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Over the past decade, unusual mortality outbreaks have decimated echinoderm populations over
broad geographic regions, raising awareness globally of the importance of investigating such events.
Echinoderms are key components of marine benthos for top-down and bottom-up regulations of plants
and animals; population declines of these individuals can have significant ecosystem-wide effects.
Here we describe the first case study of an outbreak affecting Antarctic echinoderms and consisting
of an ulcerative epidermal disease affecting ~10% of the population of the keystone asteroid predator
Odontaster validus at Deception Island, Antarctica. This event was first detected in the Austral summer
2012-2013, coinciding with unprecedented high seawater temperatures and increased seismicity.
Histological analyses revealed epidermal ulceration, inflammation, and necrosis in diseased animals.
Bacterial and fungal alpha diversity was consistently lower and of different composition in lesioned
versus unaffected tissues (32.87% and 16.94% shared bacterial and fungal operational taxonomic
units OTUs respectively). The microbiome of healthy stars was more consistent across individuals
than in diseased specimens suggesting microbial dysbiosis, especially in the lesion fronts. Because
these microbes were not associated with tissue damage at the microscopic level, their contribution
to the development of epidermal lesions remains unclear. Our study reveals that disease events are
reaching echinoderms as far as the polar regions thereby highlighting the need to develop a greater
understanding of the microbiology and physiology of marine diseases and ecosystems health,
especially in the era of global warming.

Emerging diseases in marine invertebrates seem to be increasing in prevalence, complexity, and sometimes viru-
lence, concomitant with global climate change'->. In addition to their direct impact on affected species, epizootics
in marine invertebrates can have important ecological ramifications. For example, a mass die off of sea urchins
in the Caribbean led to profound ecosystem shifts manifested by overgrowth of algae and subsequent secular
declines in hermatypic corals®. The impact of marine diseases, especially in isolated regions, is difficult to investi-
gate because of limited opportunities for long-term observations, especially if the immediate effects are sublethal
or can be confounded by other ecological interactions (e.g., competition, predation)®. In other cases, epizootics
occur too rapidly to be investigated or are not investigated at all”®. Conceptually, diseases are the outcomes of
susceptible hosts interacting with causative agents and the environment®. Some infectious diseases are polymicro-
bial, requiring the cooperation of several pathogens such as in black band disease in corals that involves primary
sulfate-oxidizing cyanobacteria Roseofilum reptotaenium and secondary sulfate-reducing Desulfovibrio bacteria'®.
Confirming causation in marine invertebrate diseases can be challenging because of limited knowledge of host
physiology and anatomy and difficulty in laboratory manipulation of agents associated with disease. For instance,
many marine microbes cannot be cultured®. Against these backdrops, integrating multiple diagnostic methods
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Figure 1. Antarctic sea star Odontaster validus: Normal (upper left) and diseased (remainder) specimens. Note
epidermal lesions characterized by multifocal to locally extensive punctate to amorphous distinct to indistinct
areas of discoloration on the dorsum. Stars on bottom row manifest partial loss of arms.

such as molecular techniques paired with classic approaches (e.g., field survey, microscopy, transmission experi-
ments) seems the best practice for disease exploration in wild marine organisms®.

Echinoderms are fundamental constituents structuring benthic systems, because they are ubiquitous preda-
tors/grazers, as well as prey for top carnivores affecting top-down and bottom-up regulation of communities'' 3.
A number of diseases sometimes associated with bacteria, fungi, protozoans, algae, metazoans, viruses, or often
multifactorial unknown etiologies have been reported to affect this phylum sometimes leading to mass mortal-
ities'*2%. In some cases, diseases of echinoderms have influenced ecosystem scale processes. Examples include
coral declines and algal overgrowth subsequent to urchin die offs in the Caribbean® and reforestation of kelp
subsequent to protozoan induced die offs of urchins in Nova Scotia®!. The most recent echinoderm epizootic was
the devastating 2013-2014 Sea Star Wasting Disease (SSWD) that killed millions of sea stars of 420 different
species over an extensive geographic range of the North Pacific American Coast. Affected animals were seen often
after warm seawater episodes manifesting behavioural changes, twisted arms, deflated appearance, and white
lesions on the aboral dermis that rapidly progressed to tissue degradation, loss of turgor, arm loss, and death by
eventual disintegration - “melting”*?>%. Experimental evidence (sensu?*) pointed a Parvoviridae virus, named
SSaDV - sea star-associated densovirus— as the best candidate causative agent, yet this was only consistent for one
asteroid species. Indeed, SSWD etiology encompasses diverse cocktails of potential pathogens, and is heteroge-
neous across environmental conditions, geographies and species?®~%’. As a result, SSWD was recently re-named
as Asteroid Idiopathic Wasting Syndrome (AIWS)?. The grotesque manner in which sea stars melted, together
with the virulence and magnitude of this syndrome, has led to scientific concern, in addition to seizing public
attention®. Historically though, most disease outbreaks affecting sea stars have been brief and localized and not
as extensively investigated as the ATWS®.

