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Abstract
Protein toxicity can be defined as all the pathological changes that ensue from accumulation, mis-localization, and/or 
multimerization of disease-specific proteins. Most neurodegenerative diseases manifest protein toxicity as one of their key 
pathogenic mechanisms, the details of which remain unclear. By systematically deconstructing the nature of toxic proteins, 
we aim to elucidate and illuminate some of the key mechanisms of protein toxicity from which therapeutic insights may be 
drawn. In this review, we focus specifically on protein toxicity from the point of view of various cellular compartments such 
as the nucleus and the mitochondria. We also discuss the cell-to-cell propagation of toxic disease proteins that complicates 
the mechanistic understanding of the disease progression as well as the spatiotemporal point at which to therapeutically 
intervene. Finally, we discuss selective neuronal vulnerability, which still remains largely enigmatic.

Keywords  Parkinson’s disease · Alzheimer’s disease · Huntington’s disease · Polyglutamine diseases · Lou Gehrig’s 
disease · Amyotrophic lateral sclerosis · Frontotemporal dementia · Stress granules · Protein inclusions

Introduction

The prevalence of neurodegenerative diseases, including 
Alzheimer’s disease (AD), Parkinson’s disease (PD), amyo-
trophic lateral sclerosis (ALS), frontotemporal dementia 
(FTD), and Huntington’s disease (HD), is increasing at an 
alarming rate due to the increase in average life expectancy. 
Patients with these diseases display serious neurological dis-
abilities, such as memory impairment and motor problems, 
for which there are no cure. One of the cardinal features of 
neurodegenerative diseases is the presence of protein toxic-
ity [1]. Here, we define protein toxicity as all the pathologi-
cal alterations that result from the accumulation, oligomeri-
zation, and/or multimerization of disease-associated toxic 
proteins.

Protein toxicity is a unifying feature of both sporadic 
and familial cases of neurodegenerative diseases. One of 
the mechanisms by which protein toxicity occurs is through 
genetic mutations. For example, 5 point mutations in the 

genes encoding synuclein alpha (SNCA; A53T, A30P, E46K, 
H50Q, and G51D) and 52 mutations (alzforum.org/muta-
tions) in amyloid precursor protein (APP) have so far been 
identified to be associated with PD and AD, respectively [2, 
3]. Likewise, protein toxicity can arise from more than 20 
genetic mutations in the TARDBP gene encoding TDP-43 
protein, which are associated with ALS and FTD [4]. In 
addition, a recently identified GGG​GCC​ repeat expansion 
in the intronic region of the C9ORF72 gene is associated 
with ALS/FTD and is known to produce five different dipep-
tide-repeat proteins (DPRs; poly-GA, -GR, -GP, -PR, -PA) 
through repeat associated non-AUG (RAN) translation [5]. 
The arginine-rich DPRs, in particular, have been shown to 
cause protein toxicity [6]. Moreover, polyQ protein toxicity 
is solely caused by an expansion mutation of the glutamine 
tract in each of the genes responsible for polyQ diseases [7].

On the other hand, aberrant proteins generated indepen-
dently of known genetic mutations can also contribute to 
protein toxicity. For instance, abnormal cytoplasmic accu-
mulation of TDP-43, known as “TDP-43 pathology,” is 
observed in most cases of ALS and in about half of FTD 
cases, even when there is no TARDP mutation [8]. Likewise, 
independent of SNCA mutation, α-synuclein aggregation is 
often observed in PD and several other neurological dis-
orders known as “synucleinopathies”. In fact, PD is rarely 
caused by mutations in SNCA [9]. Similarly, AD is rarely 
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caused by mutations in APP  [10], yet accumulation of amy-
loid beta is the hallmark feature of AD. Thus, regardless of 
the disease etiology (sporadic or familial), protein toxicity 
seems to be a hallmark of most neurodegenerative diseases.

In neurodegenerative diseases, protein toxicity in affected 
neurons may result in cellular defects such as transcriptional 
alteration, mitochondrial dysfunction, and an impaired pro-
tein/RNA quality control system, all of which critically 
contribute to the initiation and progression of neurodegen-
erative diseases. Although cell death is the final outcome 
of the disease process, cell death is often preceded by neu-
rological deficits in animal models and patients [11, 12]. 
Hence, this review will focus on the neuronal dysfunction 
that occurs prior to cell death. Notably, each type of cellular 
defects is not absolutely specific to a certain neurodegenera-
tive disease; but instead, these defects are more commonly 
observed in a variety of disease cases. Given the crucial 
contribution of protein toxicity to neurodegenerative disease 
pathogenesis, increasing our understanding of protein toxic-
ity is indispensable for future development of rational and 
effective therapeutics for these diseases. Instead of charac-
terizing protein toxicity from one disease to another (e.g., 
AD, PD, and ALS), in the following sections, we discuss the 
mechanisms underlying protein toxicity from one subcellular 
compartment to another (e.g., nucleus and mitochondria; see 
Table 1 and Fig. 1). 

Protein toxicity in the nucleus

Nuclear inclusions (NIs) of toxic proteins in neurons are 
observed in approximately 20 different neurodegenerative 
diseases [13]. In particular, nuclear accumulation of toxic 
disease proteins is closely associated with the pathogenesis 
of polyQ diseases (see below for details). Although a grow-
ing body of evidence indicates nuclear dysfunction to be 
central to the pathogenesis of several neurodegenerative 
diseases, the precise role of neuronal intranuclear inclusion 
bodies in the disease pathogenesis is still a matter of debate. 
There is a view that microscopically visible NIs are not 
toxic, but are instead self-protective structures or incidental 
byproducts of the pathogenic process. This view proposes 
that the more soluble protofibrillar or oligomeric aggregates 
(as opposed to the more mature fibrillar aggregates formed 
inside the nucleus) have toxic properties in afflicted neurons 
[14–18]. Whether or not the nuclear inclusion bodies are 
the major source of nuclear protein toxicity, nuclear dys-
functions such as transcriptional alteration and impaired 
nucleocytoplasmic transport are evident in many cases of 
neurodegenerative diseases [19, 20].

As described above, polyQ diseases may be repre-
sentative neurodegenerative diseases associated with 
nuclear protein toxicity [21]. There are at least nine polyQ 

diseases, including HD, dentatorubral–pallidoluysian atro-
phy (DRPLA), spinal bulbar muscular atrophy (SBMA), 
and the spinocerebellar ataxias (SCAs) 1, 2, 3, 6, 7, and 
17 [7]. Each of these nine polyQ diseases is caused by 
CAG (Q) repeat expansion mutation in each of the disease-
responsible genes [e.g., the huntingtin (htt) gene mutation 
for HD]. Upon expansion of the Q repeats, the disease-
responsible proteins, most of which mis-localize to the 
nucleus, gain a propensity to aggregate and multimerize 
with numerous target proteins. For instance, although 
normally a cytoplasmic de-ubiquitinase protein, ataxin-3 
predominantly localizes to the nucleus upon expansion 
mutation in SCA3. Similarly, various animal models pre-
sent nuclear aggregation of mutant htt in neurons [22]. 
Of note, however, the nuclear accumulation of mutated 
polyQ proteins is not always closely associated with the 
pathogenesis of diseases. In case of SCA2, it has been 
shown that nuclear localization of the SCA2 protein is not 
necessary for SCA2 pathogenesis in mice or humans [23].

