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Horse Y chromosome assembly displays unigue
evolutionary features and putative stallion fertility
genes
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Dynamic evolutionary processes and complex structure make the Y chromosome among the
most diverse and least understood regions in mammalian genomes. Here, we present an
annotated assembly of the male specific region of the horse Y chromosome (eMSY),
representing the first comprehensive Y assembly in odd-toed ungulates. The eMSY com-
prises single-copy, equine specific multi-copy, PAR transposed, and novel ampliconic
sequence classes. The eMSY gene density approaches that of autosomes with the highest
number of retained X-Y gametologs recorded in eutherians, in addition to novel Y-born and
transposed genes. Horse, donkey and mule testis RNAseq reveals several candidate genes for
stallion fertility. A novel testis-expressed XY ampliconic sequence class, ETSTY7, is shared
with the parasite Parascaris genome, providing evidence for eukaryotic horizontal transfer and
inter-chromosomal mobility. Our study highlights the dynamic nature of the Y and provides a
reference sequence for improved understanding of equine male development and fertility.
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ARTICLE

he eutherian sex chromosomes evolved from a pair of

autosomes that diverged around 180 million years ago

(MYA) after the Y chromosome acquired a male deter-
mining locus!. The majority of the Y chromosome decayed in size
and gene content as it gradually lost the ability to recombine with
the X chromosome through several inversions. Only the short
pseudoautosomal region (PAR) maintained sequence similarity
and pairing during meiosis>>. Thus the main portion of the Y
chromosome is male specific (MSY), haploid, and does not par-
ticipate in crossing over. These features have led to the accu-
mulation of male-benefit genes and the expansion of extensive
ampliconic regions*-°.

The Y chromosome is the most rapidly evolving nuclear chro-
mosome studied thus far®. Its evolutionary dynamics and struc-
tural complexity, including the acquisition, loss and amplification
of genes and DNA sequences, varies across mammals, even for
closely related species such as the human and chimpanzee®-8.
Despite its importance for understanding male biology, particu-
larly development, and spermatogenesis, the number of sequenced
eutherian Y chromosomes is low with only four completed
(human®, chimpanzee®, rhesus macaque” and mouse!®) and eight
partial (gorillal!, marmoset!?, rat'2, dog!3, cat!3, pig!4, bull'?, and
opossum!?). This is partly a consequence of the repetitive nature,
lineage-specific content, and poor representation of the haploid Y
in most genome assemblies, which in turn greatly limits our
understanding of this chromosome.

Horses are an economically and culturally important domestic
species. Because stallions are typically selected based on pedigrees
and athletic performance, one of the most common concerns is
stallion subfertility. Given the large Y-linked contribution to
infertility in men!>19, it is expected that similar important reg-
ulators of male biology are also present in the horse Y. The horse
Y chromosome remains, however, poorly characterized, as the
horse reference genome is from a female!”.The gene content of
the horse Y has been examined from sequencing of cDNA
libraries, and includes several testis-specific transcripts unique to
the equid lineage!®. The horse Y chromosome is also found to be
depauperate in variation, with most common haplotypes coales-
cing within the last millennium?°.

Herein we generate the first comprehensive assembly and
functional annotation of the male-specific region of the horse Y
(eMSY) to elucidate the evolution and function of the chromo-
some. This is the first representative Y assembly for odd-toed
ungulates (order Perissodactyla). We discuss novel features of Y
chromosome evolution and their ramifications for stallion biology
including the retention of the most X-Y paralogs of any species
studied thus far, a recent PAR transposition potentially related to
XY sex reversal, amplification of testes-expressed genes, and
identification of a novel sequence class which shows strong evi-
dence for horizontal transfer with an intestinal parasite Para-
scaris. Our assembly fills a major gap in the horse reference
genome and provides novel insights into the evolution and
function of this unique chromosome.