Deception Island (South Shetland Archipelago) is a horseshoe-shaped island near the Antarctic Peninsula that
encloses an active flooded volcano (Port Foster’s Bay; Fig. S1), subject to intense temperature fluctuations?®-%.
After the last eruption in 1970, the local benthos experienced remarkable recolonization of primarily algae and
echinoderms, together with detritivore communities®*2. Currently, three species of echinoderms predominate:
the echinoid Sterechinus neumayeri, the ophiuroid Ophionotus victoriae, and among the three most common
asteroids stands out Odontaster validus®***. The latter species is a keystone predator that has a circum-Antarctic
and eurybathic range (down to 1000 m depth)*>*®. During routine surveys in the austral summer of 2012-2013
and 2016, O. validus specimens were observed manifesting focal epidermal depigmentation, anorexia, and arm
loss, suggesting an incipient epizootic>'>”’. Interestingly, the outbreak concurred with unprecedented geothermal
anomalies, sudden episodic elevations in seawater temperature, and seismic reactivation of the volcano®. This
paper describes the gross, and microscopic pathology of this disease and the role of the associated microbiota.

Material and Methods

Ethical statement. Odontaster validus, Koehler 1906, were collected and handled in agreement with all
applicable international and national guidelines and regulations for the care and use of animals in accordance
with the current laws of Spain and the Comité Polar Espafiol (CPE) through the Antarctic Treaty and the Madrid
Protocol on Environmental Protection to the Antarctic Treaty (‘Act on Antarctic Activities and Protection of
Antarctic Environment’). The target species is not endangered or protected, and those that survived after the
study were released.

Study site and disease incidence. Transect surveys were conducted to assess the prevalence of epi-
dermal lesions in sea stars around Port Foster’s bay (Deception Island; Fig. S1) during the Antarctic expedition
ACTIQUIM-4 (January-February 2013; Figs 1 and 2). Five haphazardly chosen replicate 50-m linear transects were
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Figure 2. Prevalence of Odontaster validus sea stars affected by visually evident lesions in populations within
Port Foster’s bay, Deception Island, South Shetland Archipelago (Antarctica).

surveyed at 5m and 15m depth at eight sites around the bay (80 transects in total; Fig. 1). Apparently healthy O.
validus and specimens with lesions were recorded within 2 m of each transect line. The census was repeated in 2016.

Sampling collections. Twenty-five healthy and diseased O validus (n =50) were collected by SCUBA diving
on February 2013. Tissue biopsies (1 cm?®) were removed with sterile scalpel from 30 individuals (15 healthy and
15 diseased) as follows: 15 sections from healthy specimens (hereafter called “Healthy_#7), 15 affected lesion
fronts from diseased sea stars (“Affected_#7), and 15 tissue areas several cm away from the lesions of the same dis-
eased specimens (“NON_Affected_#”). Samples were divided in two subsamples, one preserved in 100% ethanol
at —20°C for DNA extraction and microbial characterization, and the other fixed in 2.5% paraformaldehyde in
filtered sea water at 4 °C for histopathology studies.

Transmission trials. To assess potential disease transmission, ten 2L-aquaria, each with one apparently
healthy and one diseased sea star, were maintained in the wet laboratory for five weeks under natural sunlight.
Seawater in the aquaria was pumped directly from the bay nearby the BAE (Spanish Antarctic Base) and kept at
—1°C. The seawater was completely (100%) renewed twice daily. Progression of lesions in diseased specimens and
appearance of lesions in healthy individuals was monitored daily with a stereomicroscope.