PolyQ NIs are often co-localized with ubiquitin, heat 
shock proteins, and numerous target proteins [21]. Some 
proteins, such as cAMP response element-binding protein 
(CREB)-binding protein (CBP), have been identified as 
the target of polyQ proteins in a number of different polyQ 
diseases, suggesting that their interaction with polyQ pro-
teins may be dependent on the expanded Q repeat region, 
rather than the flanking regions, of the polyQ proteins. 
The detection of various transcription factors, such as CBP 
[24–27], TATA-binding protein (TBP) [28], nuclear co-
repressor (NCoR) [29], and RE1-silencing transcription 
factor/neuron-restrictive silencer factor (REST/NRSF) 
[30], within polyQ NIs suggests a sequestration mecha-
nism by which polyQ proteins may induce transcriptional 
dysregulation. Notably, many of the proteins sequestered 
by polyQ proteins function as epigenetic regulators that 
may be responsible for the system-wide transcriptional 
dysregulation in a subset of polyQ diseases [20, 31]. Con-
sistently, a previous study reported that the mutant htt and 
ataxin-3 proteins could directly bind to histone acetyl-
transferases, such as CBP and p300/CBP-associated factor 
(P/CAF), thereby impairing histone acetylation in neurons 
[32, 33]. However, the reduction of histone acetylation 
by mutant htt remains disputed [20]. Aside from histone 
modification, direct epigenetic changes to the DNA have 
also been reported in HD. Previous studies reported hypo-
methylation of DNA with CpG-poor regions in the HD cell 
culture model [34] and a decreased level of 7-methylgua-
nine (7mG) by mutant htt proteins in mouse and human 
patient samples [35]. Furthermore, a direct interaction 
between mutant htt proteins and methyl-CpG-binding 
protein 2 (MeCP2) has been reported, the interaction of 
which enables mutant htt to bind directly to the methylated 
DNA regions [36].
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Table 1   Summary of protein toxicity based upon the subcellular localization of toxic disease proteins

Diseases Toxic proteins Phenotypes Human/iPSC Mouse Fly Cell culture Others References

Nucleus
SCA3 PolyQ-expanded 

ataxin-3
Epigenetic and 

transcriptional 
dysfunction

O [26, 33]

HD PolyQ-expanded 
huntingtin

Epigenetic and 
transcriptional 
dysfunction, and 
nuclear aggrega-
tion

O O O O Sheep, rhesus 
monkey

[21, 22, 24, 
25, 28, 30, 
32, 34, 35, 
41–43]

HD PolyQ-expanded 
huntingtin

Nucleocytoplasmic 
transport dysfunc-
tion

O O O O [53, 54]

DRPLA PolyQ-expanded 
atrophin-1

Mouse behavioral 
and survival 
phenotypes from 
histone hypoa-
cetylation and 
cellular toxicity 
from interference 
of CBP- mediated 
transcription

O O O [24, 44]

SCA1 PolyQ-expanded 
ataxin-1

Transcriptional 
dysfunction

O O [40]

SBMA PolyQ-expanded 
androgen receptor

Cellular toxicity 
arising from CBP 
sequestration into 
NI

O O O [26]

SCA7 PolyQ-expanded 
ataxin-7

CBP and RORα1-
mediated 
transcriptional 
repression

O [27]

ALS/FTD Poly-PR repeat 
protein

Nucleocytoplasmic 
transport dysfunc-
tion

O O Frog X. laevis 
oocyte

[56, 57]

Cytoplasm
Prion diseases Prion protein toxic 

β-sheet isoforms
Blockage of sub-

strate entry into 
20S proteasome

O O [59]

AD Hypophosphoryl-
ated Tau oligom-
ers

Synaptic Tau 
interacts with 26S 
proteasome

O [60]

PD α-Synuclein A53T 
and A30P

Perturbation of 
CMA via blocak-
age of lysosomal 
translocation of 
substrates

O [75]

HD PolyQ-expanded 
huntingtin frag-
ment

Autophagy dys-
function

O O O [80, 81]

HD PolyQ-expanded 
huntingtin frag-
ment

Axonal transport 
dysfunction

O O O [107– 109]

ALS Mutant SOD1 Axonal transport 
dysfunction

O O O O  Squid giant axon [102–106]

IBMPFD/ALS Mutant VCP Protein degradation O [62]
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The entry ’O’ in Table 1 affirms the experimental models used to support the listed phenotypes for each diseases

Table 1   (continued)

Diseases Toxic proteins Phenotypes Human/iPSC Mouse Fly Cell culture Others References

Mitochondria
AD Amyloid beta Amyloid beta binds 

to mitochondrial 
proteins such as 
ABAD and CypD 
to induce ROS 
generation, mPTP 
opening, and 
mouse behavioral 
defects

O O O [112, 113]

AD Amyloid precursor 
protein

Mitochondrial 
protein import 
dysfunction

O O O [114, 115]

HD PolyQ-expanded 
huntingtin

Defects in mito-
chondrial protein 
import, traffick-
ing, MPTP open-
ing, and calcium 
regulation

O O O [122–125]

PD Mutant and WT 
α-synuclein

VDAC blockage 
and mitochondrial 
protein import 
dysfunction

O O Rat, yeast [129, 130]

ALS/FTD Mutant and WT 
TDP-43

TDP-43 binds to 
respiratory com-
plex I subunits 
and induce defects 
in mitochondrial 
protein translation

O O O Yeast [131, 132]

ALS/FTD Poly-GR repeat 
protein

Poly-GR binds 
mitochondrial 
ribosomal pro-
teins and induce 
defects in mito-
chondrial protein 
translation

O O O [133]

Stress granules
ALS Mutant profilin 1 Altered SG dynam-

ics
O Yeast [143]

ALS/MSP Mutant hnRNPA1/
A2

Altered SG dynam-
ics

O O O [144]

ALS/FTD Mutant FUS Altered SG assem-
bly and dynamics

O [145]

ALS/FTD Mutant TIA1 Altered SG dynam-
ics

O O [146]

ALS/FTD Mutant and WT 
TDP-43

Altered SG dynam-
ics

O [147]

ALS Mutant SOD1 Altered SG dynam-
ics and morphol-
ogy

O [148]

IBMPFD/ALS Mutant VCP Altered SG quality 
control

O [149]

HD PolyQ-expanded 
huntingtin

Increased SG for-
mation

O [152]
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Transcriptional and epigenetic alterations have been 
shown to contribute to the broad spectrum of neuronal phe-
notypes ranging from early neuropathic features to late-stage 
neuronal cell death in polyQ diseases [31]. For instance, 
recent studies showed that polyQ proteins induced early 
changes to the dendrite morphology through the perturba-
tion of RNA granule formation and transcriptional cascades 
regulating the ER-to-Golgi (COPII) pathway [37–39]. In the 
SCA1 mouse model, the translational repressor Capicua was 
shown to be critically involved [40], and in HD and DRPLA 
mouse models, treatment with histone-deacetyltransferase 
(HDAC) inhibitors (sodium butyrate, 4-phenylbutyric acid 
sodium salt, and suberoylanilide hydroxamic acid) was 
shown to ameliorate neurotoxicity [41–44]. These results 
demonstrate a crucial contribution of transcriptional and 
epigenetic alterations in at least a subset of polyQ diseases.

