.1.0.st.v1 (the chip-type is also stored in the .CEL files).

Furthermore, we specified our AnnotatedDataFrame“SDRE” created earlier from the SDREF file as phenoData.
Thus, we had to make sure to import the CEL files in the order that corresponds to the SDRF table — to enforce this,
we used the column Array.Data.File of the SDRF table as the £i lenames argument.

Finally, we checked whether the object created is valid (e.g. sample names match between the different tables).

‘We now have a first look on the raw data.

The pData function of the Biobase package directly accesses the phenoData in the ExpressionSet raw_data. With
the head () function, we can view the first six lines of the table. We have a look at the columns included and retain

only those columns that are related to the experimental factors of interest.

head (Biobase: :pData (raw data))

Source.Name Characteristics.individual. Characteristics.organism.

164 I .CEL 164 1 164 Homo sapiens

164 II.CEL 164 1T 164 Homo sapiens

183 I.CEL 183 I 183 Homo sapiens

183 II.CEL 183 IT 183 Homo sapiens

2114 I.CEL 2114 1 2114 Homo sapiens

2114 II.CEL 2114 11 2114 Homo sapiens
Characteristics.disease. Characteristics.organism.part.

164 I .CEL Crohn’s disease colon

164 II.CEL Crohn’s disease colon

183 I.CEL Crohn’s disease colon

183 II.CEL Crohn’s disease colon

2114 I.CEL Crohn’s disease colon

2114 TII.CEL Crohn’s disease colon

Characteristics.phenotype. Material.Type Protocol.REF
164 I .CEL non-inflamed colonic mucosa organism part P-MTAB-41361

164 II.CEL inflamed colonic mucosa organism part P-MTAB-41361
183 I.CEL non-inflamed colonic mucosa organism part P-MTAB-41361
183 II.CEL inflamed colonic mucosa organism part P-MTAB-41361
2114 I.CEL non-inflamed colonic mucosa organism part P-MTAB-41361
2114 TII.CEL inflamed colonic mucosa organism part P-MTAB-41361
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Protocol.REF.1 Extract.Name Protocol.REF.2 Labeled.Extract.Name

164 I .CEL P-MTAB-41363 164 I  P-MTAB-41364 164 I:Biotin
164 II.CEL P-MTAB-41363 164 II  P-MTAB-41364 164 II:Biotin
183 I.CEL P-MTAB-41363 183 I  P-MTAB-41364 183 I:Biotin
183 II.CEL P-MTAB-41363 183 II  P-MTAB-41364 183 II:Biotin
2114 I.CEL P-MTAB-41363 2114 I  P-MTAB-41364 2114 I:Biotin
2114 II.CEL  P-MTAB-41363 2114 II  P-MTAB-41364 2114 II:Biotin

Label Protocol.REF.3 Assay.Name Technology.Type Array.Design.REF

164 I .CEL Dbiotin P-MTAB-41366 164 T array assay A-AFFY-141
164 II.CEL biotin P-MTAB-41366 164 II array assay A-AFFY-141
183 I.CEL Dbiotin P-MTAB-41366 183 1 array assay A-AFFY-141
183 II.CEL biotin P-MTAB-41366 183 1T array assay A-AFFY-141
2114 I.CEL biotin P-MTAB-41366 2114 1 array assay A-AFFY-141
2114 II.CEL biotin P-MTAB-41366 2114 1T array assay A-AFFY-141

Term.Source.REF Protocol.REF.4 Array.Data.File

164 I .CEL ArrayExpress P-MTAB-41367 164 I .CEL
164 II.CEL ArrayExpress P-MTAB-41367 164 II.CEL
183 T.CEL ArrayExpress P-MTAB-41367 183 I.CEL
183 II.CEL ArrayExpress P-MTAB-41367 183 II.CEL
2114 I.CEL ArrayExpress P-MTAB-41367 2114 I.CEL
2114 II.CEL ArrayExpress P-MTAB-41367 2114 II.CEL

Comment. .ArrayExpress.FTP.file.
164 I .CEL ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/MTAB/
E-MTAB-2967/E-MTAB-2967.raw.1l.zip
164 II.CEL ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/MTAB/
E-MTAB-2967/E-MTAB-2967.raw.1l.zip
183 I.CEL ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/MTAB/
E-MTAB-2967/E-MTAB-2967.raw.1l.zip
183 II.CEL ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/MTAB/
E-MTAB-2967/E-MTAB-2967.raw.1l.zip
2114 I.CEL ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/MTAB/
E-MTAB-2967/E-MTAB-2967.raw.1l.zip
2114 II.CEL ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/MTAB/
E-MTAB-2967/E-MTAB-2967.raw.1l.zip

Factor.Value.disease. Factor.Value.phenotype.

164 I .CEL Crohn’s disease non-inflamed colonic mucosa
164 II.CEL Crohn’s disease inflamed colonic mucosa
183 I.CEL Crohn’s disease non-inflamed colonic mucosa
183 II.CEL Crohn’s disease inflamed colonic mucosa
2114 I.CEL Crohn’s disease non-inflamed colonic mucosa
2114 II.CEL Crohn’s disease inflamed colonic mucosa

The columns of interest for us are the following:
e identifiers of the individuals, i.e. columns “Source.Name”, “Characteristics.individual.”
e disease of the individual, i.e. “Factor.Value.disease.”

e mucosa type, i.e. “Factor.Value.phenotype.”
We now subselect the corresponding columns:

Biobase::pData(raw data) <- Biobase::pData(raw data) [, c("Source.Name",
"Characteristics.individual.",
"Factor.Value.disease.",

"Factor.Value.phenotype.") ]
Quality control of the raw data

The first step after the initial data import is the quality control of the data. Here we check for outliers and try
to see whether the data clusters as expected, e.g. by the experimental conditions. The expression intensity values are
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in the assayData sub-object “exprs” and can be accessed by the exprs (raw_data) function. The rows represent
the microarray probes, i.e. the single DNA locations on the chip, while the columns represent one microarray,
i.e. a sample of inflamed and non-inflamed tissue of every patient, respectively.

Biobase: :exprs(raw data) [1:5, 1:5]

164 I .CEL 164 II.CEL 183 I.CEL 183 II.CEL 2114 I.CEL

1 4496 5310 4492 4511 2872
2 181 280 137 101 91
3 4556 5104 4379 4608 2972
4 167 217 99 79 82
5 89 110 69 58 47

For quality control, we take the log2 of Biobase::exprs(raw data), as expression data is commonly
analyzed on a logarithmic scale.

We then perform a principal component analysis (PCA) and plot it (Figure 2). Every point in the plot represents
one sample, with the colour indicating the mucosa type (inflamed vs non-inflamed) and the shape indicating the
disease (UC or CD).

exp raw <- log2(Biobase::exprs(raw data))
PCA raw <- prcomp (t (exp raw), scale. = FALSE)

percentVar <- round(100*PCA rawSsdev”2/sum(PCA_rawSsdev”2),1)
sd _ratio <- sqgrt(percentVar[2] / percentVar[l])

dataGG <- data.frame(PCl = PCA rawSx[,1], PC2 = PCA raw$Sx[,2],
Disease = pData(raw data) SFactor.Value.disease.,
Phenotype = pData(raw_data) $Factor.Value.phenotype.,
Individual = pData(raw_data) SCharacteristics.individual.)

ggplot (dataGG, aes(PCl, PC2)) +

geom point (aes(shape = Disease, colour = Phenotype)) +
ggtitle ("PCA plot of the log-transformed raw expression data") +
xlab (pastel ("PCl, VarExp: ", percentVar[l], "%")) +
ylab (pasteO("PC2, VarExp: ", percentVar[2], "%")) +
theme (plot.title = element text (hjust = 0.5))+
coord fixed(ratio = sd ratio) +
scale shape manual (values = c(4,15)) +
scale color manual (values = c("darkorange2", "dodgerblued"))

PCA plot of the log-transformed raw expression data

400~ a Disease
o\o X X
To) X x>< X Crohn's disease
C;l 200 - >><( X% X . -
il X - X « ®  ulcerative colitis
Qo X
&0 0- = . n *
E I. X = . NG .X )2( X
> R - Phenotype
- ; X | X
¢y -200- . ® inflamed colonic mucosa
[a X
- HE ® non-inflamed colonic mucosa
-250 0 250 500

PC1, VarExp: 22.2%

Figure 2. PCA plot of the log-transformed raw expression data.
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The PCA plot (Figure 2, performed on the log-intensity scale) of the raw data shows that the first principal
component differentiates between the diseases. This means that the disease type is a major driver of gene expres-
sion differences. This might hinder our analysis, as we want to analyze the differential expression between inflamed
and non-inflamed tissues, independently of the disease a person suffers from.

We also represent the probe intensities via a boxplot graph with one box per individual microarray. (Figure 3).
Note that the oligo: :boxplot function, i.e. the boxplot function of the oligo package, can take expression
sets as argument. It accesses the expression data and performs a log2-transformation by default. We therefore can
use raw_data as argument here.

oligo::boxplot (raw_data, target = "core",
main = "Boxplot of log2-intensitites for the raw data")

Boxplot of log2-intensitites for the raw data
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Figure 3. Intensity boxplots of the log2—-transformed raw data.

When looking at the boxplot (Figure 3), we see that the intensity distributions of the individual arrays are quite
different, indicating the need for an appropriate normalization, which we will discuss next.

Until now, we have only performed a very basic quality control; more elaborate quality control plots are
available in the package arrayQualityMetrics’. The package produces an html report, containing the quality
control plots together with a description of their aims and an identification of possible outliers. We do not discuss
this tool in detail here, but simply provide the code below, which creates a report for our raw data.

arrayQualityMetrics (expressionset = raw data,
outdir = tempdir(),
force = TRUE, do.logtransform = TRUE,
intgroup = c("Factor.Value.disease.", "Factor.Value.phenotype."))

Background adjustment, calibration, summarization and annotation

Background adjustment

After the initial import and quality assessment, the next step in processing of microarray data is background
adjustment. This is essential because a proportion of the measured probe intensities are due to non-specific
hybridization and the noise in the optical detection system. Therefore, observed intensities need to be adjusted to
give accurate measurements of specific hybridization.

Across-array normalization (calibration)

Normalization across arrays is needed in order to be able to compare measurements from different array hybridi-
zations due to many obscuring sources of variation. These include different efficiencies of reverse transcription,
labeling or hybridization reactions, physical problems with the arrays, reagent batch effects, and laboratory
conditions.
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Summarization

After normalization, summarization is necessary to be done because on the Affymetrix platform, transcripts
are represented by multiple probes, that is multiple locations on the array. For each gene, the background-adjusted
and normalized intensities of all probes need to be summarized into one quantity that estimates an amount
proportional to the amount of RNA transcript.

After the summarization step, the summarized data can be annotated with various information, e.g. gene
symbols and ENSEMBL gene identifiers. There is an annotation database available from Bioconductor for
our platform, namely the package hugenelOsttranscriptcluster.db.

You can view its content like this:
head(ls ("package:hugenelOsttranscriptcluster.db"))

[1] "hugenelOsttranscriptcluster"

[2] "hugenelOsttranscriptclusterACCNUM"

[3] "hugenelOsttranscriptclusterALIAS2PROBE"
[4] "hugenelOsttranscriptclusterCHR"

[5] "hugenelOsttranscriptclusterCHRLENGTHS"
[6] "hugenelOsttranscriptclusterCHRLOC"

Additional information is available from the reference manual of the package. Essentially, the package provides
a mapping from the transcript cluster identifiers to the various annotation data.

Old and new “probesets” of Affymetrix microarrays

Traditionally, Affymetrix arrays (the so-called 3’ IVT arrays) were probeset based: a certain fixed group of
probes were part of a probeset which represented a certain gene or transcript (note however, that a gene can be
represented by multiple probesets).

The more recent “Gene” and “Exon” Affymetrix arrays are exon based and hence there are two levels of
summarization to get to the gene level. The “probeset” summarization leads to the exon level. The gene/transcript
level is given by “transcript clusters”. Hence, the appropriate annotation package for our chip type is called
hugenelOsttranscriptcluster.db.