Histopathology examinations. Samples in 2.5% glutaraldehyde were embedded in paraffin at 60 °C over-
night, sectioned at 5 um, stained with hematoxylin and eosin, and examined under light microscopy.

DNA extraction and amplification of bacterial and fungal rRNA gene. DNA from healthy and
lesioned tissues of healthy and diseased stars were extracted using a modified C-TAB organic extraction protocol
for amplicon deep sequencing of ribosomal gene target markers on MiSeq (Illumina), for bacterial/archaeal and
fungal community composition, which were performed with a two-PCR protocol and two dual-index strategy**.
In the first PCR, we used bacterial specific primers to amplify the V-V, region (Escherichia coli position: 341-785)
of the small-subunit ribosomal RNA (16S) gene (341 F and 785 R)**’; and fungi-specific primers ITSIF* and
ITS2R* targeting the internal transcribed spacer 1 (ITS1) region of fungi. Amplifications were performed in 25 pl
reactions with NEBNext® Q5® Hot Start HiFi PCR Master Mix (New England Biolabs, Inc.), 0.8 ul BSA (Bovine
Serum Albumin; 20 mg/ml), 1 ul of each 5uM primer, and 1.5l of template. Reactions were under the thermocy-
cling profile: 98 °C for 2 min, then 28 cycles of 98 °C for 15s, 53 °C for 30, 72 °C for 30s, final extension at 72°C
for 2min. The second Index PCR to attach dual indexes and Illumina sequencing adapters used forward primers
with the 5’-3’ lllumina i5 adapter (AATGATACGGCGACCACCGAGATCTACAC), an 8-10bp barcode and a
primer pad; and reverse fusion primers with 5'-3’ Illumina i7 adapter (CAAGCAGAAGACGGCATACGAGAT),
an 8-10bp barcode, a primer pad. Reactions were made in 25l with 0.5l of each 5uM primer, and 1 pl of corre-
sponding products from first amplicon PCR reactions diluted (1:30), and with a temperature regime of: 98 °C for
2 min, then 28 cycles of 98°C for 15, 55°C for 305, 72 °C for 30s, final extension at 72 °C for 2 min. The PCR prod-
ucts were purified and pooled equimolar on Just-a-Plate™ 96 PCR Purification and Normalization Kit plates fol-
lowing manufacturer’s instructions (Charm Biotec). Then, paired-end sequencing was performed on an Illumina
MiSeq sequencer 2 x 300 flow cell at 10 pM at Core Lab, Hawai’i Institute of Marine Biology (Hawai’i, USA).
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Figure 3. Higher magnification under stereoscope of epidermal lesions in Odontaster validus showing
depigmentation (white arrow), and erosion of paxillae and epidermal ulceration (black arrow). Arrowhead
pointing to the madreporite.

Sequence processing and statistical analyses. Sequences demultiplexed by sample-specific barcodes
were clustered/parsed using Pear 0.9.8 and quality controlled and filtered with Fastx-Toolkit. Sequence reads were
then processed using the quantitative insights into microbial ecology (QIIME) pipeline 1.9.1%. Applying Edgar*-*¢
pipelines, low quality reads and chimeric sequences were discarded (USEARCH, UCHIME2), and OTUs (opera-
tional taxonomic units) were identified (method: UCLUST, threshold: 97%). Representative sequences were cho-
sen by consensus and assigned a taxonomic identity (method: UCLUST) based on reference databases: Silva_123
(release version SSU/LSU 123) for Bacteria*” and UNITE for Fungi*. Prior to downstream analysis, sequences
classified as “unknown” at the kingdom level, potential host co-amplification (chloroplast, mitochondrion), and
contaminants were removed.

