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Abstract
High histone deacetylase (HDAC) 8 and HDAC10 expression levels have been identified as predictors of exceptionally 
poor outcomes in neuroblastoma, the most common extracranial solid tumor in childhood. HDAC8 inhibition synergizes 
with retinoic acid treatment to induce neuroblast maturation in vitro and to inhibit neuroblastoma xenograft growth in vivo. 
HDAC10 inhibition increases intracellular accumulation of chemotherapeutics through interference with lysosomal homeo-
stasis, ultimately leading to cell death in cultured neuroblastoma cells. So far, no HDAC inhibitor covering HDAC8 and 
HDAC10 at micromolar concentrations without inhibiting HDACs 1, 2 and 3 has been described. Here, we introduce TH34 
(3-(N-benzylamino)-4-methylbenzhydroxamic acid), a novel HDAC6/8/10 inhibitor for neuroblastoma therapy. TH34 is well-
tolerated by non-transformed human skin fibroblasts at concentrations up to 25 µM and modestly impairs colony growth in 
medulloblastoma cell lines, but specifically induces caspase-dependent programmed cell death in a concentration-dependent 
manner in several human neuroblastoma cell lines. In addition to the induction of DNA double-strand breaks, HDAC6/8/10 
inhibition also leads to mitotic aberrations and cell-cycle arrest. Neuroblastoma cells display elevated levels of neuronal 
differentiation markers, mirrored by formation of neurite-like outgrowths under maintained TH34 treatment. Eventually, 
after long-term treatment, all neuroblastoma cells undergo cell death. The combination of TH34 with plasma-achievable 
concentrations of retinoic acid, a drug applied in neuroblastoma therapy, synergistically inhibits colony growth (combination 
index (CI) < 0.1 for 10 µM of each). In summary, our study supports using selective HDAC inhibitors as targeted antineo-
plastic agents and underlines the therapeutic potential of selective HDAC6/8/10 inhibition in high-grade neuroblastoma.
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Introduction

Neuroblastoma is the most common extracranial solid 
tumor in childhood and the most frequently occurring 
cancer in infancy, accounting for 15% of pediatric cancer 
mortality (Brodeur 2003; Ward et al. 2014). Its clinical 
presentation is diverse, including highly differentiated 
local tumors with an excellent prognosis, spontaneously 
regressing metastatic disease and chemotherapy-resistant, 
invasive masses, which are likely to relapse. Treatment 
regimens for high-risk tumors involve dose-intensive 
chemotherapy, surgical resection and a combination 
of immunotherapy, antibodies and 13-cis retinoic acid 
(Cheung and Dyer 2013; Pinto et al. 2015; PDQ Pediatric 
Treatment Editorial Board, PDQ Cancer Information Sum-
maries [Internet]. Bethesda (MD): National Cancer Insti-
tute (US) 2002–2017). Despite high-intensity chemother-
apy, overall survival in high-risk neuroblastoma remains 
poor and chemotherapy-related toxicities are commonly 
observed. Thus, research has recently focused on the 
identification of novel, druggable targets and developing 
respective antineoplastic agents to abolish therapy resist-
ance mechanisms and minimize chemotherapy-related 
adverse events.

The classical histone deacetylase (HDAC) family com-
prises 11 enzymatic subtypes, which, according to evo-
lutionarily preserved catalytic domains, are divided into 
classes I (HDACs 1, 2, 3 and 8), IIa (HDACs 4, 5, 7 and 9), 
IIb (HDACs 6 and 10) and IV (HDAC11). Since HDACs 
catalyze the removal of acetyl groups from lysine residues 
of nuclear as well as cytoplasmic substrates, they affect 
diverse cellular processes including cell cycle control, 
apoptosis, metabolic homeostasis, stress response and 
autophagy (de Ruijter et al. 2003; Kim et al. 2001; Li and 
Zhu 2014; Yang and Seto 2008). Moreover, HDAC func-
tions are protective against DNA damage, and depletion or 
inhibition of HDACs impair DNA damage repair mecha-
nisms, rendering cells more susceptible to DNA-damaging 
agents (Miller et al. 2010). Recent evidence illustrates that 
HDAC inhibitors themselves propel DNA damage through 
replicative stress and a reduction of DNA repair proteins 
(Nikolova et al. 2017). HDACs are validated targets in 
anti-tumoral therapy and, to date, five HDAC inhibitors 
(panobinostat, romidepsin, belinostat, vorinostat and chi-
damide) have been approved for the treatment of hemato-
logical malignancies (Bates et al. 2015; Cheng et al. 2015; 
Mann et al. 2007; O’Connor et al. 2015; Shi et al. 2015). 
The approved HDAC inhibitors target multiple HDACs, 
including HDACs 1, 2 and 3, which are associated with 
serious, dose limiting adverse effects including leukope-
nia, thrombocytopenia, anorexia, vomiting, diarrhea and 
fatigue, mainly ascribed to an inhibition of HDACs 1, 

2 and 3 (Bradner et al. 2010; Lane and Chabner 2009; 
Oehme et al. 2009a; Witt et al. 2009b). Selective targeting 
of tumor-relevant HDAC subtypes while avoiding inhibi-
tion of HDACs 1, 2 and 3 may thus lead to an increased 
therapeutic window with limited toxicity to healthy tissue 
(Balasubramanian et al. 2009).

HDAC8 is the only HDAC that is significantly tran-
scriptionally upregulated in high-grade (INSS stage 4) 
neuroblastoma patient samples as compared to prognosti-
cally favorable stage 1, 2, 3 and 4S tumors. High HDAC8 
expression strongly correlates with markers of poor prog-
nosis (Oehme et al. 2009b). Selective HDAC8 inhibition 
induces a differentiated phenotype in neuroblastoma and 
reduces neuroblastoma growth in vitro and in vivo at least 
as effectively as unspecific HDAC inhibition while dis-
playing fewer adverse effects (Rettig et al. 2015). This 
endorses selective HDAC8 inhibition as a very promising 
therapeutic option in neuroblastoma.