Results and discussion

The horse Y chromosome is cytogenetically comparable in size
to the smallest equine autosomes, around 40-50 million base-
pairs (Mbp)!7-20. According to chromosome banding patterns,
two-thirds of the Y is heterochromatic, with a small distal
euchromatic segment containing eMSY and the PAR (~2 Mbp)
21 (Fig. 1a). To sequence the eMSY, we first mapped a tiling
path of 192 bacterial artificial chromosome (BAC) clones
(Supplementary Note 1 and Supplementary Fig. 1) encom-
passing the eMSY from the pseudoautosomal boundary (PAB)
to Y heterochromatin, leaving approximately 2-3 Mbp in

unmapped gaps (Fig. 1b). The tiling path was supported by 265
linearly ordered sequence tagged sites (STSs) (Supplementary
Data 4) and fluorescence in situ hybridization (FISH) experi-
ments, which confirmed clone overlaps and helped orient the
contigs, estimate the size of gaps and clone copy numbers
(Supplementary Figs. 2-3). We sequenced 94 tiling-path BACs
with the highest redundancy in the multi-copy region (Sup-
plementary Fig. 1 and Supplementary Data 5). The final eMSY
de novo assembly was 9,497,449 bp (Fig. 1b and Supplementary
Table 1), however we estimate the size of eMSY to be
approximately 12 Mbp when unmapped gaps are included.

Unique features of the horse Y chromosome. Over half (54%) of
eMSY was composed of various interspersed repeats (Supple-
mentary Table 2 and Supplementary Note 3) with L1 LINE ele-
ments (34%) being predominant. In the remaining non-repetitive
eMSY, we identified four distinct sequence classes: single-copy
(~60%), multi-copy/ampliconic (~37%), PAR transposed, and
novel XY ampliconic array (Fig. 1b). Single-copy sequences
contained the majority of ancestral X-Y (25 of 29) and autosomal
transposed (7 of 10) genes. Nearly all multi-copy/ampliconic
sequences localized between eMSY:1,000,000-4,700,000 bp.
Characteristic to these regions was the presence of high-identity
repeats (Fig. 1c and Supplementary Fig. 4). Within these, we
observed regions which contained both intact copies of genes and
those with an incomplete numbers of exons. The third sequence
class represented a 125,171 bp transposition (Y:429,056-554,227)
from the PAR (X:495,796-603,635) containing the ARSFY and
ARSHY genes in inverted orientation (Fig. 1b). The average
sequence identity between the PAR and eMSY in this region was
98.8%, suggesting that the transposition is of recent origin. FISH
with eMSY BAC clones confirmed that this transposition is
shared by other equids, including the donkey (Equus asinus;
EAS), the quagga plains zebra (E. burchelli; EBU), and the
Hartmann’s mountain zebra (E. zebra hartmannae; EZH) (Fig. 2).
The occurrence of the transposition in both caballine (the horse)
and non-caballine species (asses and zebras) suggests that it was
already present in the most recent common ancestor of both
clades some 4.0-4.5 MYA?2. The high sequence similarity with
the X-PAR likely facilitates ectopic recombination between the
eMSY and the PAR, providing an explanation for the massive
deletions in the eMSY that are occasionally found in horses with
disorders of sexual development?3. Finally, the most proximal
250 kb of eMSY harbored a novel ampliconic sequence class with
arrays of equine testis-specific transcript 7 (ETSTY?7). Such arrays
are characteristic to all Y chromosomes studied so far and
thought to be needed to stabilize Y gene content and protect
spermatogenesis genes)!2. However, ampliconic arrays are not
conserved and show unique, species-specific features of origin,
distribution, and sequence properties. Analysis of a short PCR
product of this region by FISH revealed that ETSTY7 arrays
spread throughout both the Y and Xq17-q21 heterochromatin
(Fig. 1a and Supplementary Fig. 7). Thus, heterochromatic status
of these regions may need revision once we learn more about the
ETSTY7 sequence and functions. We also identified short eMSY
sequences that showed high similarity to autosomes (Supple-
mentary Note 1 and Supplementary Fig. 2). Autosomal trans-
position is a recognized mechanism for novel gene acquisition in
MSY of other mammalian species®!32* and apparently played a
role in shaping the eMSY. Because of these diverse mechanisms, a
recognizable portion of the horse Y chromosome has high
sequence similarity with other chromosomes.