Alpha diversity (within sample) was estimated with several methods (e.g., Simpson, Fisher) and plotted using
non-parametric Shannon H’ and Chao* indices, whereas OTU tables were built in Microsoft Excel with output
files from QIIME and R pipelines. Beta diversity (between sample) was assessed by permutational multivariate
analysis of variance - PERMANOVA?® at 9999 permutations to test for statistical differences (P-values) in bac-
terial and fungal community assemblages among tissue health states (i.e., Healthy_#”, “Non_Affected_#”, and
“Affected_#7). Post hoc pair-wise comparisons among health states were conducted following main effects results.
Bray-Curtis distance metrics at the OTU level were used to construct unconstrained two-dimensional principal
coordinate analysis (PCoA) plots to visualize differences among bacterial and fungi community assemblages®!.
The similarity percentages (SIMPER)** analyses based on Bray-Curtis similarity at the OTU level was used to
determine the contribution of individual bacterial and fungal taxa to the dissimilarity between groups. Analysis
of variance (ANOVA) was conducted on read data at the class level and also on most contributing bacterial and
fungal OTUs according to SIMPER analyses to test for differences between health states. Where ANOVA resulted
in significant differences, post hoc Tukey’s honest significance texts (HSD) tests were applied to assess pairwise
differences. All multivariate analyses were performed in R-Studio 1.0.136 (R version 3.3.3) with the correspond-
ing R-packages (e.g., PhyloSeq, Vegan, Bioconductor).

Data availability. The sequence data set was deposited in the NCBI Sequence Read Archive (SRA) database
(accession numbers: SRP131970). Other related datasets generated during and/or analysed during the current
study are available from the corresponding author on request.

Results

Disease incidence. Lesions were limited to O. validus with a prevalence ranging from 0% at most inner areas
of Port Foster’s caldera, up to 10% at sites closer to the entrance —Neptune’s Bellows (Fig. 2). Apparent early stages
of disease comprised multifocal distinct to indistinct 1-5mm pale to white spots that coalesced to larger ulcers
leading to decay of spines, papulae and ablation of paxillae, with more severe cases revealing underlying ossicles
or total amputation of arms (Figs 1 and 3).

Transmission trial. Inaquaria, epidermal lesions in affected stars progressed almost imperceptibly (1-2 mm
increase in size over 5 weeks” observation). Animals going from asymptomatic to the severe signs of disease were
not observed in the time lapse during our campaigns. We saw no evidence of transmission between lesion and
healthy stars.
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Figure 4. Histological sections of Odontaster validus epidermal lesions: (left) note inflammatory cell infiltrate
lifting off epidermis from underlying ossicle (big black arrow) with diffuse ulceration (small black arrow);
(right): note marked subepithelial infiltrates of inflammatory cells with cleft formation (arrow).

Replicates (n) 15 15 15 45

Genetic marker 16S ITS-1 16S ITS1 16S ITS-1 16S ITS1
Reads per sample | 1,545-6,271 | 3,129-3,4871 | 2,975-6,890 | 1,378-2,3487 | 2,269-5,917 | 1,380-1,5095 | 189,046 335,754
Average length 427 272
Fisher index 63.25436 39.62805 36.64054 31.09836 31.64202 35.7209 63.08028 64.90119
Simpson index 0.2812992 0.9484165 0.2953405 0.9442799 0.19308 0.9325904 0.2601939 | 0.9522523
Observed OTUs* | 434 330 277 251 238 272 505 555
Unique OTUs® 182 151 33 96 12 104 227 351
Number of Phyla | 13 3 9 3 10 4 14 4
Number of Classes | 26 16 17 17 17 14 28 18
Number of Order | 52 33 32 33 32 31 57 40
Number of 100 47 61 40 54 46 106 63
g‘;‘r;tr’:r of 182 90 95 79 79 82 207 136

Table 1. Summary of 16S rRNA bacterial and ITS-1 fungal communities profiling from healthy and diseased
Odontaster validus sea stars. Abbreviations: OTUs, operational taxonomic units; I'TS, interspatial tanscripted
spacer. Alpha diversity statistics were calculated with phyloseq R-package on RStudio. *OTUs can be shared
among multiple samples and are based on 97% sequence similarity criteria according to Silva_123 database.
"Number of unique OTUs characteristic for each tissue type after the sequences were referenced and combined
by QIIME.

Histopathology. Histology of gross lesion fronts of diseased animals revealed cleft formation between epi-
dermis and dermis with spaces infiltrated by hemocytes (inflammation). In more severe lesions, there was full
thickness epidermal necrosis and ulceration with associated hemocyte infiltrates lifting off the epidermis from
the underlying ossicles (ulceration). No characteristic accumulations of microorganisms were seen associated
with the lesion. Five of 15 tissues with lesions had histologic evidence of inflammation/ulceration, whereas no
histopathological signs were found in the 15 non-lesion tissues examined (Fig. 4).