Class IIb HDACs 6 and 10 play an important role in pro-
tein degradation, lysosomal trafficking and cellular stress 
response (Kawaguchi et al. 2003; Koeneke et al. 2015; 
Kramer et al. 2014; Park et al. 2008; Yang and Seto 2008). 
HDAC10 expression strongly correlates with poor over-
all survival in high-grade (INSS stage 4) neuroblastoma 
(Oehme et al. 2013), making this HDAC a particularly 
attractive druggable target in this entity. HDAC10 supports 
neuroblastoma cell survival by promoting autophagic flux, 
and inhibition of HDAC10 sensitizes chemotherapy-resist-
ant cells to treatment with DNA damage-inducing drugs 
such as doxorubicin (Oehme et  al. 2013). In addition, 
HDAC10 promotes DNA damage repair (Radhakrishnan 
et al. 2015). HDAC6 expression does not significantly cor-
relate with prognostic markers in neuroblastoma (Oehme 
et al. 2009b). HDAC6 and 10 share highly-conserved cata-
lytic domains (Fischer et al. 2002) and structurally, it is 
therefore, utterly challenging to strictly avoid inhibition 
of one class IIb HDAC while significantly impairing the 
other subtype’s function. Inhibition of HDAC6 has been 
found to be well tolerated in preclinical and clinical stud-
ies (Santo et al. 2012; Vogl et al. 2017; Yee et al. 2016), 
which is why inhibition of HDAC6 did not lead to exclu-
sion of a candidate inhibitor in this study.

Here, we present the novel small-molecule HDAC 
inhibitor TH34, which is the first HDAC inhibitor that 
shows pronounced selectivity for HDACs 6, 8 and 10 over 
HDACs 1, 2 and 3. Consistent with previous findings, 
treatment of neuroblastoma cells with TH34 induces signs 
of neuronal differentiation. Furthermore, we characterize 
DNA damage-inducing and cytotoxic effects of TH34 
treatment in neuroblastoma, and identify the combination 
of the novel HDAC inhibitor with retinoic acid as syner-
gistic and very effective in specifically eliminating tumor 
cells but not non-malignant fibroblasts. Taken together, 
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our findings underline the specific roles of HDACs 8 and 
10 in high-grade neuroblastoma and provide a rationale 
for further development of TH34 and all-trans retinoic 
acid (ATRA) as a treatment combination in this pediatric 
cancer entity.

Materials and methods

Cell culture

Human neuroblastoma cell lines SK-N-BE(2)-C (Euro-
pean Collection of Authenticated Cell Cultures, ECACC, 
Salisbury, UK), IMR-32 (German Collection of Microor-
ganisms and Cell Cultures, DSMZ, Darmstadt, Germany), 
SK-N-AS (kindly provided by M. Schwab, DKFZ) and 
SH-SY5Y (DSMZ) as well as human medulloblastoma 
cell line MED8A (kindly provided by R. Gilbertson, St 
Jude Children’s Research Hospital, Memphis, TN, USA) 
and the non-transformed human foreskin fibroblast cell 
line VH7 (kindly provided by P. Boukamp, DKFZ) were 
cultured in Dulbecco’s Modified Eagle Medium (DMEM, 
Lonza, Basel, Switzerland) supplemented with 10% fetal 
calf serum (FCS, Sigma-Aldrich, Munich, Germany) and 1% 
non-essential amino acids (NEAA, Lonza). Kelly (DSMZ) 
and HD-MB03 (kindly provided by T. Milde, DKFZ) cells 
were cultured in RPMI 1640 medium (ThermoFisher Sci-
entific, Braunschweig, Germany) containing 10% FCS and 
1% NEAA. All cell lines were routinely authenticated using 
DNA fingerprinting authentication (DSMZ) and screened 
for mycoplasma contamination (Multiplexion, Heidelberg, 
Germany). All cell lines were cultured under standard con-
ditions at 37 °C in a humidified atmosphere containing 5% 
CO2 and passages 15–30 were used.

Primary neuroblastoma culture

Collection and use of neuroblastoma specimens was 
approved by the Institutional Review Board of the Medical 
Faculty, University of Heidelberg, and informed consent was 
obtained by the patient’s guardians. Bone marrow aspirates 
with high tumor cell infiltration were used to establish a 
primary culture. Briefly, neuroblastoma cells were isolated 
using a Ficoll gradient separation and subsequently cultured 
on matrigel-coated cell culture dishes in RPMI-1640 + 10% 
FCS for 7 days. Neuroblastoma spheroids were then sub-cul-
tured for 2–3 passages before freezing in 10% DMSO + 20% 
FCS.

Cell culture reagents and chemicals

TH34 (3-(N-benzylamino)-4-methylbenzhydroxamic acid) 
(stock concentration 50 mM) was synthesized by coauthors 

TH and WS as described previously (Heimburg et al. 2016, 
2017) and was dissolved in DMSO (Sigma-Aldrich). All-
trans retinoic acid (ATRA, Sigma-Aldrich, stock concen-
tration 10 mM) was dissolved in ethanol (EtOH, Sigma-
Aldrich). Z-VAD-FMK (Biozol, Eching, Germany, stock 
concentration 100 mM), necrostatin-1 (Cayman Chemical, 
Tallinn, Estonia, stock concentration 50 mM) and trolox 
(kindly provided by N. Brady, Johns Hopkins Bloomberg 
School of Public Health, Baltimore, MD, USA, stock con-
centration 50 mM) were dissolved in DMSO. N-Acetyl-
cysteine (NAC, Sigma-Aldrich, stock concentration 1 mM) 
was dissolved in autoclaved Millipore H2O and stored at 
4 °C protected from light. If not otherwise specified, com-
pounds were stored at − 20 °C and protected from light.