“Gene” arrays were created as affordable versions of the “Exon” arrays, by only taking the “good” probes
from the Exon array. Initially on the Exon array, at least four probes were part of one “Exon”. With the thinned
out “Gene” array, many probesets were made up of three or fewer probes. This is visualized in Figure 4: Single
probesets are indicated by single colours; probesets representing one gene are indicated by a colour shade: e.g., all
yellow probes belong to one Exon, and all yellow, orange and red probesets belong to one gene:

Figure 4. Visualization of the difference between “Exon” type array (left) and “Gene” type array (right).
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On the left side, we see plenty of probes for each Exon/probeset (i.e. each colour): therefore, a summarization
on the probeset/exon level makes sense. In the gene type array, however, only a small proportion of the original
probes per probeset is included. Thus, a summarization on the probeset/exon level is not recommended for
“Gene” arrays but nonetheless possible by using the /iugene/Ostprobeset.db annotation package.

Note that furthermore, there are also no longer designated match/mismatch probes present on “Gene” and “Exon”
type chips. The mismatch probe was initially intended as base-level for background correction, but hasn’t prevailed
due to more elaborate background correction techniques that do not require a mismatch probe.

One-step preprocessing in oligo

The package oligo allows us to perform background correction, normalization and summarization in one single
step using a deconvolution method for background correction, quantile normalization and the RMA (robust multichip
average) algorithm for summarization.

This series of steps as a whole is commonly referred to as RMA algorithm, although strictly speaking RMA is merely
a summarization method".

Relative Log Expression data quality analysis

Before calibrating and evaluating the data, we want to perform another quality control procedure, namely Relative

Log Expression (RLE), as described in the article by Gandolfo et al.’. To this end, we first perform an RMA

without prior normalization:

palmieri eset <- oligo::rma(raw data, target = "core", normalize = FALSE)
Background correcting

Calculating Expression

Further details on the RMA algorithm will be provided after RLE analysis, when the “full” RMA is carried out, includ-
ing normalization.

The RLE is performed by calculating the median log2 intensity of every transcript across all arrays.

We do this by calculating the row medians of exprs (palmieri eset), as the transcripts are represented by the
rows and the single microarrays by the columns.

Note that we do not have to apply the log2 manually, as the output data of the RMA function is in log2 scale by
default.

We then substract this transcript median intensity from every transcript intensity via the sweep function.
We then reshape the data into a format in which we can use to create a boxplot for each array, as before:

row medians assayData <-
Biobase::rowMedians (as.matrix (Biobase: :exprs (palmieri eset)))

RLE data <- sweep (Biobase::exprs(palmieri eset), 1, row medians_ assayData)
RLE data <- as.data.frame (RLE data)

RLE data gathered <-
tidyr::gather (RLE data, patient array, log2 expression deviation)

ggplot2::ggplot (RLE data gathered, aes(patient array,
log2 expression deviation)) +
geom boxplot (outlier.shape = NA) +
ylim(c (-2, 2)) +

theme (axis.text.x = element text (colour = "aquamarined",
angle = 60, size = 6.5, hjust =1 ,
face = "bold"))
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Figure 5. Boxplot for the RLE values.

Note that the y-axis now displays for each microarray the deviation of expression intensity from the median
expression of the respective single transcripts across arrays.

Boxes with a larger extension therefore indicate an unusually high deviation from the median in a lot of
transcripts, suggesting that these arrays are different from most of the others in some way.

Boxes that are shifted in y-direction indicate a systematically higher or lower expression of the majority of
transcripts in comparison to most of the other arrays. This could be caused by quality issues or batch effects.

Therefore, if shape and median of a given box varies too much from the bulk, they should be inspected and
potentially removed.

By inspecting the boxplot in Figure 5, five arrays could be considered as outliers: 2826_I, 2826_II, 3262_II,
3302_II and 3332_II are negatively y-shifted.

We will keep these samples in mind for heatmap cluster analysis later on in the workflow. Arrays that are
confirmed to be outliers by heatmap analysis could be removed for subsequent analysis.

RMA calibration of the data
Now, we can apply the full RMA algorithm to our data in order to background-correct, normalize and
summarize:

palmieri eset norm <- oligo::rma(raw data, target = "core")

Background correcting
Normalizing
Calculating Expression

The parameter target defines the degree of summarization, the default option of which is “core”, using tran-
script clusters containing “safely” annotated genes. Other options for target include “extended” and “full”. For
summarization on the exon level (not recommended for Gene arrays), one can use “probeset” as the target option.
Although other methods for background correction and normalization exist, RMA is usually a good default
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choice. RMA shares information across arrays and uses the versatile quantile normalization method that will make
the array intensity distributions match. However, it is preferable to apply it only after outliers have been removed.
The quantile normalization algorithm used by RMA works by replacing values by the average of identically
ranked (within a single chip) values across arrays. A more detailed description can be found on the Wikipedia
page.

An alternative to quantile normalization would be the vsn algorithm,that performs background correction and
normalization by robustly shifting and scaling intensity values within arrays before log-transforming them. This is
less “severe” than quantile normalization'’.

Some mathematical background on normalization (calibration) and background correction
A generic model for the value of the intensity Y of a single probe on a microarray is given by

Y=B+oa-S

where B is a random quantity due to background noise, usually composed of optical effects and non-specific
binding, « is a gain factor, and S is the amount of measured specific binding. The signal S is considered a random
variable as well and accounts for measurement error and probe effects. The measurement error is typically assumed
to be multiplicative so we can write:

log(s) =0+ @+ ¢

Here 6 represents the logarithm of the true abundance, ¢ is a probe-specific effect, and & accounts for the
nonspecific error. This is the additive-multiplicative-error model for microarray data used by RMA and also
the vsn algorithm'”. The algorithms differ in the way that B is removed and an estimate of  is obtained.

Quality assessment of the calibrated data
We now produce a clustering heatmap and another PCA plot using the calibrated data.

PCA analysis. First, we perform a PCA analysis of the calibrated data analogously to the one with the raw
data:

exp palmieri <- Biobase::exprs(palmieri eset norm)
PCA <- prcomp (t(exp palmieri), scale = FALSE)

percentVar <- round(l100*PCASsdev”2/sum(PCASsdev”2),1)
sd ratio <- sqgrt(percentVar[2] / percentVar[l])

dataGG <- data.frame(PCl = PCASx[,1], PC2 = PCASx[,2],
Disease =
Biobase ::pData(palmieri eset norm) SFactor.Value.disease.,
Phenotype =
Biobase ::pData(palmieri eset norm)SFactor.Value.phenotype.)

ggplot (dataGG, aes(PCl, PC2)) +

geom point (aes(shape = Disease, colour = Phenotype)) +
ggtitle ("PCA plot of the calibrated, summarized data") +
xlab (pastel ("PCl, VarExp: ", percentVar[l], "%")) +
ylab (pasteO ("PC2, VarExp: ", percentVar[2], "%")) +
theme (plot.title = element text (hjust = 0.5)) +
coord fixed(ratio = sd ratio) +
scale shape manual (values = c(4,15)) +
scale color manual (values = c("darkorange2", "dodgerblued"))
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PCA plot of the calibrated, summarized data
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Figure 6. PCA plot of the calibrated, summarized data.

In comparison to the first PCA analysis before RMA (Figure 2), we see that now the first principal component
separates between the tissues types (Figure 6). This indicates that now differential expression between the tissue
types is the dominant source of variation. Note that the second principal component separates the diseases.

Heatmap clustering analysis. We want to plot a heatmap with the sample-to-sample distances with the sample
names as row-names. Also, we want to see how well the samples cluster for phenotype (inflamed and non-inflamed
tissue) and disease (UC and CD), respectively. We use row annotation for that: it means that these features get
a colour code and will be displayed to the left of each row.

phenotype names <- ifelse(str detect (pData
(palmieri eset norm)SFactor.Value.phenotype.,
"non"), "non infl.", "infl.")

disease names <- ifelse(str detect (pData
(palmieri eset norm) SFactor.Value.disease.,
"C]thI’l") , llCD", llUC'l)

annotation for heatmap <-
data.frame (Phenotype = phenotype names, Disease = disease names)

row.names (annotation for heatmap) <- row.names (pData(palmieri eset norm))

In order to map the sample-to-sample distances, we first compute the distances using the dist function. We
need to transpose the expression values since the function computes the distances between the rows (i.e. genes in
our case) by default. The default distance is the Euclidean one. However this can be changed and we choose the
Manhattan distance here (it uses absolute distances along rectangular paths instead of squared distances of the direct
path), as it is more robust. We set the diagonal of the distance matrix to NA in order to increase the contrast of the
color coding. Those diagonal entries do not contain information since the distance of a sample to itself is always
equal to zero.

dists <- as.matrix(dist(t(exp palmieri), method = "manhattan"))

rownames (dists) <- row.names (pData(palmieri eset norm))

hmcol <- rev(colorRampPalette (RColorBrewer: :brewer.pal (9, "Y1O0rRd")) (255))
colnames (dists) <- NULL

diag(dists) <- NA

ann_colors <- list(
Phenotype = c(non_infl. = "chartreuse4", infl. = "burlywood3"),
Disease = c(CD = "blued", UC = "cadetblue2")
)
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col = (hmcol),
annotation row = annotation for heatmap,
annotation colors = ann colors,
legend = TRUE,
treeheight row = 0,
legend breaks = c(min(dists, na.rm = TRUE),
max (dists, na.rm = TRUE)),
legend labels = (c("small distance", "large distance")),
main = "Clustering heatmap for the calibrated samples")

Clustering heatmap for the calibrated samples
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Figure 7. Heatmap of the sample-to-sample distances.
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On the heatmap plot (Figure 7) we also see that the samples do not cluster strongly by tissue, confirming the impres-
sion from the PCA plot (Figure 0) that the separation between the tissues is not perfect. The yellow stripes in the
heatmap might correspond to outliers that could potentially be removed: the ones that could be flagged here are
2826_11, 3262_11, 3271_1, 2978_1I and 3332_II. 2826_II, 3262_II and 3332_II were found to be outliers in both
RLE and heatmap analysis and could therefore potentially be removed; however, in order to stay as close as possible
to the original paper, we continue with the complete set of samples. Note again that more elaborate metrics to

identify and remove outliers are provided by the arrayQualityMetrics package.

Filtering based on intensity
We now filter out lowly expressed genes. Microarray data commonly show a large numberof probes in the

background intensity range. These probes also do not change much across arrays. Hence they combine a low vari-
ance with a low intensity. Thus, they could end up being detected as differentially expressed although they are barely

above the “detection” limit and are not very informative in general.

We will perform a “soft” intensity based filtering here, since this is recommended by the limma'"'"> user guide
(a package we will use below for the differential expression analysis).

However, note that a variance based filter might exclude a similar set of probes in practice. For intensity-
based filtering, we calculate the row-wise medians from the expression data, as they represent the transcript

medians, and assign them to palmieri medians. From this we create a histogram:

palmieri medians <- rowMedians (Biobase::exprs (palmieri eset norm))

hist res <- hist(palmieri medians, 100, col = "cornsilkl", freq = FALSE,

"Histogram of the median intensities",

main =
border = "antiquewhited",
xlab = "Median intensities")
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Figure 8. Histogram of the median intensities per gene.

In the histogram of the gene-wise medians (Figure 8), we can clearly see an enrichment of low medians on the
left hand side. These represent the genes we want to filter. In order to infer a cutoff from the data, we inspect the
histogram: We visually set a cutoff line man threshold to the left of the histogram peak in order not to
exclude too many genes. In our example, we choose a threshold of 4. We plot the same histogram as before and

add the threshold line with the abline () function (Figure 9):

man_threshold <- 4

hist res <- hist(palmieri medians, 100, col = "cornsilk", freq = FALSE,
main = "Histogram of the median intensities",
border = "antiquewhited",
xlab = "Median intensities")

abline (v = man threshold, col = "corald", lwd = 2)
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Figure 9. Histogram of the median intensities per gene with manual intensity filtering threshold (red line).

Transcripts that do not have intensities larger than the threshold in at least as many arrays as the smallest

experimental group are excluded.