16S rRNA gene bacterial diversity and community composition. Sequences retrieved for the bac-
terial 16S hypervariable V,-V, region yielded, after quality control and chimera filtering, 189,046 reads with
an average length of ~427bp. According to the number of observed OTUs, Shannon and Fisher indexes, and
Chaol estimation of species richness based on normalized reads (n = 1545), the bacterial diversity of tissues from
healthy sea stars was remarkably higher than that from diseased samples, including apparently non-affected sec-
tions and lesion fronts (Table 1, Fig. S2). Simpson diversity index was similar for healthy tissues from healthy and
affected sea stars, but yielded lower values in lesion areas. A total of 505 OTUs were detected based on a sequence
similarity criterion of 97%, of which 434 were associated with Healthy tissues, whereas 277 and 238 were found in
NON_Affected and Affected sections, respectively. In concordance with diversity statistics, the number of unique
OTUs was the highest in healthy sea stars (182), with respect to apparently healthy (33), and lesion sections (12)
from the diseased specimens (Table 1; Fig. 5).
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Figure 5. Proportional Venn Diagrams depicting represented OTUs by tissue type for the bacterial (A) and
fungal (B) communities associated with Odontaster validus sea stars. Healthy (in red): tissues from healthy sea
stars; NON_Affected (in green): apparently healthy tissues from diseased specimens; and Affected (in blue):
diseased tissues from diseased specimens.

A 16S Bacterial B ITS1 Fungi o
0.24 0.24
o
Tissue A — ° o
g ® Healthy ° & % 3\: A go
T 009 & NON_Affected o o 2 00+ Q;%
= - A = A
o~ @® Affected A & bpo 8 i So
2 o
< A o |2 o
o, Status °
© Diseased_Star A -0.27
A Healthy_Star
A o
0.4 v v v ' f
04 02 0.0 02 0.6 0.4 0.2 0.0 0.2
Axis.A [21.1%] Axis.1 [30.1%]

Figure 6. Principal Components Analysis (PCoA) plots based on Bray-Curtis distances of Odontaster validus
associated bacterial (A) and fungal (B) communities composition across three tissue types: healthy tissues from
healthy sea stars (Healthy; green triangles), apparently healthy tissues from diseased sea stars (NON_Affected;
yellow circles), and affected tissues from diseased sea stars (Affected; red circles). The proximity of samples on
the PCoA illustrates the similarity of bacterial or fungal communities.

At the species level (97% sequence similarity), bacterial communities associated with O. validus were signif-
icantly different between health states (df =1, pseudo-F=1.996, P,,,,, < 0.05) and among tissue types (df =1,
pseudo-F=2.923, P, <0.001). For the same health status, specimen replicates displayed similar bacterial
communities demonstrating homogeneity within tissue types (df =28, pseudo-F=1.318, P,,,,, > 0.05). Healthy
and Affected tissues exhibited significant difference (df =1, pseudo-F = 5.486, Poerm < 0.01), and in diseased sea
stars the bacterial composition differed between Affected and NON_Affected tissues (df =1, pseudo-F = 4.874,
Pyerin < 0.01). No significant differences were detected between healthy tissues sampled from healthy specimens
versus healthy tissues sampled from diseased sea stars away from the lesion areas (i.e., Healthy and NON_
Affected; df =1, pseudo-F=0.872, P,,,,, > 0.05; see Table S1). Segregation of bacterial community compositions
associated with tissues of different health status can be visualized in PCoA ordination, where Affected tissues
clustered loosely towards the positive end of the first axis. Along the negative end of this axis 1 there was a transi-
tion towards a loose clustering of Healthy and NON_Affected tissues, which shifted from one another along the
centre of axis 2 (Fig. 6).