NanoBRET assay

HeLa cells, stably transfected with NanoBRET plas-
mids NanoLuc®-HDAC6 FL Fusion Vector and 
NanoLuc®-HDAC10 FL Fusion Vector (Promega, Madison, 
WI, USA) were seeded at 20,000 cells/well in white 96-well 
plates. Without further incubation, tracer (0.3 µM) and 
drugs were added in separate steps and plates were placed 
in a tissue culture incubator for 2 h. For NanoBRET quan-
tification, plates were put at room temperature for 10 min. 
Nanoglow substrate, diluted in OptiMEM without phenol 
red, was added and measured within 10 min in an OPTIMA 
plate reader (460 nm emission for donor and 610LP filter for 
acceptor, BMG Labtech, Ortenberg, Germany). The BRET 
signal was calculated by the ratio of acceptor signal to donor 
signal.

Western blot analysis

Western blot analysis was performed as described pre-
viously described (Oehme et  al. 2009b). The following 
antibodies were used: anti-histone 3 (#9715, Cell Signal-
ing Technology, Leiden, The Netherlands), anti-acetylated 
histone 3 (#06-911, Millipore), anti-tubulin (#2148, Cell 
Signaling Technology), anti-acetylated tubulin (#6793, 
Sigma-Aldrich), anti-acetylated SMC3 (kindly provided by 
Katsuhiko Shirahige, Institute for Molecular and Cellular 
Biosciences, University of Tokyo, Japan (Nishiyama et al. 
2010)), anti-HSC70/HSP70 (#sc-33575, Santa Cruz Bio-
technology, Heidelberg, Germany), and anti-β-actin (#5441, 
Sigma-Aldrich).

Acridine orange staining

Acridine orange-positive acidic vesicular organelles were 
detected as previously described (Oehme et al. 2013).
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Determination of biochemical HDAC3 activity

Ten doses of TH34 were tested by the company Reaction Biol-
ogy Corp. (Malvern, PA, USA) against a specific fluorogenic 
HDAC3 substrate (peptide RHKK(Ac)AMC from p53 residues 
379–382) in three-fold serial dilution, starting at 1000 µM. Tri-
chostatin A (threefold serial dilution starting at 10 µM) served 
as a positive control and IC50 values were calculated using 
GraphPad Prism version 5.01 (GraphPad Software).

Class IIa HDAC activity assay

Class IIa HDAC activity was performed as previously 
described (Ecker et al. 2015).

Cell viability analysis

Adherent cells were detached using trypsin–EDTA (Ther-
moFisher Scientific) and pooled with corresponding super-
natant, centrifuged and resuspended in 1 ml of cell culture 
medium. Cell viability was measured by automated trypan blue 
staining using the Vi-Cell XR Cell Viability Analyzer (Beck-
man Coulter, Krefeld, Germany). Caspase-3-like protease activ-
ity was analyzed as previously described (Oehme et al. 2009b).

Cell cycle analysis

Cell cycle analysis was performed as previously described 
(Oehme et al. 2006).

Histone protein H2AX phosphorylation assay 
(γH2AX)

Phosphorylation of histone protein H2AX on serine 139 indi-
cates DNA double-strand breaks and blockage of replication 
forks (Mariotti et al. 2013; Muslimovic et al. 2008). After 
treatment as indicated, 4 × 105 viable cells were transferred 
to a round-bottom plate. Cells were fixed and permeabilized 
using buffers using the eBioscience™ Foxp3/Transcription 
Factor Staining Buffer Set (ThermoFisher Scientific) accord-
ing to manufacturer’s protocol. Subsequently, cells were incu-
bated for 1.5 h with γH2AX primary antibody (ThermoFisher 
Scientific) on ice, washed twice and incubated with anti-rab-
bit Alexa Fluor® 488 secondary antibody for 1 h on ice before 
washing and measurement utilizing a FACSCanto II Flow 
Cytometer (Becton, Dickinson and Company).

Fluorescence microscopic analysis of NEFM 
and γH2AX staining

SK-N-BE(2)-C cells were seeded at a density of 2 × 104 
cells per well into an ibidi 8-well µ-slide and treated for 
24 h as indicated. Adherent cells were washed with PBS, 

fixed for 15 min using 4% paraformaldehyde (PFA) at room 
temperature, permeabilized for 30 min with 0.2% Triton-
X 100 (ThermoFisher Scientific) in phosphate-buffered 
saline (PBS) and blocked with 3% BSA in 0.05% Triton-X 
100 (ThermoFisher Scientific) in PBS for 1 h at room tem-
perature. Primary antibodies were diluted 1:500 (NEFM, 
Millipore) or 1:200 (γH2AX, Cell Signaling Technology) 
and after overnight incubation, cells were incubated with 
fluorescent secondary antibody for 2 h at room tempera-
ture and counterstained with DAPI. Images were acquired 
on a CKX41 light microscope (Olympus, Hamburg, Ger-
many) with a reflected fluorescence system or a Zeiss 
LSM710 laser scanning confocal microscope (Carl Zeiss, 
Oberkochen, Germany).