Horse Y chromosome gene content and evolutionary origins. A
multipronged annotation approach resulted in identification of 52
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Fig. 1 Horse Y chromosome organization. a Cytogenetic features of the horse Y chromosome: G-band positive material corresponds to MSY (green FISH
signal); C-band positive material corresponds to ETSTY7 ampliconic arrays; centromere is denoted by a red FISH signal (from published molecular profile of
horse Y©8); b Horse MSY sequence classes and gene map; ¢ Triangular dot-plot showing the location of 100% identical sequences in MSY (with a 100 bp

motif and a 20 bp step)

genes/transcripts of which 19 were not reported earlier!8. Among
these, 37 were single-copy and 15 ampliconic, representing
cumulatively 174 gene/transcript copies (Table 1 and Supple-
mentary Data 6). The gene density with 5.5 genes/transcripts per
Mb and 18.3 gene/transcript copies per Mb was in the lower
range of equine autosomes (5.4 genes/Mb to 28.2 genes/Mb) and
closer to that of the X chromosome (8.3 genes/Mb)!”. This is
consistent with MSY annotations in primates>®3 and pigs'4 and
contrasts with the assumptions made prior to the genome
sequencing era that the mammalian MSYs are gene poor and
functionally inert.

The eMSY genes encompassed three main categories depend-
ing on their evolutionary origin: (i) X-Y genes (gametologs; 29),
(ii) transposed genes (13), and (iii) Y-born horse-specific
transcripts (10) (Fig. 1b and Table 1). In order to estimate the
timeline for eMSY gene acquisition, we reconstructed individual
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gene trees by aligning the eMSY mRNA sequences with equid and
mammalian homologs (Supplementary Data 7).

The eMSY contains 29 X-Y genes, the highest number
reported to date among eutherian Y chromosomesh$10:12-14,
Notably, two of these, TAB3Y and SYPY, have ancient divergence
times from their gametologs (123.5 MYA and 1157 MYA,
respectively) and are not Y-linked in any other species studied
thus far, indicating that eMSY has retained a unique set of
ancestral genes (Supplementary Table 3). The WWC3Y gene is
also unique to horse MSY, but its intermediate divergence time
(56.9 MYA) and position near the PAR suggest a more recent
expansion of the MSY. In addition, because of a relatively short
PAR in the horse, typical mammalian PAR genes, such as ZBEDI,
TBL1, SHROOM?2, and STS*!2%, belong to eMSY in the horse.

The majority of horse X-Y genes were single-copy with
broad expression in adult tissues (Supplementary Fig. 5 and
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Fig. 2 PAR transposition to MSY in horses and other equids. FISH with BAC T00H13 (see Supplementary Fig. 1) in metaphase (upper row) and interphase
(lower row) chromosomes showing that PAR transposition to MSY has occurred in horses, asses and zebras; arrows indicate 2 distinct hybridization
signals in the Y (corresponding to Y-PAR and MSY transposed regions) and one in the X chromosome (corresponding to X-PAR). Scale bar 1um. Equid
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Table 1 Summary data for eMSY genes and transcripts

Genes Expression profile
Sequence category Total Single-copy Multi-copy? Broad Testis dominant Limited (tooth) None Tentative
Ancestral X-Y genes 29 25 4 (33) 17 8 (38) 1 2 1
Autosomal transposed 10 7 372) 8 (15) 0 0 2 0
Y-born novel 10 2 8 (92) 2 (18) 8 (76) 0 0 0
PAR transposed 2 2 0 2 0 0 0 0
Autosomal transposed to PAB 1 1 0 0 1 0 0 0
Total # genes 52 37 15 29 17 1 4 1
Total # copies/transcripts 174 37 137 52 ns 1 4 1
aNumbers in parentheses show the total number of gene copies in the category

Supplementary Data 6), which is a common feature of
mammalian X-Y genes'2. Four of the oldest X-Y genes became
ampliconic: HSFY—3 copies, UBA1Y—8 copies, CUL4BY—9
copies, and TSPY—13 copies (Fig. 1b and Supplementary Data 6).
However, compared to the massive amplification of HSFY in
pigs'4?° and cattle!?, or TSPY in cattle!? and cats!3, their copy
numbers in eMSY were moderate. The equine X-Y ampliconic
genes were expressed in adult testis and, except for UBA1Y, in
male embryonic gonads (Supplementary Fig. 5b), suggesting
developmental functions prior to sexual maturity in addition to
roles in spermatogenesis.