In addition to polyQ diseases, transcriptional dysregula-
tion is also observed in other neurodegenerative diseases, 
such as AD [45–47] and PD [48, 49], although they are not 
generally accompanied by nuclear accumulation of toxic 
proteins. Similar to polyQ diseases, AD and PD also mani-
fest epigenetic alterations, though the mechanisms of which 
remain to be elucidated [20, 31]. Nevertheless, treatment 
with certain epigenetic drugs, such as HDAC inhibitors, 
ameliorated AD and PD phenotypes in animal models [31], 
indicative of the relevance and importance of epigenetic 
alterations in the disease pathogenesis.

In addition to the transcriptional and epigenetic altera-
tions, nucleocytoplasmic transport defects have emerged as 
one of the principal nuclear dysfunctions manifested in neu-
rodegenerative diseases such as ALS/FTD, HD, and AD [19, 
50]. The mechanisms by which nucleocytoplasmic transport 

Fig. 1   A schematic overview of protein toxicity. Accumulation of 
toxic disease proteins is shown to induce dysfunctions in speci-
fied compartments such as the nucleus, mitochondria, cytoplasm, 

and stress granules. They can also propagate into other nearby cells, 
spreading the disease pathology
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becomes disrupted range from sequestration of nuclear pore 
complex (NPC) molecules by toxic RNA or proteins [19, 
51–56] to direct blockage of nuclear pores by toxic disease 
proteins [57]. Some excellent reviews on this topic have 
recently been published, which we recommend for detailed 
discussion [19, 50].

Protein toxicity in the cytoplasm

Many of the disease proteins are prone to accumulate in the 
cytoplasm, in which the pool of potential target molecules 
differs significantly from that of the nucleus. For example, it 
is the cytoplasm in which the protein quality control (PQC) 
system mostly resides, not in the nucleus. The cytoplasm 
also contains a more elaborate cytoskeleton compared to the 
nucleus. Hence, due to the physical proximity, cytoplasmic 
protein toxicity can directly impinge on the PQC system and 
cargo transport via cytoskeleton disruption. In this section, 
we will focus on the cytoplasmic protein toxicity associated 
with the PQC system and the cytoskeleton.

The accumulation of misfolded proteins in neurodegen-
erative diseases inevitably burdens the PQC system, which 
comprises the ubiquitin–proteasome system (UPS), chap-
erone-mediated autophagy (CMA), macroautophagy, and 
ER-associated degradation (ERAD) [58]. UPS impairment 
is considered to be one of the major contributing factors 
of neurodegenerative disease pathogenesis. Previous stud-
ies showed that aggregated beta-sheet-rich prion proteins 
and aggregated Tau in AD could block the 20S and 19S 
proteasome particles, respectively, which impaired UPS-
mediated degradation [59, 60]. Consistently, genetic muta-
tions of UPS components such as E3 ligase Parkin, deubiq-
uitinating enzyme ubiquitin carboxy-terminal hydrolase L1 
(UCH-L1), and ATPase valosin-containing protein (VCP), 
can lead to neurodegeneration [61, 62]. In addition, over-
expression of certain components of UPS could ameliorate 
the disease phenotypes in neurons in many neurodegenera-
tive disease models [63–66]. For example, PD-associated 
G2019S LRRK2 mutant proteins can be ubiquitinated by 
E3 ligase C-terminus of HSP70-interacting protein (CHIP), 
whose overexpression enhances the ubiquitin proteasomal 
degradation of LRRK2 mutant proteins [67]. Consist-
ently, CHIP knockout mice displayed exacerbated polyQ 
pathology [68]. Furthermore, mutant htt has been shown 
to undergo ubiquitin proteasomal degradation via E3 ligase 
UBE3A [69], the activity of which is down-regulated by 
UBR5 [70], a genetic modifier for HD [71]. Moreover, most 
of the protein inclusions in neurodegenerative diseases are 
positive for ubiquitin and chaperones, both of which become 
depleted in the afflicted neurons [72]. Conversely, a recent 
study by Nucifora and colleagues suggested that ubiquitina-
tion could be a mechanism by which protein inclusions are 

formed [73]. They showed that WSB1 could induce aggre-
gation of G2019S LRRK2 via K27 and K29 ubiquitination, 
which appeared to be neuroprotective [73]. Ubiquitination 
may thus protect against protein toxicity by either inducing 
degradation or aggregation of toxic proteins.

CMA is a selective protein degradation system that 
eliminates proteins harboring a pentapeptide KFERQ-like 
motif, which is found in approximately 30% of cytosolic 
proteins [58]. When folded properly, the KFERQ motif is not 
exposed to the surface. However, misfolding of these pro-
teins exposes the motif that can be subsequently recognized 
by the heat shock cognate protein 70 (HSC70) chaperone 
and CMA adaptor lysosomal membrane-associated protein 
2A (LAMP-2A). Several disease-associated proteins such as 
LRRK2 and α-synuclein also harbor KFERQ-like motifs that 
are recognized by CMA for degradation [74, 75]. A previous 
study showed that α-synuclein proteins in PD could bind 
to LAMP-2A with an unusually high affinity. This strong 
binding in turn resulted in a “traffic jam” during cargo trans-
location across the lysosomal membrane, thereby inhibit-
ing CMA [75]. As for LRRK2, its binding to the lysosomal 
membrane is enhanced by certain mutations, thereby facili-
tating accumulation of α-synuclein among other CMA sub-
strates [74]. Moreover, PD-associated mutations in UCHL1 
also interfere with the CMA process [76]. These results sug-
gest that CMA is one of the central processes by which PD-
associated proteins are degraded and that interfering with 
the CMA process may result in α-synuclein accumulation. 
In a few other studies, the augmentation of CMA was shown 
to enhance the removal of pathogenic disease proteins in 
various neurodegenerative diseases [77–79], suggesting that 
CMA may be an important therapeutic target for diseases 
associated with protein toxicity. Since aggregation-prone 
proteins can be efficiently eliminated by macroautophagy, 
its role in neurodegenerative diseases has been extensively 
pursued. In HD, macroautophagy activity is reduced due 
to the failure in cargo recognition by autophagic vacuoles 
[80]. In addition, a certain species of mutant htt proteins 
has been shown to be selective-autophagy resistant, likely 
due to its unconventional conformation that is unfavorable 
for cargo recognition by autophagic vacuoles [81]. In many 
neurodegenerative diseases, autophagy can be induced as 
a compensatory response to the failure of UPS in afflicted 
neurons [82–84]. However, it appears that the compensa-
tory induction of autophagy is not enough to overcome the 
accumulation of ubiquitin-positive toxic proteins in HD. 
Consistent with this, it was shown that further genetic or 
pharmacological activation of autophagy has obvious thera-
peutic benefits in various disease models [85].