Quantitative real‑time PCR

Real-time PCR was performed as described previously 
(Fischer et al. 2005; Witt et al. 2003). Unless otherwise 
indicated, primers were purchased from ThermoFisher 
Scientific, and the following primers were used: CDKN1A 
(p21WAF1/CIP1, forward: 5′-TGG​AGA​CTC​TCA​GGG​TCG​
AAA-3′, reverse: 5′-GGC​GTT​TGG​AGT​GGT​AGA​AATC-
3′), HPRT (forward: 5′-TGA​CAC​TGG​CAA​AAC​AAT​
GCA-3′, reverse: 5′-GGT​CCT​TTT​CAC​CAG​CAA​GCT-3′), 
NTRK1 (forward: 5′-CAG​CCG​GCA​CCG​TCTCT-3′, reverse: 
5′-TCC​AGG​AAC​TCA​GTG​AAG​ATG​AAG​-3′), PUMA (for-
ward: 5′-CCT​GGA​GGG​TCC​TGT​ACA​ATCT-3′, reverse: 
5′-GCA​CCT​AAT​TGG​GCT​CCA​TCT-3′), SDHA (forward: 
5′-TGG​GAA​CAA​GAG​GGC​ATC​TG-3′, reverse: 5′-CCA​
CCA​CTG​CAT​CAA​ATT​CATG-3′). Data are expressed 
as relative gene expression (fold change) according to the 
2−ΔΔCt method (Livak and Schmittgen 2001), normalized 
to neuroblastoma housekeeping genes SDHA and HPRT 
(Fischer et al. 2005) and set in relation to negative control.

Cell differentiation assay

Adherent cells plated on 6-well plates were treated as indi-
cated. For staining, cells were rinsed once with (PBS) and 
incubated with crystal violet staining solution (1% (w/v) in 
70% EtOH) for 1 min. Subsequently, the staining solution 
was removed and cells were rinsed two to three times with 
autoclaved purified water and allowed to dry. A semi-auto-
mated macro determining surface of cell bodies as well as 
number and length of neurites was used for evaluation of 
ten fields of vision in ImageJ version 1.49v and normalized 
to solvent control.

Colony formation assay

Cells were plated on 6-well plates at a density of 500 (SK-
N-BE(2)-C), 750 (MED8A) or 1,000 (IMR-32, Kelly, 
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SH-SY5Y, SK-N-AS, HD-MB03) cells per well and treated 
as indicated for 96 h. Adherent cells were washed three times 
with PBS and cultured for 7 additional days before staining 
of viable cell colonies with crystal violet and quantifica-
tion using ImageJ version 1.49v (Schneider et al. 2012). 
For synergism calculation, combination indices were deter-
mined from quantified colony growth using the CompuSyn 
synergism calculation software based on the Chou–Talalay 
method (Chou 2010).

CellTiter‑Glo assay

Cells were plated on 96-well plates at a density of 10,000 
(SK-N-BE(2)-C, IMR-32, Kelly) or 20,000 (NB8) cells per 
well and treated as indicated for 72 h. According to manufac-
turer’s protocol, cells were incubated with reagent for 25 min 
using the CellTiter-Glo 2.0 kit (Promega, SK-N-BE(2)-C, 
IMR-32, Kelly) or the CellTiter-Glo 3D kit (Promega, NB8) 
and bioluminescence was read in an OPTIMA plate reader 
(BMG Labtech).

Statistical analysis

Data are presented as mean ± standard deviation (SD). All 
cell culture experiments were performed in duplicate or trip-
licate, and each experiment was repeated at least three times. 
A two-tailed unpaired t test was performed using GraphPad 
Prism version 5.01 (GraphPad Software) to compare treat-
ment groups, and p values of less than 0.05 were considered 
to be significant (*p < 0.05, **p < 0.01, ***p < 0.001).

Results

The HDAC inhibitor TH34 selectively inhibits HDACs 
6, 8 and 10

As no such compound has been developed to date, we sought 
to develop a novel HDAC inhibitor with high selectivity for 
HDAC8 and HDAC10 over HDACs 1, 2 and 3, and tolerated 
HDAC6 inhibition during the screening process (Fig. 1a, b). 
Following computer-based screening of an in-house library 
of hydroxamic acids, inhibitors displaying promising effects 
in cell-free biochemical assays were tested for specificity 
and anti-tumor effects in multiple pediatric cancer cell lines, 
including high-grade neuroblastoma cells (Heimburg et al. 
2017). Fluorometric determination of biochemical HDAC 
inhibition displayed no substantial effect against HDACs 1, 
3 (Supplementary Table, Supplementary Fig. 1a, (Heimburg 
et al. 2017)) as well as class IIa HDACs (Supplementary 
Table, Supplementary Fig. 1b, c). Measurement of cellular 
target engagement with a NanoBRET assay (Robers et al. 
2015) revealed that candidate inhibitor TH34 (Fig. 1a, b) 

strongly binds HDAC6, 8 and 10 with low-micromolar 
IC50 concentrations (HDAC6: 4.6 µM, HDAC8: 1.9 µM, 
HDAC10: 7.7 µM), and shows no substantial affinity to 
HDAC2 at concentrations up to 50 µM (Fig. 1c). Analy-
sis of intracellular substrate acetylation in SK-N-BE(2)-C 
high-grade neuroblastoma cells confirmed these findings. 
Whereas acetylation of the specific HDAC8 target structural 
maintenance of chromosomes protein 3 (SMC3, Fig. 1d) and 
the HDAC6 target tubulin (Fig. 1e) significantly increased 
after 6 h of treatment with TH34, histone 3 (H3) acetylation 
status remained unchanged (Fig. 1f), indicating no effect on 
HDACs 1, 2 and 3. Moreover, treatment of SK-N-BE(2)-
C cells with TH34 induced strong accumulation of acidic 
vesicles, quantified via flow-cytometric analysis using the 
acidophilic dye acridine orange (Fig. 1g). This cellular phe-
notype is observed after specific knockdown or inhibition of 
HDAC10 (Oehme et al. 2013) and was used as a method to 
further support intracellular HDAC10 inhibition.