In order to do so, we first have to get a list with the number of samples (=arrays) (no_of samples) in the

experimental groups:

no of samples <-

table (paste0 (pData (palmieri eset norm)SFactor.Value.disease., " ",
pData (palmieri eset norm)SFactor.Value.phenotype.))

no of samples
Crohn’s disease inflamed colonic
Crohn’s disease non-inflamed colonic
ulcerative colitis inflamed colonic

ulcerative colitis non-inflamed colonic

mucosa
15
mucosa
15
mucosa
14
mucosa
14

We now filter out all transcripts that do not have intensities greater than the threshold in at least as many arrays
as the smallest experimental group (14) which we define as samples cutoff.

A function idx man threshold is then applied to each row, i.e. to each transcript across all arrays. It evaluates
whether the number of arrays where the median intensity passes the threshold (sum(x > man threshold))
is greater than the samples cutoff and returns TRUE or FALSE for each row, i.e. each transcript.

We then create a table of idx man threshold to summarize the results and get an overview over how many
genes are filtered out. In the last step, we subset our expression set to palmieri manfiltered and keep the

TRUE elements of idx_man threshold.

samples cutoff <- min(no of samples)

idx man threshold <- apply(Biobase::exprs(palmieri eset norm), 1,

function (x) {

sum(x > man_ threshold) >= samples cutoff})
table (idx man threshold)
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idx man threshold
FALSE TRUE
10493 22804

palmieri manfiltered <- subset (palmieri eset norm, idx man threshold)
Annotation of the transcript clusters
Before we continue with the linear models for microarrays and differential expression, we first add “feature data”,

i.e. annotation information to the transcript cluster identifiers stored in the featureData of our ExpressionSet:

anno_palmieri <- AnnotationDbi::select (hugenelOsttranscriptcluster.db,

keys = (featureNames (palmieri manfiltered)),
columns = c("SYMBOL", "GENENAME"),
keytype = "PROBEID")

anno_palmieri <- subset (anno palmieri, !is.na(SYMBOL))

We used the function select from AnnotationDbi to query the gene symbols and associated short descriptions
for the transcript clusters. For each cluster, we added the gene symbol (SYMBOL) and a short description of
the gene the cluster represents (GENENAME).

In a second step, we filtered out the probes that do not map to a gene, i.e. that do not have a gene symbol
assigned.

Removing multiple mappings
Many transcript-cluster identifiers will map to multiple gene symbols, i.e. they can’t be unambigously assigned.

We compute a summary table in the code below to see how many there are:

anno_grouped <- group by (anno _palmieri, PROBEID)
anno_summarized <-
dplyr::summarize (anno grouped, no of matches = n distinct (SYMBOL))

head (anno_summarized)

# A tibble: 6 x 2
PROBEID no of matches
<chr> <int>
7896742
7896754
7896759
7896761
7896779
7896798

oUW N
e )

anno_filtered <- filter (anno_summarized, no of matches > 1)

head(anno_filtered)

# A tibble: 6 x 2
PROBEID no of matches
<chr> <int>
7896742
7896937
7896961
7897006
7897632
7897774

o U W N
D W N www
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ats <- anno_filtered

nrow (probe stats)

[171 1

771

First, we grouped anno_palmieri by their PROBEID; that way, the subsequent operations are not carried through
for each single row, but for each group, i.e. each PROBEID. We then summarized the groups and indicate the number
of different genes assigned to a transcript cluster in the column no_of matches. Finally, we filtered for PROBEIDs
with multiple matches, i.e. no of matches > 1.

With dim (probe stats), we could see how many probes have been mapped to multiple genes.

We have close to 2000 transcript clusters that map to multiple gene symbols. It is difficult to decide which mapping is
“correct”. Therefore, we exclude these transcript clusters.

We want to remove those probe IDs that match the ones in probe stats, as those are the probes with multiple
mappings. We assign these IDs to the variable ids to exclude. Then, we generate palmieri final, an
expression set without the ids to exclude.

ids to e

xlude <- (featureNames (palmieri manfiltered) %in% probe statsSPROBEID)

table (ids_to exlude)

ids t
FALSE
21033

palmieri

validObj

[11 T

o_exlude
TRUE
1771

_final <- subset (palmieri manfiltered, !ids to exlude)

ect (palmieri final)

RUE

As we have just excluded probe IDs from the assay data, we now have to also exclude them from the feature data

anno pal

head (ann

2657
2658
2659
2664
2665
2666

2657
2658
2659
2664
2665
2666

mieri:

o palmieri)

PROBEID SYMBOL
7896742 LINC00266-1
7896742 PCMTD2
7896742 LINC01881

7896754 LOC100287497
7896759 LINCO01128
7896761 SAMD11

GENENAME

long intergenic non-protein coding RNA 266-1

protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 2
long intergenic non-protein coding RNA 1881

septin 7 pseudogene

long intergenic non-protein coding RNA 1128

sterile alpha motif domain containing 11

Recall that fData enables us to access the feature data of an expression set. Until now, no feature data whatsoever
is stored in the fData (palmieri final). Only the row names are the row names of the assay data by default,
which are the PROBEIDs of the transcripts.

Therefore,

we generate a column PROBEID in fData (palmieri final) and assign the row names
of fData (palmieri final) toit:
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fData (palmieri final) SPROBEID <- rownames (fData (palmieri final))

Then, we left-join fData (palmieri final) with anno palmieri, which already contains the columns
“SYMBOL” and “GENENAME”. A left-join keeps the rows and columns of the first argument and adds the
corresponding column entries of the second argument:

fData (palmieri final) <- left join(fData(palmieri final), anno palmieri)
Joining, by = "PROBEID"

# restore rownames after left join
rownames (fData (palmieri final)) <- fData(palmieri final)$SPROBEID

validObject (palmieri final)
[1] TRUE

By left-joining with anno palmieri, we thus add the “SYMBOL” and “GENENAME” columns from
anno_palmieri for only the PROBEIDs that are in fData (palmieri final) and thus get the feature Data
for the filtered probes.

Building custom annotations

Alternatively, one can re-map the probes of the array to a current annotation. A workflow to do this for Illumina
arrays is given in Arloth et al."’. Essentially, the individual probe sequences are re-aligned to an in-silico “exome”
that consists of all annotated transcript exons.

In any case, the package pdinfoBuilder can be used to build customannotation packages for use with oligo. In
order to do this, PGF / CLF files (called “Library files” on the Affymetrix website) as well as the probeset
annotations are required. The probesets typically represent small stretches of the genome (such as a single
exon) and multiple probesets are then used to form a transcript cluster.

The CLF file contains information about the location of individual probes on the array. The PGF file then
contains the individual probe sequences and shows the probeset they belong to. Finally, the probeset annotation
.csv then contains information about which probesets are used in which transcript cluster. Commonly, multiple
probesets are used in one transcript cluster and some probesets are contained in multiple transcript clusters.

Linear models

In order to analyse which genes are differentially expressed between inflamed and non-inflamed tissue, we have
to fit a linear model to our expression data. Linear models are the “workhorse” for the analysis of experimental
data. They can be used to analyse almost arbitrarily complex designs, however they also take a while to learn and
understand and a thorough description is beyond the scope of this workflow.

Mike Love’s and Michael Irizzary’s genomics class'® is a very good resource, especially the section on
interactions and contrasts. It might also be helpful to learn some linear algebra to better understand the concepts
here. The Khan Academy offers helpful (and free) online courses.

Linear models for microarrays

We now apply linear models to microarrays. Specifically, we discuss how to use the /imma package for
differential expression analysis. The package is designed to analyze complex experiments involving comparisons
between many experimental groups simultaneously while remaining reasonably easy to use for simple experiments.
The main idea is to fit a linear model to the expression data for each gene. Empirical Bayes and other methods
are used to borrow information across genes for the residual variance estimation leading to “moderated” z-statistics,
and stabilizing the analysis for experiments with just a small number of arrays'’. Conceptually, the final per gene
variance is a mix of a prior variance and the per gene variance.

Typical experimental designs are disussed in chapter 9 of /imma “User Guide”, which can be found on the
Bioconductor landing page of /imma.
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In the following, we use appropriate design and contrast matrices for our linear models and fit a linear model
to each gene separately.

A linear model for the data
For the subsequent linear modelling of the data, we introduce the abbreviations “UC” and “CD” for the disease
types, and “non_infl.” and “infl.” for the phenotypes, respectively:

individual <-
as.character (Biobase: :pData (palmieri final)SCharacteristics.individual.)

tissue <- str replace all (Biobase::pData(palmieri final)SFactor.Value.phenotype.,

" u, " n)

tissue <- ifelse(tissue == "non-inflamed colonic mucosa",
llnI" IIIH)
4

disease <-
str replace all (Biobase::pData(palmieri final)SFactor.Value.disease.,

disease <-
ifelse(str detect (Biobase::pData (palmieri final)SFactor.Value.disease.,
"Crohn") , "CD", llUCll

The original paper is interested in changes in transcription that occur between inflamed and adjacent
non-inflamed mucosal areas of the colon. This is studied in both inflammatory bowel disease types.

For building our linear model, we have to think about which experimental variables we want to consider. As
we want to find differential expression between non-inflamed and inflamed tissue, in principle, those are the only
two variables we would have to consider.

However, since we have two arrays per individual patient, we have a “Paired Samples” design (see section 9.4 of
the /imma user guide). This means that the samples might be biased by the person they come from. Whenever
a feature in an experimental setup is expected to have a systematic influence on the result, blocking factors on
these features should be introduced.

Thus, the first factor we need is a blocking factor for the individuals that will absorb differences in expression
between them. Therefore, we block on patients, which means that the patient IDs become variables of the linear
model.

Then we create factors that give us the grouping for the tissue types (non-inflamed and inflamed).

Finally, we create two design matrices, one for each of the two diseases as we will analyze them separately in
order to follow the analysis strategy of the original paper closely (one could also fit a joint model to the complete
data set; however, the two diseases might show very different characteristics so that a joint fit might not be
appropriate).

i CD <- individual[disease == "CD"]

design palmieri CD <- model.matrix(~ 0 + tissue[disease == "CD"] + i CD)
colnames (design palmieri CD) [1:2] <- c("I", "nI")
rownames (design palmieri CD) <- i CD

i UC <- individual[disease == "UC"]

design palmieri CD <- model.matrix(~ 0 + tissue[disease == "UC"] + i UC )
colnames (design palmieri UC) [1:2] <- c("I", "nI")
rownames (design palmieri UC) <- i UC
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We can inspect the design matrices:

head(design palmieri CD[, 1:6])

I nI i CD183 i CD2114 i CD2209 i CD2255
164 0 1 0 0 0
164 1 0 0 0 0 0
183 0 1 1 0 0 0
183 1 0 1 0 0 0
2114 0 1 0 1 0 0
2114 1 0 0 1 0 0

head (design palmieri UC[, 1:6])

I nI i UC2424 i UC2987 i UC2992 i UC2995
2400 0 1 0 0 0 0
2400 1 0 0 0 0
2424 0 1 1 0 0 0
2424 1 0 1 0 0 0
2987 0 1 0 1 0 0
2987 1 0 0 1 0 0

In the design matrix, the rows represent the patient array, and the columns are the variables we include in our linear
model. The variables correspond to our blocking factors: there are two for non-inflamed and inflamed tissue, respec-
tively, and one for each patient. “1_UC2424” for example is the blocking variable of patient 2424; UC stands for the
disease the patient is suffering from. For example, the first two rows of the design matrix design palmieri CD
correspond to the two arrays for individual “164”.

The design matrix entries are O or 1 and thus tell us which variables are “active” for which sample:

It can be seen as a switch that turns the single variables “on” (with a 1 at the corresponding position) or “off” (with a 0
at the corresponding position) for each row, i. e. each patient array. If we take a closer look at the single rows, we see
that for each sample, there are two “ones” assigned: one to one of the variables “nl” or “I” corresponding to the tissue
the array came from, and one to the corresponding patient-specific blocking variable.

Note that in the linear model, individual 164 serves as the baseline for all other individuals and thus isn’t included in
the sample variables.

Note that instead of blocking on individuals, it would also be possible to use a “mixed model” approach
with the duplicateCorrelation () function from the /imma package. It has advantages over the “fixed patient
effect model” presented here in terms of applicability to more complicated experimental designs, where we want
to perform comparisons both within and between the patients (e.g. comparing between the two diseases;
“split-plot-designs”™).