Protein toxicity commonly produces ER stress; in turn, 
ER stress can cause up-regulation of chaperones, ERAD 
and apoptotic genes, global protein translational arrest, and 
stress granule formation [86]. ER stress can be caused in 



3165Mechanisms of protein toxicity in neurodegenerative diseases﻿	

1 3

a number of ways; one of these causes is ERAD failure. 
For instance, VCP, a necessary component of ERAD, was 
shown to be sequestered by mutant htt [87, 88]. In another 
study, overexpression of VCP was shown to rescue ERAD 
failure caused by mutant htt [89]. Interestingly, the seques-
tration of VCP by polyQ proteins occurs in at least four other 
polyQ diseases (SCA1, SCA3, SCA7, and SBMA) [90, 91], 
in which the loss of VCP function may be a common patho-
genic mechanism.

Pathological inclusions of cytoskeletal proteins, such as 
neuronal intermediate filament (IF) proteins or the micro-
tubule-associated protein tau (MAPT), are neuropathologi-
cal signatures in various neurodegenerative diseases [92]. 
Specifically, tau-associated microtubule defects are linked 
to a range of neurodegenerative diseases known as “tauopa-
thies” [93]. Changes in F-actin structures have also been 
reported in polyQ diseases [38] and AD [94]. Furthermore, 
formation of ADF/cofilin-actin filament bundles (rods) that 
can occlude neurites and block vesicle transport has been 
implicated in neurodegenerative diseases [95]. In addition 
to these changes in cytoskeletal structures, accumulation of 
toxic disease proteins can lead to defects in axonal trans-
port [96–101]. For example, defective axonal transport was 
reported to be a key early feature of pathogenesis prior to 
neurodegeneration in various SOD1 animal models of ALS 
[102–106]. Various animal models of HD also showed 
abnormalities in both anterograde and retrograde axonal 
transport [107–109].

Cytoplasmic protein toxicity encompasses a whole array 
of neuronal phenotypes, many of which are shared among 
neurodegenerative diseases. Hence, therapeutically neutral-
izing cytoplasmic protein toxicity may be beneficial, pro-
vided that the toxic proteins remain static in the cytoplasm. 
However, from the cytoplasm in which toxic disease proteins 
are first made, these proteins can be transported to other 
organelles such as the nucleus (discussed above), the stress 
granules (discussed later), or the mitochondria (discussed 
next), all of which can complicate any attempts to remedy 
cytoplasmic protein toxicity. Thus, closer examination of 
protein toxicity in the organelles in which toxic proteins tend 
to accumulate is warranted.

Protein toxicity in the mitochondria

The importance of the mitochondria to cell survival can 
easily be envisaged, as they are the organelles primarily 
responsible for ATP production in eukaryotic cells. Thus, 
mitochondrial dysfunction can be detrimental for cell sur-
vival, which can be catastrophic particularly to the brain, 
for the following reasons. First, most neurons cannot be 
replaced and thus need to be maintained due to their post-
mitotic nature. This will inevitably lead to the accumulation 

of mitochondrial toxicity, by which the irreplaceable neurons 
will eventually succumb to death. Second, the excitability 
of neurons allows for significant influx of calcium ions that 
are buffered by mitochondria, the dysfunction of which will 
lead to excitotoxicity. Third, the elongated morphology of 
neurites entails a local supply of ATP by the mitochondria, 
the dysfunction of which will perturb growth and main-
tenance of neurites [110]. Hence, it is not surprising that 
mitochondrial dysfunction is one of the cardinal features of 
neurodegenerative diseases.

Mitochondrial dysfunction can be both primary and sec-
ondary drivers of neurodegeneration. In this section, we will 
mainly deal with the cases in which mitochondrial dysfunc-
tion is clearly a direct primary consequence of protein tox-
icity in the mitochondria. The following six toxic disease 
proteins that accumulate in mitochondria will be discussed: 
amyloid beta, amyloid precursor protein (APP), α-synuclein, 
mutant htt, TDP-43, and poly-GR DPRs.

Extracellular amyloid beta accumulation is one of the key 
pathological hallmarks of AD, in which mitochondrial dys-
function is often observed [111]. No direct mechanistic link 
between amyloid beta and mitochondrial dysfunction was 
identified until Lustbader et al. showed in 2004 that amy-
loid beta can localize to the mitochondria and directly bind 
to amyloid beta-binding alcohol dehydrogenase (ABAD) to 
induce mitochondrial toxicity [112]. Amyloid beta has also 
been shown to interact with cyclophilin D (CypD), an inte-
gral component of the mitochondrial permeability transition 
pore (mPTP), which sensitizes the opening of mPTP in both 
AD patients and mAPP mice brains [113].

APP, from which amyloid beta is derived, has also been 
shown to produce mitochondrial toxicity in models of, and 
patients with, AD. Anandatheerthavarada and colleagues 
showed that APP has a leader sequence with which APP 
localizes to the mitochondria in HCN-1A cells. The large 
acidic domain residues of APP (220–290) were found to clog 
the pores of TOM40 and TIM23, mitochondrial translocase 
of outer and inner membrane, respectively [114, 115]. When 
the authors experimented with postmortem human brain 
samples, they found that mitochondrial APP was observed 
only in AD brains [115]. Why APP does not localize to mito-
chondria under normal condition is currently unknown. In 
any case, this evidence strongly suggests that physical inter-
action of APP and amyloid beta with mitochondrial proteins 
is sufficient to generate oxidative stress, reduce ATP pro-
duction, depolarize mitochondrial membrane potential, and 
sensitize mPTP opening, all of which contribute strongly 
to the mitochondrial dysfunction manifested in AD [110, 
111, 116]. A recent study that shows reduction in amyloid 
beta toxicity by promoting mitochondrial proteostasis under-
scores the contribution of mitochondrial dysfunction in AD 
pathogenesis [117].
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Mitochondrial dysfunction is not unique to AD. In HD, 
an energy-deficit related to mitochondrial dysfunction 
was first observed more than two decades ago [118]. The 
mechanisms by which mutant htt proteins induce mito-
chondrial dysfunction have been shown to be as diverse 
as that in AD. Aside from the mutant htt perturbing tran-
scription of genes related to mitochondrial biogenesis and 
function in the nucleus [119, 120], it could also directly 
interact with mitochondrial proteins [121]. The N-termi-
nal fragment of mutant htt localizes to the mitochondria 
[122–124] both in vivo and in vitro, and it interacts with 
the TIM23 complex, thereby clogging the mitochondrial 
import process [125]. These toxic interactions of mutant 
htt with mitochondrial proteins perturb calcium regulation, 
sensitize mPTP opening, depolarize mitochondrial mem-
brane potential, and ultimately lead to neuronal demise 
[122–125].