TH34 induces caspase‑dependent programmed cell 
death in neuroblastoma cells

To investigate the long-term effect of a simultaneous inhibi-
tion of HDAC6, 8 and 10 on pediatric cancer cell lines, we 
treated five neuroblastoma and two medulloblastoma cell 
lines, featuring different genetic aberrations, with TH34 for 
4 days and allowed remaining cells to regrow colonies in 
fresh media for another 7 days. TH34 treatment abolished 
colony growth in neuroblastoma cells independent of their 
genetic status, whereas the effect was not as pronounced in 
medulloblastoma cell lines (Fig. 2a, b).

To characterize tumor cell death induced by combined 
inhibition of HDAC6, 8 and 10, we quantified the fraction 
of cells in subG1 cell cycle phase after 72 h of TH34 treat-
ment. TH34 significantly increased the subG1 fraction of 
SK-N-BE(2)-C cells in a dose-dependent manner (Fig. 2c). 
We then treated and co-incubated cells with TH34 and the 
pan-caspase inhibitor Z-VAD-FMK. TH34 activated effec-
tor caspases and cell death in SK-N-BE(2)-C high-grade 
neuroblastoma cells in a concentration-dependent man-
ner, which could be rescued by addition of Z-VAD-FMK 
(Fig. 2d–f). At the same time, TH34-induced cell death 
could not be significantly rescued by addition of potent 
inhibitors of ROS-dependent cell death (N-acetylcysteine, 
NAC, Supplementary Fig. 2a), necroptosis (necrostatin-1, 
Supplementary Fig. 2b) and oxidative stress-induced cell 
death (trolox, Supplementary Fig. 2c). Furthermore, expres-
sion of pro-apoptotic p53 upregulated modulator of apop-
tosis (PUMA) was significantly increased in IMR-32 (TP53 
wild-type) cells following 72 h of TH34 treatment (Fig. 2g). 
In TP53-mutated SK-N-BE(2)-C cells, PUMA expression 
could not be detected.



2654	 Archives of Toxicology (2018) 92:2649–2664

1 3

To control for cytotoxic effects of TH34 on healthy cells, 
we treated proliferating non-malignant fibroblasts (VH7 
cells) with this compound for 72 h. In contrast to our findings 
in SK-N-BE(2)-C cells, TH34 exhibited very limited cyto-
toxic effects in fibroblasts (Fig. 2h). Taken together, these 
results indicate that cell death resulting from simultaneous 

HDAC6, 8 and 10 inhibition is mainly a caspase-dependent 
programmed type of cell death, such as apoptosis.

To further compare the response of neuroblastoma cell 
lines to TH34 treatment, we investigated colony forma-
tion, cell viability, viable cell count and cellular metabolic 
activity in five neuroblastoma cell lines after treatment with 
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increasing doses of TH34 (Fig. 3). These results indicate 
nuances in the responsiveness of neuroblastoma cell lines 
to HDAC6/8/10 inhibition. MYCN-amplified cell lines 
(BE(2)-C, IMR-32, Kelly) tend to appear more sensitive to 
TH34 treatment than MYCN single-copy cell lines (SK-N-
AS and SH-SY5Y). In addition, the TP53 wildtype cell line 
IMR-32 was highly responsive in terms of cell death. Thus, 
although neuroblastoma cells are more sensitive to TH34 
than cell lines of other tumor entities, even neuroblastoma 
cells show diverse responses, possibly related to different 
MYCN expression levels (amplification versus single copy).

TH34 induces differentiation and cell cycle arrest 
in neuroblastoma cells

As neuroblastoma arises from immature neuroblasts, dif-
ferentiation induction is a pivotal part of current therapeutic 
regimens. HDAC8 has been identified to play a role in main-
tenance of an undifferentiated cellular phenotype (Rettig 
et al. 2015). We thus investigated whether TH34 treatment 
would enhance expression of neuronal differentiation mark-
ers. After 72 h of treatment with TH34, expression levels of 
the neurotrophic receptor tyrosine kinase 1 (NTRK1, Fig. 4a) 
significantly increased. In neuroblastoma, NTRK1 expres-
sion is associated with benign clinical features (e.g., young 
age, favorable pathology and non-MYCN amplified genetic 
status), tumor cell differentiation and good outcome (Pajtler 
et al. 2014; Schramm et al. 2012). After 6 days of treatment 
with TH34, SK-N-BE(2)-C neuroblastoma cells markedly 
altered their morphology, characterized by formation of 
neurite-like structures (Fig. 4b). Under TH34 treatment, the 
neurites not only significantly increased in number (Fig. 4c) 
but also in length (Fig. 4d). Further underlining the differ-
entiating effect of HDAC6/8/10 inhibition, SK-N-BE(2)-C 
cells treated with TH34 showed strongly positive neurofila-
ment M (NEFM) staining (Fig. 4e). Low-micromolar doses 
of TH34 enhanced ATRA-induced morphological features 

of differentiation in a similar manner as we had previously 
described with the selective HDAC8 inhibitor PCI-34051 
(Rettig et al. 2015) (Supplementary Fig. 3a). This drug com-
bination also synergistically reduced neuroblastoma colony 
growth (CI < 0.1 for 10 µM of each) at concentrations of 
ATRA that can be maintained in human plasma (Adamson 
1996) (Supplementary Fig. 3b–d).