More information on it can be found in the limma User’s Guide (section 17.3.6). However, the above explained is
more intuitive and is therefore used here.

Before heading on to find all differentially expressed genes for both diseases, we will first have a look at how this
works in principle for one gene. We will fit the linear model for one gene and run a t-test in order to see whether
the gene is differentially expressed or not.

Analysis of differential expression based on a single gene
For linear model fitting and subsequent testing for differential expression by t-test, we will pick the gene
with the PROBEID 8164535. It has the gene symbol CRAT and will be named as such in the following code.

Hllustration of the fitted linear model on the CRAT gene. Before fitting the linear model, we have a look at the
expression intensities of this gene for each patient in non-inflamed and inflamed tissue, respectively:
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tissue CD <- tissue[disease == "CD"]
crat expr <- Biobase::exprs(palmieri final) ["8164535", disease == "CD"]
crat data <- as.data.frame(crat expr)
colnames (crat data) [1] <- "org value"

crat data <- mutate(crat data, individual = i CD, tissue CD)
crat dataStissue CD <- factor(crat dataStissue CD, levels = c("nI", "I"))

ggplot (data = crat data, aes(x = tissue CD, y = org value,
group = individual, color = individual)) +
geom line() +
ggtitle ("Expression changes for the CRAT gene")
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Figure 10. Visualization of expression changes.

We see that overall, this gene is expressed less in inflamed tissue (Figure 10). We also see that the absolute
expression intensities vary greatly between patients. However, we have already taken care of this problem by
introducing blocking factors based on the individuals, which allows us to compare the tissues within each

individual as represented by the single lines.

If we had not blocked for individuals, the linear model would treat them interchangably and a graphical depic-
tion would only include a single line. Since the individuals haver very different baseline expression levels, this

would lead to a very high variance of the estimated fold changes.

We now compute the variable coefficients by fitting a linear model. We get a vector crat coef with one entry for

each variable.

crat coef <- ImFit(palmieri final[,disease == "CD"],
design = design palmieri CD)Scoefficients["8164535",]

crat coef
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I nI i CD183 i CD2114 i CD2209 i CD2255 i CD255 i CD2826

6.76669 7.19173 0.12382 -0.22145 0.55759 -0.39905 0.29204 -1.07285
i CD2853 i CD2978 i CD321 i CD3262 i CD3266 i CD3271 i CD3302 i CD3332
-0.78285 -0.11633 0.01692 -0.62480 -0.46209 -0.61732 -0.30257 -0.09709

In order to now obtain the expression values fitted by the model, we multiply the design matrix with this
vector of coefficients crat coef:

crat fitted <- design palmieri CD %*% crat coef
rownames(crat_fitted) <- names (crat_ expr)
colnames(crat_fitted) <- "fittedivalue"

crat fitted

fitted value

164 T .CEL 7.192
164 TT.CEL 6.767
183 I.CEL 7.316
183 II.CEL 6.891
2114_I.CEL 6.970
2114 TIT1.CFL 6.545
2209 A.CEL 7.749
2209 B.CEL 7.324
2255 I.CEL 6.793
2255 TI.CEL 6.368
255 I.CEL 7.484
255 T1.CEL 7.059
2826 _T.CEL 6.119
2826 TT1.CEL 5.694
2853 I.CEL 6.409
2853 II.CEL 5.984
2978 I.CEL 7.075
2978 IT1.CEL 6.650
321 T.CEL 7.209
321 TI1.CEL 6.784
3262 I.CEL 6.567
3262 TII.CEL 6.142
3266 I.CEL 6.730
3266 _IT1.CEL 6.305
3271 _I1.CEL 6.574
3271 I1.CEL 6.149
3302 I.CEL 6.889
3302 _II.CEL 6.464
3332 I.CEL 7.095
3332 IT1.CEL 6.670

Recall that for every row in the design matrix (i.e. every patient sample) only the variables with a 1 in the design
matrix are taken into account for calculating the fitted expression value.

This means that as output of the multiplication, we get a vector crat fitted whose entries are the sum of
relevant variable coefficients for each sample, respectively.

For example, the fitted value for patient sample 2114 I.CEL is 6.9703: it is the sum of the respective activated
variable coefficients “nl” (7.1917) and “i_CD2114” (-0.2215).

Let’s visualize the difference between non-inflamed and inflamed tissue again after fitting:

crat datasfitted value <- crat fitted
ggplot (data = crat data, aes(x = tissue CD, y = fitted value,
group = individual, color = individual)) +
geom line() +
ggtitle ("Fitted expression changes for the CRAT gene")
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Figure 11. Expression changes for the CRAT gene.

Note that the difference of the fitted expression values between inflamed and non-inflamed samples of one patient
is the same for all patients and is determined by the difference between the variable coefficients of I (6.7667) and
nI (7.1917), which is -0.425 (Figure 11).

This is the case because the same blocking variable is activated by the design matrix for both samples from
a single patient, leading to a comparison within patients only. These blocking variables correct the fitted tissue
specific expression values towards the expression levels of the individual patients. Therefore the final estimate is
like an average of all the within-individual differences.

The “difference” between non-inflamed and inflamed tissue of -0.425 is actually a log2 fold change, as
our expression data is on the log2 scale. -0.425 therefore is our log2 fold change for the CRAT gene.

Differential expression analysis of the CRAT gene. In order to test whether the gene is differentially
expressed or not, a #-test with the null hypothesis that there is no difference in the expression between non-inflamed
and inflamed tissue is carried out. Our blocking design is conceptually similar to a paired t-test for which the
statistic is given by:

d
s/\/;

=

Where, d is the mean difference in expression values between the individuals. The paired t-test computes the
variance s® from the paired differences. This is lower than the variance of a standard t-test and thus the paired
t-test has higher power as long as the expression values for the same individual are correlated (see e.g. the article on
Wikipedia).

We thus have improved the power of the ordinary 7-test by reducing the variance via blocking on individuals.

We now conduct the #-test on the linear model in order to find out whether the difference between non-inflamed
and inflamed tissue differs significantly from 0:

crat noninflamed <- na.exclude(crat dataSorg value[tissue == "nI"])
crat inflamed <- na.exclude(crat dataSorg value[tissue == "I"])
res t <- t.test(crat noninflamed ,crat inflamed , paired = TRUE)
res t

Paired t-test

data: crat noninflamed and crat inflamed

t = 6.8, df = 14, p-value = 8e-06

alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
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0.2919 0.5581

sample estimates:

mean of the differences
0.425

We get a low p-value close to 0 and thus can conclude that the CRAT gene is differentially expressed between non-
inflamed and inflamed tissue.

Note that the p-value isn’t exactly the same one as below when analyzing the differential expression of all genes. This
is due to the variance moderation performed by /imma.

Contrasts and hypotheses tests
We now fit the linear model for all genes and define appropriate contrasts to test hypotheses of interest.

We want to compare the inflamed to the non-inflamed tissue. Thus, we create a contrast matrix consisting of
only one contrast “I-nl": /imma’s function makeContrasts creates this matrix from a symbolic description
of the contrast of interest.

We now fit a linear model to our data and apply the contrasts.fit () function to it in order to find genes
with significant differential expression between non-inflamed and inflamed tissue:

contrast matrix CD <- makeContrasts(I-nI, levels = design palmieri CD)

palmieri fit CD <- eBayes(contrasts.fit (ImFit (palmieri final[,disease == "CD"],
design = design palmieri CD),
contrast matrix CD))

contrast matrix UC <- makeContrasts(I-nI, levels = design palmieri UC)

palmieri fit UC <- eBayes (contrasts.fit (lmFit (palmieri final[,disease == "UC"],
design = design palmieri UC),
contrast matrix UC))

We applied the empirical Bayes variance moderation method to the model via the eBayes () function, which
computes moderated z-statistics. In microarray analysis, the number of arrays often is quite small, and thus
variance estimation is difficult. Using a combination of the per-gene-variance and a prior variance we can
improve the variance estimate, hence the term “moderation”. “Empirical Bayes” means that the prior is estimated
from the data.

The result of the eBayes () step is that the individual variances are shrunken towards the prior value.

Extracting results

Finally, we extract the number of differentially expressed genes. Results can be extracted by use of the
topTable function. We extract the results for both Crohn’s disease and ulcerative colitis, and the results are sorted
by their absolute 7-statistics. As a diagnostic check, we also plot the p-value histogram (Figure 12 and Figure 13): We
expect a uniform distribution for the p-values that correspond to true null hypotheses, while a peak near zero shows an
enrichment for low p-values corresponding to differentially expressed (DE) genes.

Note that if the p-value distribution for a dataset is very different from the ones in the histograms below, this might
lead to quality loss in the subsequent analysis. Reasons for a divergent p-value-distribution might be batch effects or
a lack of consideration of other blocking factors in the design matrix. Thus, if the p-value is not as expected, try to
include possible blocking factors and batches and rerun the analysis. If this does not help, empirical Bayes / null
estimation methods for multiple testing are useful.

A good starting point to learn about these methods is the article on false discovery rate estimation by Korbininan
Strimmer"” and chapter 1-6 of Efron’s book on Large-Scale Inference'®, as well as the blog-post on “How to interpret
a p-value histogram” by David Robinson'’.

table CD <- topTable(palmieri fit CD, number = Inf)
head (table CD)
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PROBEID SYMBOL GENENAME logFC
7928695 7928695 FAM213A family with sequence similarity 213 member A -0.5990
8123695 8123695 ECI2 enoyl-CoA delta isomerase 2 -0.4855
8164535 8164535 CRAT carnitine O-acetyltransferase -0.4250
8009746 8009746 SLC16A5 solute carrier family 16 member 5 -0.5182
7952249 7952249 USP2 ubiquitin specific peptidase 2 -0.8484
8105348 8105348 GPX8 glutathione peroxidase 8 (putative) 0.8312
AveExpr t P.Value adj.P.Vval B
7928695 7.739 -7.059 1.383e-06 0.02092 5.305
8123695 6.876 -6.317 5.907e-06 0.02092 4.028
8164535 6.732 -6.230 7.037e-06 0.02092 3.872
8009746 5.562 -6.206 7.386e-06 0.02092 3.829
7952249 5.606 -6.203 7.429%9e-06 0.02092 3.824
8105348 5.301 6.074 9.656e-06 0.02092 3.590
hist (table CDSP.Value, col = brewer.pal(3, name = "Set2") [1],
main = "inflamed vs non-inflamed - Crohn’s disease", xlab = "p-values")
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Figure 12. Histogram of the p—values for Crohn’s disease.

table UC <- topTable (palmieri fit UC, number
head (table UC)

= Inf

0.8 1.0

)

PROBEID SYMBOL GENENAME logFC AveExpr
8003875 8003875 SPNS2 sphingolipid transporter 2 0.7412 6.478
8082012 8082012 SLC15A2 solute carrier family 15 member 2 0.8061 5.319
7952290 7952290 TRIM29 tripartite motif containing 29 1.0140 5.855
7961693 7961693 LDHB lactate dehydrogenase B 0.3968 9.534
8072015 8072015 GRK3 G protein-coupled receptor kinase 3 0.4713 5.584
8096070 8096070 BMP3 bone morphogenetic protein 3 -1.6961 6.420
t P.Value adj.P.Val B
8003875 7.801 4.553e-07 0.003983 6.441
8082012 7.744 5.033e-07 0.003983 6.352
7952290 7.482 8.009e-07 0.003983 5.937
7961693 7.401 9.265e-07 0.003983 5.806
8072015 7.308 1.097e-06 0.003983 5.654
8096070 -7.289 1.136e-06 0.003983 5.623
hist (table UCSP.Value, col = brewer.pal(3, name = "Set2")[2],
main = "inflamed vs non-inflamed - Ulcerative colitis", xlab = "p-values")
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Figure 13. Histogram of the p—values for ulcerative colitis.

Multiple testing FDR, and comparison with results from the original paper
In the original paper, a p-value of 0.001 was used as a significance cutoff. Using this we get 947 genes identified
as differentially expressed for UC:

nrow (subset (table UC, P.Value < 0.001))

[1] 947

However, it is impossible to determine a precise bound on the number of false positive genes in this list. All
that we can say using p-values is that we have at most 21033 (total number of tests) * 0.001 = 21.033 false positive
genes in our list. Therefore, by choosing a p-value cutoff of 0.001, as much as 2.22% of our genes identified
as differentially expressed might be false positives.