The most represented phylum in all tissue types was Actinobacteria (Fig. 7), which was dominated by the
genus Rhodococcus (98%), and in particular by B_OTU240 (78.25% in Affected versus 63.16% in Healthy and
55.18% in NON_Affected, SIMPER, P,yoyu < 0.05). According to SIMPER, Rhodococcus B_OTU240 along
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Figure 7. Class-level taxonomic diversity profiling of bacterial communities associated with tissues from
healthy sea stars (Healthy), with apparently healthy (NON_Affected) and diseased (Affected) tissues from
diseased specimens of Odontaster validus. “NA”: non-determined taxa.

with B_OTU338 (Acinetobacter sp.) and B_OTU4 (Moritella sp.) are the most influencing OTUs associated
with diseased sea stars (Table S2 and Fig. S3). Major differences among healthy states, though, were due to var-
iations in the relative abundance of OTUs affiliated with members of phyla Proteobacteria, Firmicutes, and
Bacteroidetes. These were consistently more highly represented in Healthy O. validus, followed by NON_Affected,
and least abundant in lesion fronts. At the class level, graphing data and statistics (P,yoys < 0.05) showed that
Alphaproteobacteria, Bacilli, and Cytophagia were particularly scant in lesion fronts. While Betaproteobacteria,
Clostridia, Gammaproteobacteria, Sphingobacteriia, Negativicutes, and Bacteroidia were more abundant in
Healthy sections, they were less abundant in both, NON_Affected and Affected tissues from diseased O. validus
(Fig. 7). Twenty-one OTUs revealed >0.1% contribution to dissimilarity (SIMPER) and yielded loose clustering
in PCoA plotting between health states (Fig. S3; see Table S2 and ESM1 for more detailed information).

ITS1rRNA gene fungal diversity and community composition. Fungi associated with sea star tissues
resulted in 335,754 classifiable, non-chimeric reads, averaging ca. 272 bp. The diversity of fungal communities
from healthy sea stars was higher than those from Affected and NON_Affected tissues of diseased individuals, as
indicated estimations of observed OTUs, Shannon and Fisher indexes, and Chaol (normalized reads n=1378;
Table 1, Fig. S2). Simpson diversity index showed equivalent results for tissues from all health states. The total
number of OTUs at a sequence similarity of 97% was 555. Healthy tissues yielded 151 unique OTUs, 104 were
found for disease lesion fronts and 96 for apparently healthy sections from diseased specimens (Table 1; Fig. 5).

The PERMANOVA analysis did not reveal significant differences at the species level (97% sequence similarity)
in the overall fungal composition associated with individual health states (df =1, pseudo-F =1.04, P,,,,,, > 0.05),
nor among different tissue types (df = 1, pseudo-F =0.972, P,,,,, > 0.05). For the same health status, speci-
men replicates displayed homogeneity of fungal communities within tissue types (df =28, pseudo-F =1.005,
Pyern > 0.05; Table S1). Although there was no statistical difference among health states at the community level,
ordination plotting and SIMPER integrated with ANOVA analyses showed the existence of certain explanatory
fungal taxa. In the PCoA ordination, Healthy-associated fungal communities appear tightly clustered and sep-
arated along axis 1 from a loose clustering corresponding to disease lesion fronts, which dispersed along the
second PCoA axis. Fungi populations of NON_Affected tissues from diseased sea stars were the most scattered
along both axes (Fig. 6).

No significant differences in fungal communities were recorded in samples coming from healthy versus dis-
eased sea stars. Ascomycota followed by Basidiomycota were predominant in the three tissue types, along with
a very small representation of Chytridiomycota. A notable percentage of sequences were unassigned —Fungi sp.
Qualitative variability based on graphical and/or statistical (P,yoys < 0.05) data was observed for some class
groups. Dothideomycetes, Tremellomycetes, and Microbotryomycetes were more abundant in Healthy, than
in NON-Affected of Affeted tissues, whereas Agaricomycetes, Wallemiomycetes, Cystobasidiomycetes, and
Eurotiomycetes were more associated with lesion fronts (Fig. 8). Qualitative changes became more evident at
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Figure 8. Class-level taxonomic diversity profiling of fungal (B) communities associated with tissues from
healthy sea stars (Healthy), with apparently healthy (NON_Affected) and diseased (Affected) tissues from
diseased specimens of Odontaster validus. “NA”: non-determined taxa.

the OTU level. Indeed, from the SIMPER analysis, 57 OTUs contributed >0.3% in discriminating among health
states. These provided relatively tight clusters (PCoA) according to tissue types (Fig. S3; see Table S3 and ESM1
for more detailed information).