To further characterize the effects mediated by TH34, we 
examined the expression of the cell cycle inhibitor CDKN1A 
(p21WAF1/CIP1). In response to cellular stress conditions, 
CDKN1A expression is induced through p53-dependent 
and -independent pathways (El-Deiry et al. 1993; Gartel and 
Tyner 1999, reviewed by; Jung et al. 2010). We found dose-
dependent upregulation of CDKN1A in both TP53-mutated 
(SK-N-BE(2)-C, Fig. 4f) and TP53-wild type neuroblas-
toma cells (IMR-32, Fig. 4g) after 72 h of TH34 treatment. 
Among living SK-N-BE(2)-C cells, we observed a marked 
shift from G0/G1 phase to S/G2/M phase after 72 h of TH34 
treatment (Fig. 4h).

The protein SMC3 is a specific substrate for HDAC8 
(Deardorff et al. 2012) and, together with structural main-
tenance of chromosomes 1A (SMC1), RAD21 and stro-
mal antigen 1/2 (STAG1/2), SMC3 constitutes the cohesin 
complex, which forms a ring-like structure interconnecting 
sister chromatids during mitosis (Uhlmann 2016). SMC3 
undergoes a cycle of deacetylation and acetylation, which 
is essential for cohesin functions (Beckouet et al. 2010). 
Although the impact of SMC3 hyperacetylation on mitosis 
and cell cycle progression remains to be fully elucidated, 
recent studies suggest that hyperacetylation inhibits sister 
chromatid release at anaphase (Beckouet et al. 2016; Gligo-
ris et al. 2014). Since TH34 treatment induces hyperacetyla-
tion of SMC3 in high-grade neuroblastoma cells by blocking 
HDAC8 (Fig. 1d), we investigated if nuclear morphology 
and abundance of intact and aberrant mitotic figures changed 
under TH34 treatment. Indeed, 4′,6-diamidino-2-phenylin-
dole (DAPI) staining revealed a significantly higher number 
of mitotic cells after treatment with HDAC inhibitor TH34 
(Fig. 4e, i). Moreover, TH34-treated cells much more fre-
quently displayed increased nuclear size and mitoses with 
aberrant features such as multipolar or asymmetric spindles 
than control cells (Fig. 4e, j and Supplementary Fig. 4). 
Taken together, our results indicate that concomitant inhi-
bition of HDACs 6, 8 and 10 induces signs of neuron-like 
differentiation, cell cycle arrest and mitotic aberrations in 
neuroblastoma cells.

TH34 induces DNA damage in high‑grade 
neuroblastoma cells

Induction of DNA damage and inhibition of cellular DNA 
repair bear the potential to take advantage of malignant cells’ 
dysfunctional DNA damage response mechanisms and thus 

Fig. 1   TH34 inhibits HDACs 6, 8 and 10. a TH34 molecular struc-
ture. b Docking pose of TH34 (middle, cyan color) at HDAC8. c 
NanoBRET analysis of HDAC2/6/8/10 interaction with TH34 in 
HeLa cells. The number of biological replicates is n = 3 for HDAC6 
and HDAC10 and n = 2 for HDAC2 and HDAC8 and the number of 
technical replicates is n = 3 for every independent run. Graph repre-
sents mean amounts of acceptor-occupied NanoLuc-HDAC2/6/8/10 
relative to the total amount of NanoLuc-HDAC2/6/8/10 (% fractional 
occupancy, y-axis) versus logarithmic drug concentration (x-axis). 
Western Blot analysis of SMC3 (d), tubulin (e) and histone 3 acet-
ylation (f) in SK-N-BE(2)-C cells after 6 h of treatment with TH34 
(25  µM) or solvent. g Flow-cytometric quantification of acridine 
orange-positive acidic vesicular organelles in SK-N-BE(2)-C neuro-
blastoma cells after 24 h of treatment. Bar graphs represent mean val-
ues of at least three independent experiments performed in triplicates 
and statistical analysis was performed using unpaired, two-tailed t test 
(***p < 0.001; **0.001 ≤   p < 0.01; *0.01 ≤   p < 0.05, ns not signifi-
cant). Error bars represent SD
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drive them into cell death while sparing non-malignant cells 
(Hosoya and Miyagawa 2014; Lord and Ashworth 2012). 
Treatment of cancer cells with broad-spectrum HDAC inhib-
itors such as vorinostat (suberoylanilide hydroxamic acid, 
SAHA) and trichostatin A (TSA) enhance DNA damage 
and impair non-homologous end joining (NHEJ) of DNA 
double-strand breaks (DSBs) (Lee et al. 2010; Pang et al. 
2016; Robert et al. 2016; Vashishta and Hetman 2014). The 
exact role of single HDAC subtypes including HDAC8 and 
HDAC10 in DNA damage repair, however, is not yet fully 
understood.

Thus, we investigated whether mutual inhibition of 
HDACs 6, 8 and 10 affected DNA integrity. Flow-cytometric 
analysis of H2AX phospho-S134 (γH2AX) in viable SK-N-
BE(2)-C cells revealed a dose-dependent significant increase 
in γH2AX-positive cells after treatment with TH34 for 24 h 
(Fig. 5a–c). Immunofluorescence staining of γH2AX indi-
cated nuclear foci in TH34-, but not solvent-treated high-
grade neuroblastoma cells, confirming dose-dependent 
occurrence of DSBs under HDAC6/8/10 inhibition (Fig. 5d). 
Of note, we did not observe relevantly decreased cell viabil-
ity nor aberrant mitotic figures in SK-N-BE(2)-C cells after 
24 h of treatment with TH34, meaning that DNA damage 
occurred prior to cell death of neuroblastoma cells (Fig. 5e).