Many genetic mutations linked to PD have been shown to 
cause mitochondrial dysfunction [126]. α-Synuclein, which 
is the central aggregating component of the Lewy bodies 
found in PD and Lewy body diseases, has high affinity for 
negatively charged lipids, including mitochondrial mem-
branes [127–129]. In addition, α-synuclein has been shown 
to bind to several mitochondrial proteins such as the volt-
age-dependent anion channel (VDAC) in a monomeric form 
[129] and to TOM20 in an oligomeric form [130]. These 
interactions hinder the exchange of ATP/ADP between the 
mitochondria and the cytosol and impair mitochondrial pro-
tein import, both of which undermine mitochondrial func-
tion [129, 130].

ALS and FTD are diseases that manifest different clinical 
symptoms and yet share overlapping etiology. The patho-
logical hallmark of ALS/FTD is the cytoplasmic mis-local-
ization of TDP-43, but the mechanism by which TDP-43 
proteins cause toxicity in the cytoplasm remains unclear. 
Wang et al. proposed a novel mode of toxicity by show-
ing that TDP-43 possesses internal mitochondrial target-
ing signals that can direct TDP-43 into the mitochondria. 
The mitochondrial targeting becomes enhanced in ALS or 
FTD patients, which perturbs oxidative phosphorylation 
by means of binding to mitochondria-transcribed ND3 and 
ND6 mRNA and prohibiting their translation [131]. Con-
versely, Kawamata et al. reported that disease-associated 
mutant TDP-43 (TDP43 A315T) expression did not lead 
to any aberrant mitochondrial functions aside from calcium 
dysregulation [132]. These conflicting data warrant further 
investigation for us to assess more accurately the potential 
relevance of the mechanism described above. Interestingly, 
one of the arginine-rich DPRs (poly-GR repeats) derived 
from the hexanucleotide expansion mutation of C9ORF72 
has also been shown to localize to the mitochondria and 
interact with mitochondrial ribosomal proteins, thereby 
causing mitochondrial dysfunction [133]. These recent 

findings suggest the mitochondria to be the primary driver 
of neurodegeneration in ALS/FTD as well.

How and for what purpose do these disease-associated 
toxic proteins accumulate in the mitochondria? Such het-
erogeneity of disease-associated proteins targeting mito-
chondria suggests non-specific mechanisms in which mito-
chondria act as cellular waste bins for toxic and presumably 
misfolded disease proteins. Ruan et al. recently proposed, in 
a rather timely manner, the mechanism by which misfolded 
cytoplasmic proteins accumulate inside the mitochondria to 
be degraded [134]. Ruan et al. showed that upon heat stress, 
misfolded cytoplasmic proteins enter mitochondria via 
mitochondrial translocase Tom70/Tom40 and are degraded 
by Pim1 in yeast [134]. Given that most toxic disease pro-
teins are prone to misfolding, the potential relevance of this 
mechanism may be far-reaching in understanding the mito-
chondrial pathology common to most neurodegenerative 
diseases.

Protein toxicity in the stress granules

Neurons undergoing degeneration display immense stress 
to which multifaceted responses are launched to mitigate it. 
One of the key processes that occur in response to cellular 
stress is the formation of stress granules (SGs) [135]. Upon 
stress induction, cap-dependent translational processes are 
aborted and the messenger ribonucleoproteins (mRNPs) 
disengaged from the ribosomes begin to coalesce [136]. 
The RNA-binding proteins (RBPs) in these mRNPs interact 
electrostatically with one another through low complexity 
domains (LCDs) [137]. These interactions eventually facili-
tate liquid–liquid phase separation (LLPS) from the cyto-
plasm, thereby forming SGs. Concomitant to the formation 
of SGs, chaperones such as HSP70 are up-regulated via 
m6A-mediated cap-independent translation [138] to defuse 
stress by promoting refolding or degradation of misfolded 
proteins. Once the stress is resolved, the chaperones [139], 
along with autophagy [140], become instrumental in the dis-
assembly of SGs [141].

In some neurodegenerative diseases, such as ALS or 
FTD, the SGs are infiltrated by disease-associated proteins 
that elicit an improper stress response. Many of the ALS 
genes encode proteins that are associated with SGs, such 
as Profilin-1, hnRNPA1/A2, fused in sarcoma (FUS), T 
cell-restricted intracellular antigen-1 (TIA1), and TDP-43, 
several of which are also linked to FTD [135, 142–147]. 
Increased cytoplasmic concentration or a mutation in the 
LCD of these proteins seems conducive to the initial LLPS, 
with subsequent stabilizing effect of SGs beyond the physi-
ological necessity. The stabilized SGs that persist may then 
evolve into pathological fibrils [141].
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Other ALS or FTD-associated proteins, such as super-
oxide dismutase-1 (SOD1) and valosin-containing protein 
(VCP), also impinge on the SGs, albeit by mechanisms that 
are independent of LCD [136, 148]. SOD1 variants asso-
ciated with ALS form aggregates around the SGs, which 
suggests that SG formation precedes SOD1 aggregation 
[148]. Encapsulated by mutant SOD1, SGs display reduced 
dynamics and irregular morphology [148]. Such perturbed 
SG dynamics can be effectively combatted by the PQC sys-
tem, of which VCP is a prominent member [136]. VCP is an 
ubiquitin segregase that uses ATP to extract ubiquitinated 
proteins from complexes to which they belong [136]. Stress 
induces SUMOylation of the VCP N-terminal domain by 
Ubc9, and it is one of the mechanisms by which VCP local-
izes to the SGs [149]. Mutations of VCP in the N-terminal 
domain thus have been shown to hinder SUMOylation, the 
modification without which hampers VCP from infiltrating 
SGs to extract ubiquitinated misfolded proteins for degra-
dation [149]. Hence, SG disassembly fails with VCP muta-
tion and the property of these SGs slowly transforms from 
dynamic liquid droplet like to pathological fibrils.

Whether or not SG pathology is associated with HD is 
still controversial. One study showed that mutant htt forms 
stress bodies, but not SGs [150]. Another study showed that 
both normal and mutant htt proteins can bind to SG-related 
factors such as Caprin-1 and G3BP1 [151]. Under normal 
conditions, neither normal nor mutant htt co-localized with 
the SG marker TIA1, whereas after arsenite treatment, both 
normal and mutant htt co-localized with TIA1; no differ-
ence in SG dynamics could be observed between normal and 
mutant htt in striatal precursor cells with or without arsenite 
treatment [151]. Similarly, another study reported that both 
normal and mutant htt interact with Caprin-1 and G3BP1; 
however, this study showed that the size and number of SGs 
were larger in striatal precursor cells expressing mutant htt 
compared to cells expressing normal htt [152]. These studies 
focused on mis-localization of mutant htt into SG to dis-
rupt its dynamics; the results of these studies were mixed. 
Some studies suggest that rather than mutant htt localizing to 
SGs to cause their dysfunction, SG-related factors may mis-
localize to mutant htt inclusions [153]. Time-lapse images in 
AD293 cells showed the formation of mutant htt inclusions 
with subsequent TIA-1 recruitment [154]. Another study 
showed that less than 1% of the interactors of mutant htt also 
interacted with SGs [155], which seems to support the view 
that mutant htt inclusions recruit certain SG-related factors.