Discussion

This is the first description of a novel emerging echinoderm disease occurring in the Antarctic Ocean based on
a combination of microbial community profiling and pathology. Sea stars are abundant and comprise various
species at Deception Island*** however, only one species, the most abundant - O. validus— manifested lesions.
The outbreak was first detected in the austral summer of 2012-2013, coinciding with seawater and soil fluctu-
ations characterized by spikes in elevated temperature, and increase in the frequency of seismic events. Similar
geothermal anomalies were not recorded in the preceding or following years?. Prevalence of skin lesions in
asteroids within Port Foster Bay ranged from barely over 0% in the innermost sites to 10% at locations adjacent
to the bay’s opening, broadly following the gradient of species diversity in the region®***. This trend was con-
sistent over two surveys (2013,2016), and was correlated with O. validus distribution, which is largely driven by
colonization, sedimentation, and sea current regimes*. In this context, what we saw in O. validus was similar to
other disorders affecting echinoderms where disease was more prevalent after periods when temperature peaks,
and in locations with higher agglomeration of counterparts, suggesting perhaps a density dependent process
(e.g.,!>?*?%27). Cannibalism seems to be a rare behaviour in O. validus, hence density-dependent intraspecific
aggression is an unlikely explanation for the lesions®. Physical or chemical traumas would neither explain the
lesions; on the one hand because the closed shape of the bay reduces the entrance of strong currents or icebergs
to cause abrasions; and on the other because human presence is too limited to generate pollution and chemical
stress. In all these cases such insults would presumably be found at constant rates every year, yet, we only saw
lesions in certain years.

The clinical signs described here differed from the ATWS of the NE Pacific, where multiple (>20) species were
affected manifesting much more severe and rapidly progressing apparently transmissible clinical signs, i.e., wide
spread arm loss and complete body disintegration!'®?**, Susceptibility of individuals to AIWS differed according
to age (lower and slower in juveniles compared to adults), subhabitat, and sea star colour?*?. Moreover, subse-
quent to the ATWS epizootic, there was a sharp reduction in predation rate?. In contrast, in our study, only a sin-
gle species was affected, and clinical signs were relatively mild (multifocal ulceration), did not appear to progress
rapidly, and did not seem transmissible. This might be explained in part by the slower metabolism of Antarctic
organisms in contrast to organisms in more temperate climates®%, so it seems plausible that disease transmis-
sion and progression could be slow and, thence, imperceptible during the duration of a regular scientific polar
campaign (~1.5 months). Another explanation could be that the etiology of lesions in O. validus is completely
different than that affecting animals in AIWS. Colouration in O. validus can vary with age with juveniles being
pink, purple, to orange and adults being bright red*. Most O. validus affected exhibiting lesions were red adults;
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however, juveniles of other colour-morphs were uncommon, so age comparisons were not possible. Additionally,
behavioural consequences of the disease such as inactivity and appetite loss were seldom observed in predation
experiments conducted in 2012-2015 (e.g.,””), This may be partially explained by stress, and the loss of respiratory
surface and papulae.

Whilst microscopy revealed a moderate to marked inflammatory response with epidermal ulceration, there
was no evidence of infectious agents visible on light microscopy, thus, it is unlikely that organisms visible at that
level such as fungi, bacterial® or parasites®® were responsible for the epidermal lesions seen here. Moreover, clini-
cal signs (lack of progression, transmissibility) also argued against an infectious cause. However, light microscopy
has low to no resolution when visualizing microorganisms of the size of mycoplasma and viruses, so these remain
as possible infectious agents. Alternatively, non-infectious causes should also be considered, as skin ulceration is
a common response to a variety of insults in echinoderms®®’, which may or may not have an infectious etiology.