As DNA double-strand breaks can result from caspase 
activation (Rogakou et  al. 2000), we aimed to rule out 
unspecific γH2AX positivity due to caspase activation. 
Thus, we analyzed whether 1 h of Z-VAD-FMK pre-treat-
ment of SK-N-BE(2)-C cells and additional treatment with 
different concentrations of TH34 for 24 h affects TH34-
induced γH2AX positivity in SK-N-BE(2)-C cells. Again, 
treatment of cells with TH34 dose-dependently increased 
γH2AX-positivity, which was unaffected by Z-VAD-FMK 

co-treatment (Fig. 5f–i). Finally, we investigated the effect 
of a combined inhibition of HDAC6, 8 and 10 in short-
term cultures of primary neuroblastoma cells isolated from 
a MYCN-amplified INSS stage 4 tumor of a 1-month-old 
patient (NB8). Here, TH34 treatment also dose-dependently 
increased γH2AX-positive cells after 24 h, albeit with a rela-
tively small effect size (Fig. 5j–l). Treatment of NB8 cells 
with increasing doses of TH34 revealed a reduction of cel-
lular metabolic activity at micromolar doses, with an IC50 
of 47.3 µM (Fig. 5m), which is slightly higher than that of 
Kelly cells (39.1 µM, Fig. 3). In summary, TH34 induces 
DNA damage independent of caspase activation prior to trig-
gering caspase-dependent programmed cell death in high-
grade- and primary neuroblastoma cells.

Discussion

As a consequence of the pivotal roles of HDACs in various 
diseases including cancer, disruption of their activity with 
broad-spectrum or subtype-specific inhibitors has garnered 
strong interest in preclinical research and drug discovery 
(Witt et al. 2009a). With the development of techniques 
such as X-ray-based crystal structure analysis and computa-
tional approaches, a variety of novel selective HDAC inhibi-
tors have emerged for laboratory and clinical application. 
We have previously identified high HDAC8 and HDAC10 
expression to correlate with poor outcomes in neuroblas-
toma and high-grade neuroblastoma, respectively. In line 
with this, treatment of high-grade neuroblastoma cells with 
the selective HDAC8 inhibitor PCI-34051 induces cellular 
differentiation (Rettig et al. 2015) and the class IIb HDAC 
inhibitor tubastatin A interferes with lysosomal trafficking 
and cellular stress-response mechanisms such as autophagy, 
rendering tumor cells more susceptible to cytotoxic treat-
ment (Oehme et al. 2013). We thus aimed to develop an 
HDAC inhibitor with a target spectrum covering HDACs 8 
and 10 and sparing HDACs 1, 2 and 3, as dose-limiting side 
effects of clinically used HDAC inhibitors are attributed to 
the inhibition of these HDAC subtypes (Witt et al. 2009b).

Here, we describe the newly developed HDAC6/8/10 
inhibitor TH34, identified in a screen, in which novel 
HDAC inhibitory compounds were evaluated for their 
on- and off-target activities via phenotypical assays and 
analysis of protein acetylation patterns. TH34 treatment 
induced hyperacetylation of tubulin and SMC3, estab-
lished bona fide substrates of HDAC6 and 8, respectively, 
indicating inhibition of these HDAC subtypes (Deardorff 
et al. 2012; Decroos et al. 2015). Although even more 
candidate HDAC8 substrates were recently identified 
via genetically encoded active site photo-crosslinking 
(Lopez et al. 2017), the identification of HDAC10-spe-
cific substrates remains difficult. To date, no antibody 

Fig. 2   TH34 induces caspase-dependent programmed cell death in 
neuroblastoma cells. a, b Colony growth after treatment with TH34 
(25 µM) or solvent. Representative images and quantification of col-
ony growth in at least three independent experiments performed in 
triplicates are shown for each cell line. c Fraction of cells in subG1 
cell cycle phase after treatment with indicated concentrations of 
TH34 for 72 h, identified via flow-cytometric quantification of DNA 
content using propidium iodide. d Caspase-3 activity after treatment 
of SK-N-BE(2)-C cells with indicated concentrations of TH34 for 
48  h with or without Z-VAD-FMK (20  µM). e Proportion of dead 
SK-N-BE(2)-C cells after treatment with different concentrations of 
TH34 for 72  h with or without Z-VAD-FMK (20  µM), determined 
via automated trypan blue staining. f Representative images of SK-N-
BE(2)-C neuroblastoma cells treated with solvent or TH34 (25 µM) 
with or without Z-VAD-FMK (20  µM) for 72  h. g Relative expres-
sion (determined using the 2−ΔΔCt method and normalized to solvent 
control) of PUMA in IMR-32 cells after 24 h of treatment with TH34 
(10 µM). (h) VH7 non-malignant fibroblast viability after treatment 
with solvent or TH34 (25 µM) for 72 h. Bar graphs represent mean 
values of at least three independent experiments performed in trip-
licates and statistical analysis was performed using unpaired, two-
tailed t test (***p < 0.001; **0.001 ≤   p < 0.01; *0.01 ≤   p < 0.05, ns 
not significant). Error bars represent SD
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against a bona fide-acetylated HDAC10 substrate has been 
described. Accumulation of acidic vesicular organelles 
has been shown to be directly linked to HDAC10 inhibi-
tion and quantification of this phenotype can be used to 

measure cellular HDAC10 activity. As such, TH34 treat-
ment induced strong accumulation of acidic vesicular 
organelles.