Although the link between SG pathology and neurode-
generation has been well established, there is a lack of lit-
erature on the mechanism by which pathological SGs pre-
cipitate neurodegeneration. It has been a commonly accepted 
notion that SG formation upon stress induction contributes 
substantially to the global translational shutdown. However, 
a recent study using RNA-sequencing and single-molecule 

fluorescence in situ hybridization (smFISH) showed that 
only 10–12% of total mRNA molecules are localized to 
SGs [156], which does not support the notion that SGs are 
indispensable for global suppression of translation. Indeed, 
a previous study showed global translational shutdown upon 
stress induction in cells with G3BP mutations that prohibit 
SG formation [157]. This evidence supports the notion that 
SGs are dispensable for global suppression of translation. If 
it is not global translational shutdown, what then is the major 
function of SGs during stress, and how do pathological SGs 
precipitate neurodegeneration? Several studies showed that 
SG formation could impinge on intracellular signaling by 
sequestering key signaling molecules such as mammalian 
target of rapamycin (mTORC1) [135, 158, 159]. Thus, one 
of the mechanisms by which pathological SGs precipitate 
neurodegeneration may be through chronic impediment of 
intracellular signaling. Henceforth, elucidating the mecha-
nistic link between pathological SGs and neurodegeneration 
should be one of the major focal points of research.

Propagation of toxic disease proteins

One of the interesting features often observed in neurode-
generative diseases is the gradual expansion of brain regions 
affected by pathogenic protein aggregates over time. In post-
mortem brains of PD patients, histopathological analyses 
have revealed the stereotypical progression of pathogenic 
inclusions from the autonomic nervous system, and from 
the dorsal motor and anterior olfactory nuclei to the sub-
stantia nigra, basal forebrain and the locus coeruleus, as 
well as to the hippocampus, neocortex, and basal ganglia 
[160] (Fig. 2a). In the postmortem brains of AD patients, 
tau inclusions initially appear in the transentorhinal cortex 
and later emerge in the hippocampal formation and neo-
cortex [161] (Fig. 2b). These observations have led to an 
intriguing hypothesis that the expansion of the damaged 
brain regions is due to the gradual “prion-like” intercellular 
transmission of aggregates rather than the cell-autonomous 
accumulation of neuronal aggregates [162–164]. Sup-
porting this hypothesis, clinical studies have shown that 
healthy embryonic mesencephalic neurons implanted into 
the striatum of patients with advanced PD developed scat-
tered α-synuclein- and ubiquitin-positive inclusions many 
years after transplantation [165]. Similarly, healthy neurons 
implanted into the striatum of transgenic mice overexpress-
ing human α-synuclein exhibited an accumulation of Lewy 
body-like inclusions [166–169]. In addition, the implemen-
tation of either patient-derived fibroblasts or pluripotent 
stem cells carrying mutant htt into the brain of neonatal 
wild-type mice was shown to induce cell-to-cell propagation 
of the mutant protein, a progressive loss of host cells, and 
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behavioral deficits characteristic to HD [170]. These results 
suggest that pathological aggregates can transfer between 
diseased and healthy cells in humans and animals.

The more direct evidence supporting the mobility of 
aggregates between cells has been provided by studies 
either employing an intracerebral application of exogenous 
aggregates derived from diseased humans and animals or 
ectopic overexpression of α-synuclein and tau in a popu-
lation of neurons to examine whether the aggregates can 
spread through the brain connectome [166, 171–173]. For 
example, an intracerebral injection of brain extracts prepared 
from the symptomatic P301S tau transgenic mice was shown 
to be sufficient for inducing neurofibrillary tangles in pre-
symptomatic P301S tau transgenic mice at the injection site 
as well as in the distant brain regions that are physically 
separated by one or more synapses from the injection site 
[166, 174]. Similarly, within 6–12 months after the inocula-
tion of amyloid beta-containing brain extracts derived from 
either AD patients or aged APP transgenic mice into the 
hippocampus and neocortex of young APP transgenic mice, 
amyloid beta deposition and its associated pathology were 
widespread in the brain [175–177]. Likewise, an intracer-
ebral administration of brain or spinal cord homogenates 
prepared from symptomatic α-synuclein transgenic mice 
facilitated the appearance and spread of Lewy pathology 
in presymptomatic recipient transgenic mice [171]. The 
spread of pathological changes was recapitulated by a local 
injection of synthetic α-synuclein fibrils or tau filaments in 
presymptomatic transgenic mice, suggesting that aggregates, 
but not other factors in the brain homogenates, are sufficient 
for the spreading of the pathological changes in the brain 
[171, 178–180]. Finally, selective overexpression of trans-
genic tau, amyloid beta, or α-synuclein in a population of 
neurons could trigger the spread of misfolded proteins to the 
interconnected brain regions in transgenic mice [181–186].

Several lines of evidence suggest that peripherally intro-
duced aggregates can lead to the accumulation of misfolded 

proteins in the central nervous system (CNS). For instance, 
transgenic mice expressing a mutant human α-synuclein 
exhibited pathogenic inclusions and neuroinflammatory 
responses throughout the CNS within 2–4 months after an 
intramuscular injection of recombinant α-synuclein fibrils. 
Those animals also displayed a debilitating motor impair-
ment, which is one of the clinical symptoms characteris-
tic of PD [187]. However, when the sciatic nerve, which 
connects the muscles to the spinal cord, is severed in those 
same mice, the development of the pathogenic inclusions 
and neuroinflammatory responses in the CNS was signifi-
cantly delayed. This suggests that the retrograde transport 
of misfolded proteins via the peripheral nerve is required for 
disease propagation, at least in this mouse model. A recent 
study has shown that α-synuclein fibrils injected into the 
olfactory bulb of wild-type mice propagate transneuronally 
to distant brain regions and induce progressive olfactory 
deficits [188]. Similarly, mutant htt ectopically expressed 
in sensory receptor neurons in Drosophila can spread trans-
cellularly to neuronal and glial cells in the brain [189–191]. 
Another study has demonstrated that an intestinal applica-
tion of either the brain lysate from human PD patients or 
recombinant α-synuclein in rats could elicit α-synuclein 
inclusions in the dorsal motor nucleus of the vagus nerve in 
the brainstem [192]. Moreover, systemic treatment of aggre-
gates, such as repeated injections of α-synuclein fibrils into 
the tail vein and an intraperitoneal inoculation of tau extracts 
or amyloid beta seeds, was sufficient to cause accumulation 
of deposits in the brain [193–196].