Thus, we can see that the “raw” p-values are very “liberal” when looking at many tests simultaneously. We
therefore need error rates adapted to the multiple testing situation. By far the most popular one in molecular biology
is the false discovery rate or FDR for short. It is the percentage of false positives among all positives. As we have
seen, the FDR of our genes list using a simple p-value cutoff might be quite high.

On the other hand, we can see a clear peak in the p-value histogram (Figure 13), caused by the differentially
expressed genes. There we expect the actual FDR of our list to be lower.

The FDR at a given cutoff is given by the “adjusted” p-value in the results table.

tail (subset (table UC, P.Value < 0.001))

PROBEID SYMBOL
7915640 7915640 EIF2B3

7894577 7894577 <NA>
7897877 7897877 TNEFRSF1B
8142671 8142671 WASL

7941946 7941946 NDUFV1
8140371 8140371 TMEM120A

GENENAME logFC
7915640 eukaryotic translation initiation factor 2B subunit gamma 0.2795
7894577 <NA> 0.4048
7897877 TNF receptor superfamily member 1B 0.3564
8142671 Wiskott-Aldrich syndrome like -0.4281
7941946 NADH:ubiquinone oxidoreductase core subunit V1 -0.3832
8140371 transmembrane protein 120A -0.3657

AveExpr t P.Value adj.P.Val B
7915640 6.271 3.957 0.0009867 0.02203 -0.6478
7894577 5.598 3.956 0.0009892 0.02205 -0.6501
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7897877 6.656 3.956 0.0009899 0.02205 -0.6508
8142671 7.907 -3.955 0.0009906 0.02205 -0.6515
7941946 8.867 -3.952 0.0009976 0.02218 -0.6581
8140371 6.519 -3.951 0.0009990 0.02219 -0.6594

The adjusted p-value for a raw p-value of 0.001 in the table is 0.0222, which is an order of magnitude lower
than the FDR we can infer from p-values alone.

So although this is not recommended in general, we also use a p-value cutoff at 0.001 in the following in order
to be able to compare our workflow results to the paper results.

The paper results can be downloaded as excel files from http://links.lww.com/IBD/A795 and should be saved
as an .xlsx file named palmieri DE res.xlsx in your working directory.

Note that while the paper uses p-value cutoffs, it also reports the corresponding FDRs (just as we did for the
UC data here).

For a p-value cutoff of 0.001, the corresponding FDRs are 0.05 in Crohn’s disease and 0.02 in ulcerative colitis.
There are four tables in total, giving the list of up and downregulated genes in CD and UC, respectively. We
calculate the overlap between our results and the ones from the paper as the ratio of the genes that were found in
both analyses and the genes that were only found in the paper.

We also calculate the total number of diffentially expressed genes that we find in our workflow analysis.

fpath <- system.file("extdata", "palmieri DE res.xlsx", package = "maEndToEnd")
palmieri DE res <- sapply(l:4, function(i) read.xlsx(cols = 1, fpath,
sheet = i, startRow = 4))

names (palmieri DE res) <- c("CD UP", "CD DOWN", "UC UP", "UC DOWN")
palmieri DE res <- lapply(palmieri DE res, as.character)
paper DE genes CD <- Reduce("c", palmieri DE res[1l:2])
paper DE genes UC <- Reduce("c", palmieri DE res[3:4])

overlap CD <- length(intersect (subset (table CD, P.Value < 0.001)S$SYMBOL,
paper DE genes CD)) / length (paper DE genes CD)

overlap UC <- length(intersect (subset (table UC, P.Value < 0.001)SSYMBOL,
paper DE genes UC)) / length(paper DE genes_ UC)
overlap CD
[1] 0.6443
overlap UC

[1] 0.6731

total genenumber CD <- length (subset (table CD, P.Value < 0.001)SSYMBOL)
total genenumber UC <- length (subset (table UC, P.Value < 0.001)SSYMBOL)

total genenumber CD
[1] 575

total genenumber UC
[1] 947

We find 575 (CD) and 947 (UC) differentially expressed genes (“DE-genes”).
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In the paper, 298 (CD) and 520 (UC) DE-genes were found for the two diseases at the same cutoff. This higher
number of DE-genes identified is probably due to the increased power of the blocking according to the individuals
and the moderated variance estimation that /imma performs.

We see that we get a moderate overlap of 0.6443 for CD and 0.6731 for UC, showing that both analyses

lead to somewhat comparable results.

Visualization of DE analysis results - volcano plot

For a visualization of the differentially expressed genes, we create a volcano plot, which is commonly used
to summarize the results of a differential expression analysis in a single figure.

For a better overview, we only show gene symbols of genes with a fold change greater than 1, which we
define in the volcano names object. The highlight option in the volcanoplot function is set to 100
and thus only labels the 100 genes with the lowest p-values.

volcano names <- ifelse (abs(palmieri fit CDScoefficients)>=1,
palmieri fit CDSgenes$SYMBOL, NA)

volcanoplot (palmieri fit CD, coef
names = volcano_names,
xlab = "Log2 Fold Change",

style = "p-value", highlight = 100,

ylab = NULL, pch=16, cex=0.35)
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Figure 14. Volcano plot of the DE-genes.
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We can now do a little research on the biological function of genes that show a high foldchange, for example
the gene with the symbol S100AS8 on the right hand side of the plot (Figure 14). If we search for this gene
symbol on genecards.org, we find that it encodes for a protein that builds a pro-inflammatory complex in
association with another protein.

Gene ontology (GO) based enrichment analysis

As discussed above, it is recommended to use an FDR cutoff in differential expression analysis rather than a
p-value cutoff, since this way you control an explicitly defined error rate and the results are easier to interpret
and to compare. For the following enrichment analysis, we create tables with differentially expressed genes for
CD and UC, respectively, and choose an FDR cutoft of 10%. Here, we focus on the CD subset of the data.

DE genes CD <- subset(table CD, adj.P.Val < 0.1)SPROBEID

We can now try to characterize the identified differentially expressed genes more in detail by performing
a GO enrichment analysis. Essentially the gene ontology (http://www.geneontology.org/) is a hierarchically
organized collection of functional gene sets'*’.

Matching the background set of genes

The function genefinder from the genefilter package’ will be used to find a background set of genes
that are similar in expression to the differentially expressed genes. We then check whether the background
has roughly the same distribution of average expression strength as the foreground.

We do this in order not to select a biased background since the gene set testing is performed by a simple Fisher
test on a 2x2 table. Note that this approach is very similar to commonly used web tools like GOrilla*’.

For every differentially expressed gene, we try to find genes with similar expression with genefinder. The
genefinder function returns a list with two elements for each gene: one with the indices of the background
genes found and one with the distances to the DE-genes:

back genes idx <- genefilter::genefinder (palmieri final,

as.character (DE_genes CD),
method = "manhattan", scale = "none'")

We have to extract the PROBEIDs, which correspond to the indices. We do that by using the sapply function,
which gives us a single matrix with the DE-genes as column names and the PROBEIDs of the corresponding
background genes in the cells below:

back genes idx <- sapply(back genes idx, function(x)xS$indices)

We then create a vector back genes containing all background gene PROBEIDs:

In order to eliminate foreground genes, i.e. DE-genes, from the back genes set, we use the setdiff function.
It returns all elements from the first argument (back genes) that are not part of the second argument
(DE_genes_CD). With the intersect function, we verify that we were successful: it should return O, as
there shouldn’t be any intersect anymore between back genes and DE_genes_CD:

back genes <- featureNames (palmieri final) [back genes idx]
back genes <- setdiff (back genes, DE genes CD)

intersect (back genes, DE genes CD)
character (0)
length (back genes)

[1] 9756
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We create a multidensity plot with mean expression on the x-axis and curves for all genes, foreground genes
and background genes, respectively (Figure 15). We want to see whether the background genes show a plot similar
to the foreground genes so that the background is not biased for the gene enrichment analysis:

multidensity (list(
all = table CD[, "AveExpr"]
fore = table CD[DE genes CD , "AveExpr"],

back = table CD[rownames (table CD) %in% back genes, "AveExpr"]),
col = c("#ed6981", "#aeTeel2", "#aT7adda"),
xlab = "mean expression",
main = "DE genes for CD-background-matching")
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Figure 15. Selecting a background set of genes for the gene ontology analysis.

When comparing the “background gene” curve to the “foreground gene” curve, we see a similar curve shape,
indicating a sensible background matching (Figure 15). Note that the right-shift of the “foreground-gene” curve in
comparison to the “background-gene” curve indicates that DE-genes are generally very highly expressed, so that
it wasn’t possible to find background-genes with exactly equal overall expression distribution.

The “all gene” curve has the leftmost curve maximum; this can be explained by a high number of lowly expressed
genes in all samples and shows that a background matching is sensible in order to avoid biases.

For the actual testing of which GO gene sets are enriched in inflamed tissue, we use the ropGO package which
implements a nice interface to Fisher testing and also has additional algorithms taking the GO structure into
account, by e.g. only reporting the most specific gene set in the hierarchy*.

The GO has three top ontologies: Cellular component (CC), biological processes (BP), and molecular
function (MF). For illustrative purposes we limit ourselves to the BP category here.

Running topGO

topGO requires a topGOdata object containing the necessary information for the analysis. We follow the steps
described in the topGO vignettes: First, we will create a named vector all genes with all genes to be analyzed,
i.e. DE-genes and background genes:

gene IDs <- rownames (table CD)

in universe <- gene IDs %in% c(DE genes CD, back genes)
in selection <- gene IDs %in% DE genes CD
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all genes <- in selection[in universe]
all genes <- factor(as.integer (in selection[in universe]))
names (all genes) <- gene IDs[in universe]

The following steps were carried through:

1. we created an in universe vector by using the $in% matching function. We want to know which
elements from gene IDs are also contained in DE genes CD and back genes, as the latter two
are our gene universe we use for enrichment analysis. We got a vector in universe with the length of
gene_ IDs that has the entry TRUE when the corresponding gene in gene IDs could be also found
in DE_genes CDorback genes, and FALSE otherwise.

2. We did the same for our DE-genes and call this vector in_selection.
3. We created the all genes vector:

a) First, we selected all the elements from in selection that are TRUE in in universe by
applying all genes <- in selection[in universe].

b) Then, we converted the elements in all genes from TRUE and FALSE to 0 and 1 by converting
the vector to an integer vector. This way, each element in the vector is a 0 if the corresponding gene
is a background gene and a 1 if the corresponding gene is a DE-gene. Also, we converted the vector
to a factor.

c) We named the vector elements with the corresponding gene IDs.

We now initialize the ropGO data set, using the GO annotations contained in the annotation data base for the
chip we are using. The nodeSize parameter specifies a minimum size of a GO category we want to use:
i.e. here, categories with less than 10 genes are not included in the testing.

top GO _data <- new("topGOdata", ontology = "BP", allGenes = all genes,
nodeSize = 10, annot = annFUN.db, affyLib = "hugenelOsttranscriptcluster.db")

Now the tests can be run. ropGO offers a wide range of options, for details see the paper’ or the package
vignette.

We run two common tests: an ordinary Fisher test for every GO category, and the “elim” algorithm, which
tries to incorporate the hierarchical structure of the GO and tries to “decorrelate” it in order to report the most
specific significant term in the hierarchy.

The algorithm starts processing the nodes / GO categories from the highest (bottommost) level and then
iteratively moves to nodes from a lower level. If a node is scored as significant, all of its genes are marked as
removed in all ancestor nodes. This way, the “elim” algorithm aims at finding the most specific node for every gene.