Fig. 3   TH34 differentially impairs colony formation and cell survival 
in neuroblastoma cell lines with distinct molecular features. Relative 
colony formation, proportion of dead cells and viable cell count (both 
determined via trypan blue exclusion assay) as well as metabolic 
activity (CellTiter-Glo) in five different neuroblastoma cell lines (SK-

N-BE(2)-C, IMR-32, Kelly, SH-SY5Y and SK-N-AS) after treatment 
with indicated concentrations of TH34. Bar graphs represent mean 
values of at least two independent experiments performed in tripli-
cates each and error bars represent SD
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Fig. 4   TH34 induces differentiation and cell cycle arrest in neuroblastoma 
cells. a Relative expression (determined using the 2−ΔΔCt method and normal-
ized to solvent control) of NTRK1 in SK-N-BE(2)-C neuroblastoma cells after 
72 h of treatment with TH34 (10 µM). b Representative microscopic images 
of crystal violet-stained SK-N-BE(2)-C cells treated with TH34 (10  µM) for 
6  days. c–d Relative number and length of neurites in SK-N-BE(2)-C cells 
after 6  days of treatment with indicated concentrations of TH34, quantified 
using a semi-automated macro determining surface of cell bodies as well as 
number and length of neurites in ten fields of vision in ImageJ version 1.49v 
and normalized to solvent control. e Fluorescence microscopic analysis of neu-
rofilament M expression in SK-N-BE(2)-C cells treated with TH34 (10 µM) for 
6  days. Nuclei were counterstained with DAPI, arrows and arrowheads indi-
cate normal mitotic and aberrant mitotic nuclei, respectively. Relative expres-

sion (determined using the 2− ΔΔCt method and normalized to solvent control) 
of CDKN1A in SK-N-BE(2)-C (f) and IMR-32 (g) neuroblastoma cells after 
72 h of treatment with TH34 (10 µM). h Cell cycle distribution of viable SK-
N-BE(2)-C cells in G0/G1 (white), S (light gray) and G2/M (dark gray) phase 
after 72 h of treatment with indicated concentrations of TH34. i, j Total and 
aberrant mitotic nuclei in SK-N-BE(2)-C neuroblastoma cells after 6 days of 
treatment with TH34 (10 µM). In ten fields of vision, all DAPI-stained nuclei 
and mitotic figures were counted using the Cell Counter Plugin for ImageJ ver-
sion 1.49v and numbers obtained in treated samples were set in relation to sol-
vent control. Bar graphs represent mean values of at least three independent 
experiments and statistical analysis was performed using unpaired, two-tailed 
t test (***p < 0.001; **0.001 ≤ p < 0.01; *0.01 ≤ p < 0.05, ns not significant). 
Error bars represent SD
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Throughout the cell cycle, SMC3 undergoes a cycle of 
acetylation and deacetylation, which is essential for the func-
tions of the cohesin complex consisting of SMC1, RAD21, 
STAG1/2 and SMC3. This complex mediates sister chroma-
tid cohesion during mitosis by forming a connecting ring in 
S phase, which disintegrates during mitotic anaphase, guar-
anteeing equal distribution of chromatids (Beckouet et al. 
2010). As recent studies suggest that SMC3 hyperacetylation 
inhibits sister chromatid release at anaphase (Beckouet et al. 
2016; Gligoris et al. 2014), it is conceivable that the HDAC8 
inhibitory function of TH34 is responsible for the increase 
of mitotic aberrations and G2/M cell cycle arrest in neuro-
blastoma cells after treatment with the novel HDAC6/8/10 
inhibitor.

Recent advances in HDAC10 research include the iden-
tification of its crystal structure, which provided evidence 
that HDAC10 might be a polyamine rather than a lysine 
deacetylase (Hai et al. 2017). In neuroblastoma, the polyam-
ine regulating ODC1 was found co-upregulated with MYCN 
and correlates with poor outcome in neuroblastoma, suggest-
ing a detrimental role in neuroblastoma biology (Gamble 
et al. 2012; Hogarty et al. 2008; Lastowska et al. 2007). 

Moreover, polyamines are known to modulate DNA con-
formation by strongly binding to the DNA helix (Feuerstein 
et al. 1990; Matthews 1993), and recently identified roles 
of HDAC10 include regulation of DNA mismatch and DSB 
repair in various cancer types such as ovarian carcinoma 
(Islam et al. 2017; Radhakrishnan et al. 2015). DNA dam-
age has also been described as a result of HDAC6 depletion 
and inhibition (Namdar et al. 2010; Wang et al. 2012), and 
the above-mentioned HDAC8-dependent cohesin complex 
is well known to accumulate at DNA break sites to medi-
ate DNA repair and recruit cell cycle checkpoint-activating 
proteins (Caron et al. 2012; Watrin and Peters 2009). We 
thus hypothesized that combined HDAC6/8/10 inhibition 
affects DNA damage repair mechanisms. During the first 
24 h of treatment with the HDAC6/8/10 inhibitor TH34, we 
detected a marked increase in γH2AX foci, providing strong 
evidence of the involvement of HDACs 6, 8 and 10 in DNA 
damage repair mechanisms in neuroblastoma. Importantly, 
this effect could not be reverted by co-treatment with the 
caspase inhibitor Z-VAD-FMK, indicating that DSB accu-
mulation under TH34 treatment is a process independent of 
caspase activation.

Overall, these results qualify TH34 as a promising tar-
geted agent for further development as a neuroblastoma 
therapeutic, including in vivo toxicity and efficacy testing. 
However, physiologically relevant aspects, not covered by 
our study, such as metabolic half life and immunosup-
pression by HDAC inhibitors, especially class IIb HDAC 
inhibitors (Kalin et al. 2012), which might limit appli-
cability and anti-tumoral efficacy of TH34 in immuno-
competent organisms, are mandatory to be evaluated in 
future studies. In conclusion, the selective HDAC6/8/10 
inhibitor TH34 effectively and selectively eliminates high-
grade neuroblastoma cells while sparing non-transformed 
human cells. In neuroblastoma cell lines as well as pri-
mary neuroblastoma cells, it markedly induces DNA dam-
age, followed by differentiation and G2/M phase cell cycle 
arrest at later timepoints, eventually leading to cell death. 
Besides its potential as a targeted therapeutic in high-grade 
neuroblastoma, TH34 also serves as a valuable tool com-
pound in laboratory research for investigating the roles of 
histone deacetylases in health and disease.
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