There are several varying molecular mechanisms by 
which pathogenic aggregates can transfer between cells 
(Fig. 2c). Exocytosis is one of the main secretory mecha-
nisms involved in releasing aggregates from donor cells, 
which occurs in an intracellular calcium- and endosome-
dependent manner [197–199]. Alternatively, the misfolded 
proteins can be released into the extracellular space within 
secretory vesicles called exosomes [200–202]. Exosomes are 
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vesicles of 50–100 nm diameter that normally mediate inter-
cellular transportation of mRNA, small regulatory RNA, and 
specific proteins between the cells [203]. A number of stud-
ies have demonstrated that exosome-mediated propagation 
is implicated in the spreading of pathogenic inclusions in 
neurodegenerative diseases. Studies using immunofluores-
cence and immunoelectron microscopy have revealed that 
the exosomes are associated with amyloid beta peptides, 
phosphorylated tau, and other related molecules [204]. 
Furthermore, exosomes isolated from diseased transgenic 
animals or human patients were shown to have an ability to 
nucleate oligomerization of endogenous proteins in recipient 
cells [205, 206]. Accordingly, pharmacological inhibition 
of key regulatory enzymes mediating secretion and synthe-
sis of the exosomes significantly reduced both the amyloid 
plaque formation in the AD mouse model and the secretion 
and propagation of tau from microglia in vitro and in vivo 
[182, 207]. Finally, pathogenic inclusions can be transferred 
through tunnel-like structures called tunneling nanotubes 
that connect the cytosolic compartments between neighbor-
ing cells to facilitate intercellular material exchange for com-
munication [208]. The diameter of nanotubes ranges from 
50 to 200 nm, and their lengths can reach up to several cell 
diameters [209]. In vitro studies have shown that α-synuclein 
fibrils can be transferred via tunneling nanotubes to lys-
osomes of recipient cells, such as mouse catecholaminergic 
cells and human primary brain pericytes, and subsequently 
induce the aggregation of cytosolic α-synuclein [208, 210].

In sum, the progressive accumulation of specific protein 
aggregates along anatomical connections is a common hall-
mark of major neurodegenerative diseases such as AD and 
PD. Extensive evidence from in vitro and in vivo studies 
suggests that one of the fundamental pathogenic mecha-
nisms by which neurodegeneration transpires is the inter-
cellular transmission of protein aggregates in synaptically 
connected brain networks.

As describe above, disease propagation model is sup-
ported by a number of preclinical evidence, but there are 
also some observations that cannot be fully explained by 
this model. For example, a fetal graft implanted in some 
PD patients was found to be without pathology in autop-
sies performed two decades following transplantation [211, 
212]. In addition, proteins associated with neurodegenera-
tive diseases are unlikely to transmit between individuals 
as a disease-causing infectious agent [213, 214]. Finally, a 
recent study showed that brain regions manifesting Lewy 
pathology neither fully correlate with the synaptic connec-
tion patterns revealed by connectome mapping [215] nor fol-
low the spatiotemporal spread patterns described by Braak 
et al. Thus, further research is required to fully understand 
the clinical relevance of the aggregate propagation model 
versus the cell-autonomous model.

Selective neuronal vulnerability

Most of the genes whose mutations cause neurodegenera-
tive diseases are ubiquitously expressed in all developmental 
stages of life. However, developmental defects are minimal 
in patients with neurodegenerative diseases such as AD, HD, 
PD, or ALS. In addition, neurodegenerative disease patients 
tend to manifest late-onset, cell-type-specific neurodegen-
eration [216]. Due to their post-mitotic nature, neurons may 
be more vulnerable to cellular toxicity than other cell types 
which are capable of regeneration. Furthermore, neurons 
are generally more ATP dependent than other cell types, 
rendering neurons more vulnerable to energy crises caused 
by membrane potential changes and mitochondrial dysfunc-
tion. Nevertheless, two important questions remain to be 
answered. First, what accounts for the selective neuronal 
toxicity? Second, why does such toxicity stay dormant dur-
ing development, but become damaging with age?

Both sporadic and familial disease cases present with 
selective neuronal vulnerability. This selective neuronal 
vulnerability is often indistinguishable between patients 
with sporadic and familial etiology, but is distinct from dis-
ease to disease [217]. Hence, we speculate that selective 
neuronal vulnerability may arise from genetic predisposi-
tion or environmental factors that chiefly affect certain neu-
rons. For instance, PD is often associated with mutations in 
genes that are involved in mitochondrial function and also 
with exposure to environmental mitochondrial toxins [126]. 
Whether caused by genetic or environmental factors, PD 
involves selective degeneration of the substantia nigra pars 
compacta (SNpc). Thus, we deduce that the SNpc may be 
particularly vulnerable to mitochondrial dysfunction. What 
makes SNpc especially vulnerable to mitochondrial dysfunc-
tion is unclear, though the unique properties of those neu-
rons, such as the oxidation of dopamine neurotransmitters 
and the pacemaking activity of Cav1.3 L-type Ca2+ channels 
[218], are likely contributors. Nonetheless, the possibility of 
other factors contributing to the selective SNpc degeneration 
should not be excluded.

Similarly, both sporadic and familial ALS are associated 
with RNA metabolism [219], the dysfunction of which may 
selectively render upper and lower motor neurons vulnerable 
to degeneration. Interestingly, RNA metabolism is also com-
promised by the activation of human endogenous retrovirus 
k [220], which is associated with ALS [221]. Hence, RNA 
metabolism dysfunction may be associated with ALS, but 
whether it can cause selective motor neuron degeneration 
is still unclear.

PolyQ disease patients tend to exhibit cerebellar atrophy 
[222]. This outcome suggests that the cerebellum is particu-
larly vulnerable to protein toxicity mediated by the expanded 
polyQ proteins. We speculate that the cerebellum may have 
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a weaker defense system against polyQ toxicity or that it 
expresses a disproportionate amount of proteins that are 
polyQ targets. Interestingly, fetal alcohol exposure primar-
ily causes cerebellar pathology, which is linked to reduced 
CBP expression in the cerebellum [223]. In addition, Rubin-
stein–Taybi syndrome, which is caused by a CBP loss-of-
function mutation, involves cerebellar pathology [224]. 
Since many different polyQ proteins have been shown to 
sequester and to interfere with CBP [225, 226], we speculate 
that a polyQ-induced loss of CBP function may contribute to 
the selective cerebellar pathology in polyQ diseases.

There are many possible explanations for minimal devel-
opmental defects in patients who later develop neurodegen-
erative diseases. We believe that the following are the three 
most viable explanations: (1) the PQC system may mitigate 
protein toxicity early in life but may fail later in life, (2) pro-
tein toxicity eventually reaches a critical threshold, beyond 
which defense mechanisms start to collapse, or (3) envi-
ronmental factors or epigenetic alterations during and after 
development contribute to the disease onset later in life. We 
believe that all of these processes may contribute to the late 
onset of neurodegenerative diseases. Thus, we propose that 
development is the critical window within which therapeu-
tics should be applied to prevent or delay disease initiation.