The test uses a 0.01 p-value cutoff by default.

result top GO elim <-

runTest (top GO data, algorithm = "elim", statistic = "Fisher")
result top GO classic <-
runTest (top GO data, algorithm = "classic", statistic = "Fisher")

We can now inspect the results. We look at the top 100 GO categories according to the “Fisher elim” algorithm.
The function GenTable produces a table of significant GO categories, the function printGenes gives genes
annotated to them; the significant ones are denoted with a “2” in the “raw p-value” column, the non-significant
ones with a “1”. We therefore select raw p-value ==

Note that we do not get the actual p-values here because our all genes vector doesn’t contain this
information; it only tells us whether a gene is differentially expressed or not.

res top GO <- GenTable(top GO data, Fisher.elim = result top GO elim,
Fisher.classic = result top GO classic,
orderBy = "Fisher.elim" , topNodes = 100)
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genes_top GO <- printGenes(top GO data, whichTerms = res top GOSGO.ID,
chip = "hugenelOsttranscriptcluster.db", geneCutOff = 1000)

res_top GOSsig genes <- sapply(genes top GO, function (x) {
str c(pasteO(x[xS'raw p-value’ == 2, "Symbol.id"],";"),
collapse = "")

b

head(res top GO[,1:8], 20)

GO.ID Term Annotated Significant
1 GO0:0032496 response to lipopolysaccharide 223 96
2 G0:0006954 inflammatory response 442 193
3 GO0:0051897 positive regulation of protein kinase B ... 100 49
4 G0O:0050900 leukocyte migration 282 134
5 GO:0030335 positive regulation of cell migration 318 130
6 GO:0006911 phagocytosis, engulfment 54 29
7 G0:0030198 extracellular matrix organization 223 96
8 GO:0070098 chemokine-mediated signaling pathway 45 25
9 GO:0070374 positive regulation of ERK1l and ERK2 cas... 144 57
10 GO:0007186 G-protein coupled receptor signaling pat... 441 146
11 GO:0048661 positive regulation of smooth muscle cel... 57 32
12 GO:0030574 collagen catabolic process 48 25
13 GO:0002675 positive regulation of acute inflammator... 20 14
14 GO:0030593 neutrophil chemotaxis 54 32
15 G0:0042493 response to drug 566 177
16 GO:0001937 negative regulation of endothelial cell ... 30 18
17 GO:0016525 negative regulation of angiogenesis 70 32
18 GO:0030449 regulation of complement activation 44 23
19 GO:0006067 ethanol metabolic process 12 10
20 GO:0033540 fatty acid beta-oxidation using acyl-CoA... 12 10
Expected Rank in Fisher.classic Fisher.elim Fisher.classic
1 49.11 56 3.1e-10 1.0e-12
2 97.34 1 1.0e-09 1.8e-25
3 22.02 115 2.2e-09 2.2e-09
4 62.10 6 1.3e-07 6.6e-22
5 70.03 39 3.2e-07 1.2e-14
6 11.89 205 3.5e-07 3.5e-07
7 49.11 57 7.7e=-07 1.0e-12
8 9.91 231 9.7e-07 9.7e-07
9 31.71 242 1.3e-06 1.3e-06
10 97.12 150 2.6e-06 2.6e-08
11 12.55 149 4.3e-06 2.1e-08
12 10.57 283 4.7e-06 4.7e-06
13 4.40 290 6.0e-06 6.0e-06
14 11.89 125 7.1e-06 3.3e-09
15 124.65 171 7.5e-06 8.8e-08
16 6.61 297 7.6e-06 7.6e-06
17 15.42 303 8.6e-06 8.6e-06
18 9.69 311 1.0e-05 1.0e-05
19 2.64 318 1.1e-05 1.1e-05
20 2.64 319 1.1e-05 1.1e-05

Visualization of the GO-analysis results
A graph of the results can also be produced. Here we visualize the three most significant nodes according to the
Fisher elim algorithm in the context of the GO hierarchy.

showSigOfNodes (top GO data, score(result top GO elim), firstSigNodes = 3,
useInfo = ’def’)

Page 34 of 54



F1000Research 2018, 5:1384 Last updated: 25 JUL 2018

GO0008150
boogical_process

GOOusI7I6

Goouss22
posiiv reguiston

GOo08s84
posiiv reguiaton

Go00st707
response o choro.

601901700 601902533
(esponse o oxygen posive regulaion

Figure 16. Significantly enriched GO nodes in the GO hierarchy.

We can see that indeed GO categories related to inflammation, signalling and immune response come up as
significant (Figure 16) Gene set enrichment analysis has been a field of very extensive research in bioinformatics.
For additional approaches see the ropGO vignette and the references therein and also in the GeneSetEnrichment
view.

A pathway enrichment analysis using reactome
The package ReactomePA offers the possibility to test enrichment of specific pathways using the free,
opensource, curated and peer reviewed Reactome pathway database™*. The package requires entrez identifiers, so
we convert our PROBEIDs (transcript cluster identifiers) to entrez identifiers using the function mapIDs from the
package AnnotationDbi. This will create a named vector that maps the PROBEIDs to the entrez ones, with the
PROBEIDs as names and the entrez ids as vector elements.

entrez ids <- mapIds (hugenelOsttranscriptcluster.db,

keys = rownames (table CD),
keytype = "PROBEID",
column = "ENTREZID")
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We can now run the enrichment analysis that performs a statistical test based on the hypergeoemtric distribution
that is the same as a one sided Fisher-test, which r1opGO calls “Fisher-classic”. Details can be found in the vignette
of the DOSE package™.

reactome enrich <- enrichPathway(gene = entrez ids[DE genes CD],
universe = entrez ids[c(DE _genes CD,
back genes)],
organism = "human",
pvalueCutoff = 0.05,
gvalueCutoff = 0.9,
readable = TRUE)

reactome enrichCresultSDescription <- paste0(str sub(
reactome enrich@resultSDescription, 1, 20),

u._.u)

head (summary (reactome enrich)) [1:6]

ID Description GeneRatio BgRatio
R-HSA-8978868 R-HSA-8978868 Fatty acid metabolis... 54/1380 104/5934
R-HSA-6785807 R-HSA-6785807 Interleukin-4 and 13... 41/1380 77/5934
R-HSA-6783783 R-HSA-6783783 Interleukin-10 signa... 22/1380 31/5934
R-HSA-556833 R-HSA-556833 Metabolism of lipids... 154/1380 454/5934
R-HSA-380108 R-HSA-380108 Chemokine receptors ... 19/1380 26/5934
R-HSA-1474244 R-HSA-1474244 Extracellular matrix... 74/1380 188/5934
pvalue p.adjust
R-HSA-8978868 1.463e-10 1.494e-07
R-HSA-6785807 9.450e-09 4.824e-06
R-HSA-6783783 2.208e-08 7.516e-06
R-HSA-556833 4.904e-08 1.252e-05
R-HSA-380108 9.824e-08 2.006e-05
R-HSA-1474244 3.898e-07 6.633e-05

Note that we trimmed pathway names to 20 characters.

Visualizing the reactome based analysis results

The top pathways can be displayed as a bar chart that displays all categories with a p-value below the specified
cutoff (Figure 17).

barplot (reactome enrich)

Fatty acid metabolis...
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0.00020

Signaling by GPCR... 1

GPCR downstream sign... -
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Figure 17. Enriched Reactome pathways and their p—values as a bar chart.
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The “enrichment map” from the package enrichplot displays the results of the enrichment analysis as a graph,
where the color represents the p-value of the pathway and the edge-thickness (that is the line connecting two
pathways) is proportional to the number of overlapping genes between two pathways.

emapplot (reactome enrich, showCategory = 10)
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InterIeukin—?O signa...
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Figure 18. Enriched Reactome pathways enrichment results as a graph.

Again, the graph in Figure 18 shows pathways related to signalling and immune response.

The package clusterProfiler’’ can also perform these analyses using downloaded KEGG data. Furthermore, the
package EnrichmentBrowser’ additionally offers network-based enrichment analysis of individual pathways.
This allows the mapping of the expression data at hand to known regulatory interactions.
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Session information

As the last part of this document, we call the function sessioninfo, which reports the version numbers of R and
all the packages used in this session. It is good practice to always keep such a record of this as it will help to track
down what has happened in case an R script ceases to work or gives different results because the functions have
been changed in a newer version of one of your packages. By including it at the bottom of a script, your reports
will become more reproducible.

The session information should also always be included in any emails to the Bioconductor support site along with
all code used in the analysis.

gc ()
used (Mb) gc trigger (Mb) max used (Mb)

Ncells 11237194 600.2 2.051e+07 1095 2.051e+07 1095
Vcells 425006866 3242.6 1.243e+09 9486 1.243e+09 9486

length (getLoadedDLLs ())
[1] 98
sessionInfo ()

R version 3.5.0 (2018-04-23)
Platform: x86 64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.4 LTS

Matrix products: default
BLAS: /usr/lib/openblas-base/libblas.so.3
LAPACK: /usr/lib/libopenblasp-r0.2.18.s0o

locale:
[1] LC_CTYPE=en_US.UTF—8 LC_NUMERIC=C
[3] LC_TIME=de DE.UTF-8 LC_COLLATE=en US.UTF-8
[5] LC MONETARY=de DE. UTF-8 LC MESSAGES=en US.UTF- 8
[7] LC PAPER=de DE.UTF- 8 LC NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT:de_DE .UTF-8 LC_I DENTIFICATION=C

attached base packages:
[1] grid stats4 parallel stats graphics grDevices utils
[8] datasets methods base

other attached packages:

[1] Rgraphviz 2.24.0 bindrcpp 0.2.2

[3] hexbin 1.27.2 openxlsx 4.1.0

[5] genefilter 1.62.0 matrixStats 0.53.1

[7] stringr 1.3.1 tidyr 0.8.1

[9] dplyr 0.7.5 pheatmap 1.0.10

[11] RColorBrewer 1.1-2 geneplotter 1.58.0

[13] annotate 1.58.0 XML 3.98-1.11

[15] lattice 0.20-35 ggplot2 2.2.1.9000
[17] gplots 3.0.1 clusterProfiler 3.8.1
[19] ReactomePA 1.24.0 topGO 2.32.0
[21] SparseM 1.77 GO.db 3.6.0
[23] graph 1.58.0 limma 3.36.1
[25] arrayQualityMetrics 3.36.0 hugenelOsttranscriptcluster.db 8.7.0
[27] org.Hs.eg.db 3.6.0 AnnotationDbi 1.42.1
[29] pd.hugene.l.0.st.vl 3.14.1 DBI 1.0.0
[31] oligo 1.44.0 RSQLite 2.1.1
[33] Biostrings 2.48.0 XVector 0.20.0
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[35]
[37]
[39]
[41]
[43]

loaded via a namespace

[1]

IRanges 2.14.10
ArrayExpress 1.40.0
Biobase 2.40.0
maEndToEnd 0.99.0
BiocStyle 2.8.2

utf8 1.1.4
htmlwidgets 1.2
BiocParallel 1.14.1
munsell 0.4.3
preprocessCore 1.42.0
withr 2.1.2
GOSemSim 2.6.0
highr 0.6

setRNG 2013.9-1
labeling 0.3
GenomeInfoDbData 1.1.0
bit64 0.9-7

xfun 0.1

R6 2.2.2

illuminaio 0.22.0
bitops 1.0-6
DelayedArray 0.6.0
scales 0.5.0

nnet 7.3-12

gtable 0.2.0

affy 1.58.0

splines 3.5.0
acepack 1.4.1

yaml 2.1.19
backports 1.1.2
Hmisc 4.1-1
bookdown 0.7

ff 2.2-14

Rcpp 0.12.17
base6d4enc 0.1-3
purrr 0.2.5

rpart 4.1-13
viridis 0.5.1
SummarizedExperiment 1.10.1
cluster 2.0.7-1
magrittr 1.5

DO.db 2.9

evaluate 0.10.1
gcrma 2.52.0
compiler 3.5.0
crayon 1.3.4
htmltools 0.3.6
BiocWorkflowTools 1.6.1
tweenr 0.1.5
rappdirs 0.3.1

cli 1.0.0

gdata 2.18.0

igraph 1.2.1
pkgconfig 2.0.1
foreign 0.8-70
BeadDataPackR 1.32.0
digest 0.6.15
base64 2.0
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Sd4Vectors 0.18.2
oligoClasses 1.42.0
BiocGenerics 0.26.0
knitr 1.20