Microbial community analyses failed to reveal bacterial or fungal putative pathogens associated with lesions.
The consistently lower bacterial and fungal diversity found in the lesion fronts of affected asteroids contrasts
with other studies, where an increase in microbial diversity followed a disease or stress response in, corals®2,
sponges®, and also echinoderms®, but agrees with other findings in marine invertebrates (e.g.,*). Some authors
suggest that diseased tissues represent favourable niches for colonization of secondary invaders inflating micro-
bial diversities due to host’s immune disruption caused by stress, together with a higher availability of nutrients
from decaying tissues®. In fact, one of the major constraints when exploring the etiology of marine diseases
during non-initial symptomatic stages (e.g., bleaching, spotting, or rotting) is to distinguish real pathogens from
saprophytes growing on decaying hosts**%. In this study, the relatively low microbial diversities recorded in the
diseased fronts of O. validus may be explained by either a lower colonization rate of opportunistic microbes
under Antarctic temperatures® or to antimicrobial inhibitors (as suggested in®®) elicited by immune response
of the host, as described in other asteroid syndromes®. It is possible that the differences in microbiota could be
due to microbiome shifts prior to the manifestation of lesions, leading to upsurge of opportunistic polymicrobial
infections, and development of lesions without the implication of ‘legitimate’ pathogens (i.e. microbial dysbiosis
sensu®®). The empirical data to support this could be the higher consistency in microbial communities associated
with healthy states across individuals, with respect to the lesion fronts and apparently healthy skin areas from
specimens of diseased sea stars. All this illustrates that absent clear evidence of pathogens associated with lesions
at the tissue and cellular level, conclusions gained from molecular studies are necessarily limited.

Actinobacteria were “core” members of the associated flora of O. validus, in agreement with other marine
microbiomes®®®’. The bulk of sequences within this phylum belonged to Rhodococcus, which harbours benign
steroid producers and a few pathogens®. Proteobacteria, followed by Firmicutes and Bacteroidetes, displayed dou-
ble the sequence abundances in Healthy tissues as compared to lesion fronts. Bacteroidetes has been associated
with healthy states but also with disease in contrasting studies®*®; whereas, Proteobacteria comprises pathogens,
opportunists, and nitrogen fixators’®’!. Three Rhodobacteraceae OTUs and one Acinetobacter were particularly
abundant in NON_Affected sections from diseased sea stars, where they could have proliferated as pre-invasive
pathogens’>”. Accordingly, the family Rhodobacteraceae was correlated to coral disease outbreaks’. Instead,
Clostridium (Firmicutes) strains, appearing exclusively in healthy sea stars, suggest symbiotic interactions”.

As in other marine invertebrates, Ascomycota and Basidiomycota were the most common fungi in O. vali-
dus, along with a small proportion of Chytridiomycota (mostly saprobic)’®’”. Many sequences were not classi-
fied due to limitations in fungal databases”®. Saccharomycetes yeasts contributed to the flora of all health states,
where they could be forming symbiotic matrices””. Certain taxa with wide metabolic ranges in Dothideomycetes,
Tremellomycetes, Microbotryomycetes, and Sordariomycetes were variably correlated to healthy or
NON_Affected tissues, likely driving microbial shifts prior to lesion manifestation’®”’"°. Eurotiomycetes,
Agaricomycetes, Wallemiomycetes, and Cystobasidiomycetes were more common in diseased sea stars, and
probably harboured opportunistic strains proliferating in distressed host tissues’”%. Besides the opportunistic
Trichosporon guehoae® (F_OTU556, Eurotiales), there were three exclusive strains (F_OTU520, F_OTU165,
F_OTU450) that were closely associated with lesion fronts.

Temperature plays a critical role in pathogenesis of disease in marine invertebrates and poikilothermic ver-
tebrates!®?>235482-84_ Antarctica is one of the most susceptible areas to climate change on Earth®®, and Deception
Island is one of the most temperature variable sites in the Southern Ocean?. Furthermore, marine ice has been
proposed as an important abiotic reservoir for pathogens®?. After 5-years of observation of this enigmatic disor-
der, the incidence of disease symptoms in O. validus populations seem to oscillate locally between over 0% and
10%. That said, and considering the coincidence of the first outbreak in 2012-2013 with an unprecedented local
thermal anomaly®, we need to be vigilant as the disease could potentially boost with increasing temperatures.
The isolated and unexpected nature of this disease illustrates gaps in our knowledge of demographics and health
of marine invertebrates that play an inordinately important role in Antarctic benthic ecology. Most Antarctic
species are characterized by a relatively slow growth and maturation times®®. If this disease decreases sea stars’
populations in the coming years, recovery could be slow?>#-%, with direct consequences to the ecosystem?®>.
Future studies might focus on clarifying the fitness and demographic impacts of epidermal lesions on O. validus
and developing tools to understand pathology and pathogenesis, correlated with year-round temperature data. In
the face of the alarming mortalities affecting sea star populations in the past years (e.g.,'**>?*), we believe this and
upcoming research involving disorders in keystone Antarctic species are extremely relevant and urgent.
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