Discussion and future perspectives

Neurodegenerative diseases, for which there are no rem-
edies, correlate well with age, and this is a major conun-
drum with which we are confronted in an aging society. With 
years of massive research efforts carried out in laboratories 
around the globe, much knowledge of the nature of neuro-
degenerative diseases has been accrued with only a minimal 
progress in the actual development of effective therapeutics. 
To bridge the gap between our current understanding of the 
disease and the application thereof to the development of 
effective therapeutics, in this review, we have systematically 
analyzed and summarized the mechanistic underpinnings 
of protein toxicity (Table 1; Fig. 1), which is central to the 
development and progression of a vast array of neurodegen-
erative diseases such as AD, PD, ALS, FTD, and HD. We 
have discussed a number of toxic disease proteins within 
their respective subcellular contexts in an attempt to com-
pare and contrast their pathogenic mechanisms in a localized 
area.

In this review, we have focused on the mechanisms of 
protein toxicity in neurodegenerative diseases, but protein 
toxicity can also be observed in psychiatric disorders such 
as schizophrenia. Recently, schizophrenia has been asso-
ciated with genes such as Neuronal PAS Domain Protein 
3 (NPAS3), Disrupted-in-schizophrenia 1(DISC1), and 
TRIO binding protein-1 (TRIOBP-1); translocation or point 

mutations in these genes may cause protein aggregation 
[227–229]. NPAS3-V304I proteins form aggregates, into 
which normal NPAS3 proteins are sequestered; NPAS3 
loss of function then leads to decreased transcription of 
its downstream target, VGF [228]. A DISC1 translocation 
mutation produces a truncated DISC1 protein, which can 
form aggregates and can act in a dominant negative manner. 
Three polymorphisms of DISC1 have also been associated 
with major depression and schizophrenia [229]. TRIOBP-1 
has been found in insoluble aggregates within brain lysates 
of schizophrenia patients’ brains. Amino acids 324–348 of 
TRIOBP-1 are thought to be critical for aggregation; TRI-
OBP-1 aggregation may affect actin dynamics and neurite 
growth [230]. Interestingly, the TRIOBP mutation is associ-
ated with deafness, which is often associated with psychi-
atric disorders. One study identified a family with schizo-
phrenia and hearing impairment; for this family, the locus in 
which the causative mutation lies includes TRIOBP [231]. 
In addition to NPAS3, DISC1, and TRIOBP-1, CRMP1 and 
dysbindin can also form protein aggregates in schizophrenic 
patients [229, 232]; therefore, we infer that protein toxic-
ity may be one of the mechanisms by which schizophrenia 
occurs. Interestingly, schizophrenia has been suggested to 
be linked to polyQ diseases as well [233]. It has been shown 
biochemically that DISC1 binds to mutant htt more strongly 
than it binds to normal htt [234]. This binding sequestered 
DISC1 away from PDE4, thereby increasing its activity. 
Overexpressing modified DISC1, which can interact with 
PDE4 but not with mutant htt, ameliorated anhedonia in 
a mouse model of HD [234]; anhedonia is one of the core 
features of schizophrenia. Many neurodegenerative disease 
patients also display mental or psychiatric symptoms such 
as depression and hallucinations [235, 236]; however, the 
molecular link between neurodegeneration and psychiatric 
symptoms remain undefined.

Increased life expectancy and the prevalence of neuro-
degenerative diseases in the twenty-first century are driv-
ing therapeutic research. However, currently there are only 
palliative drugs available to treat these diseases. The task 
of drug development is formidable; it has been estimated 
that AD drug development efforts face a 99.6% failure rate 
[237]. Hence, Pfizer (one of the leading pharmaceutical 
companies) recently announced its exit from the field of 
neuroscience [238]. However, as basic research is slowly 
helping us to understand the complexity of the brain, new 
treatment strategies against neurodegenerative diseases are 
being formulated.

One of the fastest-growing treatment strategies is anti-
body utilization [239]. For neurodegenerative diseases that 
involve protein toxicity, elimination of toxic proteins is an 
efficient way in which toxicity can be mitigated. Hence, anti-
bodies against toxic disease proteins such as α-synuclein 
and amyloid beta are being developed. Recently, Biogen Inc. 
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developed aducanumab, which was shown to reduce both 
amyloid plaques and cognitive decline in patients with mild 
form of AD after a 12-month trial [240]. However, another 
amyloid beta antibody (solanezumab) did not mitigate cogni-
tive decline or reduce amyloid plaque in AD patients [241]. 
There are a few explanations that may account for this dis-
crepancy. First, solanezumab administration may have been 
below the effective dose. Second, solanezumab may have 
bound to the wrong target. Third, the disease of patients in 
the solanezumab study may have been too advanced for the 
treatment to have been beneficial. Although only approx-
imately 0.1% of the antibodies are known to traverse the 
blood–brain barrier [239], intravenous infusion of 400 mg 
every 4 weeks [241] seems to be a substantial dosage. Solan-
ezumab targets amyloid beta monomers [241], whereas adu-
canumab targets oligomers and fibrils [240]; recent studies 
suggest that the oligomeric form may be the most toxic form 
[242]. This suggests that therapeutic target may have been 
at fault. Nevertheless, disease progression could perhaps be 
delayed if solanezumab was administered before any sub-
stantial oligomers or fibrils were formed. In any case, we 
can learn from these two examples, which highlight the sig-
nificance of identifying the key drug target, correct dosage, 
and the disease stage at which to intervene.

Antibody treatment has its own drawbacks, however. As 
they cannot freely traverse across membranes, intracellular 
targeting of antibodies is very difficult, and intra-organellar 
targeting, even more so. Thus, antibody-based treatments 
have been more successful with extracellular targets (such 
as amyloid plaques) instead of intracellular targets (such as 
mutant htt and α-synuclein). Nevertheless, there are a few 
notable antibody-based drugs (RO7046015 from Roche and 
BIIB054 from Biogen) undergoing clinical tests targeting 
cell-to-cell transmission of α-synuclein [243]. Although 
there are various methods whereby antibody-based drugs 
can be delivered intracellularly in vitro and ex vivo [239], 
delivery in vivo often still poses insurmountable challenges. 
Hence, we believe that undertaking the challenge of target-
specific delivery will be crucial in advancing the develop-
ment of effective therapeutics against neurodegenerative 
diseases.

Our review discussed the mechanisms and the sites at 
which protein toxicity occurs to assist in the identification 
of druggable targets. We have also briefly discussed poten-
tial mechanisms of cell-to-cell propagation of toxic proteins 
and selective neuronal vulnerability in neurodegenerative 
diseases. We hope that by enhancing our understanding in 
these areas of research, more effective therapeutic strategies 
will be developed in the future.
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