(and not attached) :

tidyselect 0.2.4
beadarray 2.30.0
devtools 1.13.5
codetools 0.2-15
units 0.5-1
colorspace 1.3-2
BiocInstaller 1.30.0
rstudioapi 0.7
DOSE 3.7.0

git2r 0.21.0
hwriter 1.3.2
rprojroot 1.3-2
affxparser 1.52.0
GenomeInfoDb 1.16.0
gridsvG 1.6-0
fgsea 1.6.0
assertthat 0.2.0
ggraph 1.0.1
enrichplot 1.1.0
Cairo 1.5-9

rlang 0.2.1
lazyeval 0.2.1
checkmate 1.8.5
reshape2 1.4.3
gvalue 2.12.0
tools 3.5.0
affyio 1.50.0
ggridges 0.5.0
plyr 1.8.4
zlibbioc 1.26.0
RCurl 1.95-4.10
openssl 1.0.1
cowplot 0.9.2
ggrepel 0.8.0
tinytex 0.5
data.table 1.11.4
reactome.db 1.64.0
xtable 1.8-2
gridExtra 2.3
tibble 1.4.2
KernSmooth 2.23-15
Formula 1.2-3
udunits2 0.13
MASS 7.3-50
Matrix 1.2-14
vsn_3.48.1

bindr 0.1.1
GenomicRanges 1.32.3
rvcheck 0.1.0
foreach 1.4.4
affyPLM 1.56.0
rmarkdown 1.9
fastmatch 1.1-0
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[107] htmlTable 1.12 gtools 3.5.0
[109] graphite 1.26.1 jsonlite 1.5
[111] viridisLite 0.3.0 pillar 1.2.3
[113] httr 1.3.1 survival 2.42-3
[115] glue 1.2.0 zip 1.0.0

[117] UpSetR 1.3.3 iterators 1.0.9
[119] bit 1.1-14 ggforce 0.1.2
[121] stringi 1.2.2 blob 1.1.1
[123] latticeExtra 0.6-28 caTools 1.17.1
[125] memoise 1.1.0

Dataset 1. R markdown document to reproduce the results
obtained in the article. This file allows the reader to reproduce
the analysis results obtained in the article

http://dx.doi.org/10.5256/f1000research.8967.d208076

Data and software availability

This article is based on an R markdown file (MA-Workflow.Rmd) which is available as Dataset 1 (Dataset 1.
R markdown document to reproduce the results obtained in the article, 10.5256/f1000research.8967.d208076)%
and is currently available via the development version (3.8) of Bioconductor. This will become the release ver-
sion in October 2018. The .Rmd file allows the reader to reproduce the analysis results obtained in this article. All
data analyzed are downloaded from ArrayExpress.
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Andrea Rau
UMR 1313 GABI (Animal Genetics and Integrative Biology), French National Institute for Agricultural
Research (INRA), Jouy-en-Josas, France

The authors have done a nice job of responding to the reviewers' comments, and this second version of
the manuscript is greatly improved.

Competing Interests: No competing interests were disclosed.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 11 July 2018

doi:10.5256/f1000research.16727.r35715

v

James W. MacDonald
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA,
USA

The second version of this article is much improved from the first. The explanations are simplified, and
much of what | considered to be extraneous has been removed. | only have a few minor points that could
be addressed.

It's not necessary (ever) to use install.packages() or the remotes package directly, for any Bioconductor
package or really any package. Installing the maEndToEnd package can be accomplished by simply
using

biocLite("b-klaus/maEndToEnd")
There is some complexity here, as you may need to install some of the dependencies for the
maEndToEnd package, but that is a consequence of getting the package from GitHub rather than a failing

of biocLite(). End users will have to install the dependencies regardless, so something like

deps <- strsplit(packageDescription("maEndToEnd")$Depends," \n")[[1]][-1]
deps <- deps[!deps %in% row.names(installed.packages())]
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biocLite(deps)

would do the trick.

Making the RLE plot could be simplified by using oligo::basicPLM rather than oligo::rma
RLE(basicPLM(raw_data, normalize = FALSE))

While it is true that RMA summarization for Exon ST arrays can be carried out at the 'full' or 'extended’
level, that is not true for Gene ST arrays, which can only be summarized at the 'core’ and 'probeset’ level,

so | would remove that from the section titled 'RMA calibration of the data' .

Under the linear models section, the resource you call 'genomics class' is actually the Biomedical Data
Science course and is authored by Mike Love and Rafael Irizarry (not Michael Irizzary).

Competing Interests: No competing interests were disclosed.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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doi:10.5256/f1000research.9647.r14390

v

Andrea Rau
UMR 1313 GABI (Animal Genetics and Integrative Biology), French National Institute for Agricultural
Research (INRA), Jouy-en-Josas, France

Klaus illustrates an analysis workflow of Affymetrix microarrays for an experimental design with paired
samples from two tissues in two separate diseases. The workflow covers steps including downloading
and loading raw CEL files into R/Bioconductor, pre-processing and normalization, differential analysis via
limma, and functional/pathway enrichment analysis, with detailed R scripts throughout. The workflow is a
nice complement to resources that are already available on similar topics (notably the Limma user's
guide) as it unites into a single document topics that have been discussed elsewhere in diverse forums.

Major remarks:
®  Although the normalization/linear model/contrast sections are technically correct, | find them to be

overly disruptive to the presentation of the analysis. In particular, | would suggest moving the
normalization section to an appendix. For the linear models section, presentation of ordinary least
squares estimators, matrix notation, distributional assumptions of residuals, etc. seems outside of
the scope of this work (or could potentially be presented in an appendix as well). | think that it
would be more helpful if, rather than using a separate illustrative example based on the foycars
data, the author described in detail: 1) the design matrix for the Palmieri example; 2) a linear model
for a single gene from the Palmieri data; 3) a linear model fit independently for each gene, sharing
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information across all genes (limma), with a brief discussion about the advantage of such an
approach; 4) a simplified discussion of various contrasts relevant for this particular study.

| was surprised to see that differential analysis conclusions are based on the raw p-values rather
than those adjusted for multiple testing.

| have two additional suggestions that could be of great practical interest to many readers:

. Ithink it would be nice to have a discussion (or at least some references) discussing what can be

done if hypotheses are NOT met (e.g., the raw p-values are not uniformly distributed between 0
and 1 for genes under HO). | have in mind the author's recent discussion about using fdrtool to
estimate the variance of the null model in the context of differential analyses via DESeq2
(http://www-huber.embl.de/users/klaus/Teaching/DESeq2Predoc2014.html).

In addition to the fixed patient effect model presented here, | think it would be interesting to present
an alternative strategy possible with limma for such a design: estimating correlation within patient
blocks using duplicateCorrelation(), see for example section 17.3.6 in the limma User's Guide.
Note that | am not suggesting a detailed comparison or presentation of mixed models (that is of
course well beyond the scope of this work!), but it may be useful to discuss the code/results for
such an approach.

Minor remarks:

| would suggest specifying in the abstract that the study "...compares paired inflamed and
non-inflamed colon tissue...", as this was not immediately clear otherwise. In addition, on page
2/paragraph 1, the author writes that the original paper studied "differences between patients
suffering UC or CD", which makes it sound like the disease comparison was of interest, when in
fact it was the intra-patient tissue differences that were studied. It may in fact be helpful to present
the experimental design in greater detail at the start of the paper; it was not clear to me until page
23 that the design actually involved paired samples from individuals.

Page 12, the author says "In order to infer a cutoff from the data, we inspect the histogram of the
median-intensities. We visually fit a central normal distribution given by 0.5 - N(5.1, 1.18) to the
probe-wise medians". From the R code, it appears that the distribution fit was N(emp_mu = 5.3,
emp_sd = 1.19), where emp_mu and emp_sd were estimated from the median expression values
-- this is unclear from the expression "visually fit" in the text description. Also unclear to me is why
prop_cental was set to be 0.5?

The phrase "from the XXXX" is often used when referencing R packages, rather than "from XXXX"
or "from the XXX package".

The comparison to the original paper results (page 26) seems unnecessary.

| found it a bit distracting that none of the figures are explicitly referred to by number in the text
(e.g., "In Figure 1, ...").

There are occasionally very verbose outputs included in the text (e.g. head(pData(raw_data))) that
produce multiple pages of output that are not particularly useful.
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® There are a few English typos throughout, e.g. "inflammed" should be "inflamed", "constrains"
should be "constraints", "transcriptct clusters" should be "transcript clusters", etc.

® Since a very large number of R packages are loaded for the analysis on page 2, it would likely be
helpful to either reduce the number of packages needed to be the strict minimum necessary, or to
group packages by theme/functionality via comments, for example:
1. General Bioconductor packages
library(Biobase)
library(oligoClasses)

2. Annotation and data packages
library(pd.hugene.1.0.st.v1)

3. Quality control and pre-processing packages
library(oligo)

4. Analysis and statistics packages
library(limma)
library(mvtnorm)

5. Plotting and color options packageslibrary(gplots)
library(ggplot2)

6. Formatting/documentation packages
library(knitr)
library(BiocStyle)
library(dplyr)

Competing Interests: No competing interests were disclosed.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Author Response 14 Jun 2018
Bernd Klaus, EMBL Heidelberg, Germany

Klaus illustrates an analysis workflow of Affymetrix microarrays for an experimental design with
paired samples from two tissues in two separate diseases. The workflow covers steps including
downloading and loading raw CEL files into R/Bioconductor, pre-processing and normalization,
differential analysis via limma, and functional/pathway enrichment analysis, with detailed R scripts
throughout. The workflow is a nice complement to resources that are already available on similar
topics (notably the Limma user's guide) as it unites into a single document topics that have been
discussed elsewhere in diverse forums.

#Major remarks:
# remark 1

Although the normalization/linear model/contrast sections are technically correct, | find them to
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be overly disruptive to the presentation of the analysis. In particular, | would suggest moving the
normalization section to an appendix. For the linear models section, presentation of ordinary least
squares estimators, matrix notation, distributional assumptions of residuals, etc. seems outside of
the scope of this work (or could potentially be presented in an appendix as well). | think that it
would be more helpful if, rather than using a separate illustrative example based on the toycars
data, the author described in detail:

1) the design matrix for the Palmieri example;

2) a linear model for a single gene from the Palmieri data;

3) a linear model fit independently for each gene, sharing information across all genes (limma),
with a brief discussion about the advantage of such an approach;

4) a simplified discussion of various contrasts relevant for this particular study.

Answer:

The linear model sections not directly related to the dataset at hand were

removed from the workflow. In general, we have tried to tailor the revised workflow to
beginners in R and Bioconductor. Therefore, rather than discussing elaborate

tools / techniques in detail, we try to point to the relevant literature where
appropriate.

This is helpful for the reader who needs to deviate from our workflow
for his or her own data and maintains a straightforward workflow design.

Concerning the single points mentioned in the comment above:
1) The design matrix for the Palmieri example is now explained in detail.

2) In the subsequent part of the workflow, the advise of the reviewer to implement a linear model
for a single gene from the Palmieri data was adopted by fitting a linear model to the "CRAT" gene,
and testing it for differential expression.

3) The advantage of shared information across all genes is discussed briefly when introducing the
"eBayes"-method in the "Contrasts and Hypotheses tests" part.

4) In this workflow, we restrict the contrast analysis to the contrast between non-inflamed and
inflamed tissue, as it is the one that is also analyzed in the original paper, and do not include
additional contrasts in order to keep the workflow

concise.

# remark 2

| was surprised to see that differential analysis conclusions are based on the raw p-values rather
than those adjusted for multiple testing.

Answer: This is indeed a possible cause of confusion. In the workflow, parts of the analysis are
based on raw p-values in order to make the results comparable to the original paper. However, we
now mention the caveats of this approach more,

introduce FDRs in a "hands-on" manner

explicitly and caution against the use of raw p--values in practice.
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For the subsequent enrichment analyses,
DE genes are identified using an FDR cutoff of 10%.

| have two additional suggestions that could be of great practical interest to many readers:
# remark 3

| think it would be nice to have a discussion (or at least some references) discussing what can be
done if hypotheses are NOT met (e.g., the raw p-values are not uniformly distributed between 0
and 1 for genes under HO). | have in mind the author's recent discussion about using fdrtool to
estimate the variance of the null model in the context of differential analyses via DESeq2
(http://www-huber.embl.de/users/klaus/Teaching/DESeq2Predoc2014.html).

Answer: As mentioned above, and in concordance with the requests of Jim,

we tried to avoid introducing any additional (advanced) methods in order

to not confuse the novice R/Bioconductor user. Nevertheless,

for workflow users encountering the problem of unusual p-value distributions,

we have included references to this phenomenon and its implications by referring to
the article on false discovery rate estimation by Korbininan Strimmer

and chapter 1-6 of Efron's book on Large-Scale Inference.

# remark 4

In addition to the fixed patient effect model presented here, | think it would be interesting to
present an alternative strategy possible with limma for such a design: estimating correlation within
patient blocks using duplicateCorrelation(), see for example section 17.3.6 in the limma User's
Guide. Note that | am not suggesting a detailed comparison or presentation of mixed models (that
is of course well beyond the scope of this work!), but it may be useful to discuss the code/results
for such an approach.

Answer: We acknowledge the advantages in certain applications of a mixed model using
duplicateCorrelation() compared to a fixed patient effect model used in this workflow.

Given that the workflow is tailored towards unexperienced users,
we consider the fixed patient effect model more intuitively
understandable. However, we now note explicitly that such an
analysis could be performed.

Minor remarks:
#remark 5

| would suggest specifying in the abstract that the study "...compares paired inflamed and
non-inflamed colon tissue...", as this was not immediately clear otherwise. In addition, on page
2/paragraph 1, the author writes that the original paper studied "differences between patients
suffering UC or CD", which makes it sound like the disease comparison was of interest, when in
fact it was the intra-patient tissue differences that were studied. It may in fact be helpful to present
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the experimental design in greater detail at the start of the paper; it was not clear to me until page
23 that the design actually involved paired samples from individuals.

Answer: The experimental design is now described in greater detail in abstract and
introduction. Also, the sentence that the original paper studied "differences
between patients suffering from UC or CD" was removed.

# remark 6

Page 12, the author says "In order to infer a cutoff from the data, we inspect the histogram of the
median-intensities. We visually fit a central normal distribution given by 0.5 - N(5.1, 1.18) to the
probe-wise medians". From the R code, it appears that the distribution fit was N(emp_mu = 5.3,
emp_sd = 1.19), where emp_mu and emp_sd were estimated from the median expression values
-- this is unclear from the expression "visually fit" in the text description. Also unclear to me is why
prop_cental was set to be 0.5?

Answer: In an attempt to make low-intensity-filtering more intuitive, we removed

the fitting a normal distribution the the histogram of the probe-wise medians.

Instead, we now visually set a vertical cutoff line to the histogram and filter

genes with a lower intensity than the cutoff in at least as many samples as the smallest
experimental group has.

# additional minor remarks

The phrase "from the XXXX" is often used when referencing R packages, rather than "from
XXXX" or "from the XXX package".

Answer: Thank you, the respective sentences were corrected accordingly.
The comparison to the original paper results (page 26) seems unnecessary.
Answer: The comparison to the original paper serves as a "proof of principle"
for the implemented workflow (to show that what we are doing makes sense).
Additionally, we wanted to show that it is relatively straightforward

to re--analyze publicly available microarray data using R and Bioconductor.

| found it a bit distracting that none of the figures are explicitly referred to by number in the text
(e.g., "In Figure 1, ...").

Answer: Thank you, the respective parts
were changed accordingly.

There are occasionally very verbose outputs included in the text (e.g. head(pData(raw_data)))
that produce multiple pages of output that are not particularly useful.

Answer: The output was shortened where appropriate. The pdata call in
particular was retained, as we feel that it is interesting to the readers
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to see what kind of information comes with a dataset from Array Express.

There are a few English typos throughout, e.g. "inflammed" should be "inflamed", "constrains"
should be "constraints”, "transcriptct clusters" should be "transcript clusters", etc.

Answer: Thanks, we tried to perform thorough spell-checking in the revised version.

Since a very large number of R packages are loaded for the analysis on page 2, it would likely be
helpful to either reduce the number of packages needed to be the strict minimum necessary, or to
group packages by theme/functionality via comments, for example:

General Bioconductor packages
library(Biobase)
library(oligoClasses)

Annotation and data packages
library(pd.hugene.1.0.st.v1)

Quality control and pre-processing packages
library(oligo)

Analysis and statistics packages
library(limma)
library(mvtnorm)

Plotting and color options packageslibrary(gplots)
library(ggplot2)

Formatting/documentation packages
library(knitr)

library(BiocStyle)

library(dplyr)

Answer: Thank you for this very useful suggestion, we implemented it in the revised

version; the package-import statements at the beginning of the workflow is now
grouped by topic.

Competing Interests: No competing interests were disclosed.

Referee Report 05 July 2016

doi:10.5256/f1000research.9647.r14392

?
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James W. MacDonald
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA,
USA

This manuscript is intended to take the reader through a complete analysis of Affymetrix Gene ST arrays,
based on a set of arrays downloaded from ArrayExpress. The author covers each step from quality
control of the raw data all the way to making comparisons using linear models and testing and visualizing
pathways or gene sets.

Major comments

While this manuscript is technically correct (e.g., the code does what the author claims, the explanatory
text is valid), | am not sure it is as useful as it could be for its intended audience. In other words, this
manuscript is intended to provide an inexperienced reader (inexperienced in either R/Bioconductor or
statistics or both) with a road map they can follow to learn how to analyze microarray data. However, both
the code and the statistical explanations are far too complex to be useful for such a person.

As an example, the author explains in mathematical terms what the background correction and
summarization steps are intended to accomplish. While this is an important step in the analysis, this could
instead be explained in heuristic terms that would be far more approachable for a less statistically savvy
audience, while still conveying the general idea.

The section on linear modeling and design matrices are similarly impenetrable for non-statisticians. The
limma User's Guide has dozens of examples of model matrices, with clear interpretations of the model
coefficients. Yet as the author notes, this is probably the number one question on the Bioconductor
support site. Rather than re-explaining something that most people clearly don't understand, it would be
much more helpful to focus on a single model matrix, and provide a clear, heuristic explanation. The
easiest to understand is the most basic orthogonal model that computes the mean of each group,
followed by a contrast matrix to make comparisons of interest.

The overview on linear models is well beyond the scope of this manuscript, and should be excised. The
same is true for the section on testing general linear hypotheses. Ideally, an analyst using these tools
would understand what they are doing from a statistical perspective, but it's difficult enough for a novice
user to comprehend what the code is doing without trying to also understand the statistics.

Similarly, the code is more complex than necessary. If the goal is to teach novice users about
Bioconductor packages, then the code should be restricted as much as possible to those packages and
base R. While ggplot2 style graphics, magrittr style function piping and dplyr two-table verbs may be
useful for more advanced R users, in this context they are an added distraction.

An example of overly-complex code is the filtering step. There are any number of ways to filter out genes
that are arguably not expressed. The example is a very sophisticated way to perform this task, but a
novice who is just learning doesn't require sophistication, they require something they can understand.
Choosing a cutoff based on the distribution of probesets across each array, and then filtering all genes
where fewer than 14 samples exceed this cutoff is not very sophisticated, but it is easy to understand, and
would only require a few lines of code.

The learning curve for R and Bioconductor is steep, and making this manuscript both simpler in terms of
the code, and more focused by excluding most of the statistics and any example analyses that do not
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involve the microarray data would make it more approachable for inexperienced users.

Minor comments

In the download step, getAE() is used to download the data, but then the SDRF file is downloaded
directly. This is confusing, as getAE() has already downloaded that file. Is there a particular reason for the
extra step?

To test for model matrices that are not full rank, it's easier to use either nonEstimable() or is.fullrank() from
the limma package.

Conclusion

As noted above, this manuscript is technically accurate, and the code does exactly what the author
claims. But it is too ambitious for the intended audience. Most people who could benefit from this
manuscript are not statistically savvy, and the statistical sections will simply confuse them. In addition, it is
not likely that many potential readers will be familiar with packages from the 'Hadleyverse', and
incorporating those packages in the manuscript makes the code more difficult to understand.

Paring the manuscript down to very simple heuristic statistical explanations, and limiting the code to
functions from base R and the various Bioconductor packages being illustrated would make the
manuscript more useful for its intended audience.

Competing Interests: No competing interests were disclosed.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Bernd Klaus, EMBL Heidelberg, Germany

# Major comments
## comment 1

While this manuscript is technically correct (e.g., the code does what the author claims, the
explanatory text is valid), | am not sure it is as useful as it could be for its intended audience. In
other words, this manuscript is intended to provide an inexperienced reader (inexperienced in
either R/Bioconductor or statistics or both) with a road map they can follow to learn how to analyze
microarray data. However, both the code and the statistical explanations are far too complex to be
useful for such a person.

As an example, the author explains in mathematical terms what the background correction and
summarization steps are intended to accomplish. While this is an important step in the analysis,
this could instead be explained in heuristic terms that would be far more approachable for a less
statistically savvy audience, while still conveying the general idea.
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Answer: As suggested, the general style of the workflow was changed a lot in order to
guide inexperienced readers through the analysis of microarray data.

Code is explained in greater detail, and all technical parts not directly related

to the data at hand have either been removed or improved.

However, we have decided to keep the the mathematical explanation
of background correction and summarization, as we feel that the (rather simple)
formulas are easier to understand than text.

## comment 2

The section on linear modeling and design matrices are similarly impenetrable for
non-statisticians. The limma User's Guide has dozens of examples of model matrices, with clear
interpretations of the model coefficients. Yet as the author notes, this is probably the number one
question on the Bioconductor support site. Rather than re-explaining something that most people
clearly don't understand, it would be much more helpful to focus on a single model matrix, and
provide a clear, heuristic explanation. The easiest to understand is the most basic orthogonal
model that computes the mean of each group, followed by a contrast matrix to make comparisons
of interest.

The overview on linear models is well beyond the scope of this manuscript, and should be
excised. The same is true for the section on testing general linear hypotheses. Ideally, an analyst
using these tools would understand what they are doing from a statistical perspective, but it's
difficult enough for a novice user to comprehend what the code is doing without trying to also
understand the statistics.

Answer: We gladly adopted this point of criticism and eliminated

the rather technical part in which the theory behind design matrices

and linear modelling is explained. Instead, we focused on explaining

the design matrix we haved used in the dataset at hand in easy-to-follow terms
and present its use in the context of single linear model for a single gene.

## comment 3

Similarly, the code is more complex than necessary. If the goal is to teach novice users about
Bioconductor packages, then the code should be restricted as much as possible to those
packages and base R. While ggplot2 style graphics, magrittr style function piping and dplyr
two-table verbs may be useful for more advanced R users, in this context they are an added
distraction.

An example of overly-complex code is the filtering step. There are any number of ways to filter
out genes that are arguably not expressed. The example is a very sophisticated way to perform this
task, but a novice who is just learning doesn't require sophistication, they require something they
can understand. Choosing a cutoff based on the distribution of probesets across each array, and
then filtering all genes where fewer than 14 samples exceed this cutoff is not very sophisticated,
but it is easy to understand, and would only require a few lines of code.

Answer: While not all of the code from the packages like ggplot2, magrittr and dplyr
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was removed, an effort was made to explain the code in more detail

in order to give the inexperienced user the possibility to understand what it does. In

particular, we think that ggplot2 is by now very commonly used and probably becoming a defacto
standard plotting package.

In the low-intensity filtering step, the fitting of a normal distribution

to the histogram was eliminated for the sake of clarity. Instead,

we now visually set a vertical cutoff line to the histogram and filter
genes with a lower intensity than the cutoff in at least as many samples
as the smallest experimental group has.

## comment 4

The learning curve for R and Bioconductor is steep, and making this manuscript both simpler in
terms of the code, and more focused by excluding most of the statistics and any example analyses
that do not involve the microarray data would make it more approachable for inexperienced users.

Answer: Thank you for this useful comment. We have made some effort to tailor
the revised version to the beginner in R/ Bioconductor and / or statistics.

The revised article contains a more focused workflow with more in depth
explanations of the code.

# Minor comments

In the download step, getAE() is used to download the data, but then the SDRF file is
downloaded directly. This is confusing, as getAE() has already downloaded that file. Is there a
particular reason for the extra step?

Answer: There is no particular reason for this step, the code has been changed
in order to import the SDRF file from the already downloaded data.

To test for model matrices that are not full rank, it's easier to use either nonEstimable() or
is.fullrank() from the limma package.

Answer: This section was removed, as it is quite technical and
is really more of a "sanity check" than a necessity.
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