We noted that the horse SRY was a single-copy gene
embedded between ampliconic sequences and surrounded by

direct and inverted repeats (Fig. 1b). Such location facilitates
SRY involvement in ectopic recombination within eMSY?7,
resulting in SRY deletion and subsequently leading to disorders
of sexual development such as the XY sex reversal syndrome?3.
Notably, XY male-to-female sex reversal counts for about
12-30% of all cytogenetic abnormalities in horses, whereas 70%
of XY female horses have lost SRY23, In contrast, only 10-20%
of human XY females (Swyer syndrome) have SRY mutations
and the majority carry normal SRY, while the condition is rare
or absent in other mammalian species studied, see ref.23. Thus,
there are clear differences between species and we propose that
this is due to MSY organization and, particularly, the location
of SRY.
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The horse Y genes were aligned with available X homologs to
examine phylogenetic patterns and estimate the divergence times
between gametologs. The topology of the X-Y genes fell into two
categories (Fig. 3, Supplementary Table 3 and Supplementary
Fig. 9). For 20 genes, all Y homologs formed a monophyletic clade
consistent with a single origin in mammals (e.g., DDX3Y, Fig. 3a).
Eight Y genes showed polyphyletic patterns in which some of the
gametologs from the same mammalian lineage grouped together,
suggesting parallel sequence conservation, potentially because of
dosage compensation or gene conversion (e.g., AMELY; Fig. 3b).
In others, the Y genes formed two distinct clades more consistent
with multiple independent origins in placental mammals (e.g.,
STSY, Fig. 3c). Thirteen genes tested positive for gene conversion
highlighting the importance of this process in the Y chromosome
(Fig. 4; Supplementary Table 3 and Supplementary Data 3).

We assigned X-Y genes to evolutionary strata based on
nucleotide divergence of synonymous sites (K;) between equine
gametologs and their location in the X chromosome, following
Skaletsky et al. 2003° (Fig. 4, Supplementary Tables 3 and 5). For
each gene, we also estimated the divergence time of homologs to
approximate their acquisition in the Y chromosome. The oldest
horse stratum corresponded to the therian Stratum 11213 and
contained four genes (SRY, RBMY, HSFY, CUL4BY) with a mean
divergence date of 170.7 MYA and mean Kj values of 1.18 (Fig. 4;
Supplementary Table 5 and Supplementary Data 13). The second
horse stratum was the same as Stratum 2/3'3 of other eutherians
and contained 19 genes (Fig. 4b) with mean K; of 0.32 and mean
divergence date of 105.8 MYA. However, this stratum had several
outliers including AMELY, ZFY, TMSBY, OFD1Y, and ZRSR2Y
that looked evolutionarily younger with depressed K values
compared to their position in the X chromosome. This is
consistent with X-Y gene conversion after stratum formation as
previously proposed for AMELY and ZFY'? and in this study, also

for TMSBY, and ZRSR2Y. However, we did not detect gene
conversion for OFD1Y, suggesting its more recent transposition.
The youngest horse Stratum 4 was unique to horse sex
chromosomes and included SHROOM2Y, TBL1Y, ANOSIY,
STSY, and NLGN4Y, with mean K; of 0.13 and mean divergence
date of 31.5 MYA. Stratum 4 was adjacent to the PAR with their
boundary demarcated by an autosomal transposed gene XKR3Y.
This event was dated to 9.2 MYA, thus preceding the split of
major Equus lineages®2. Finally, the youngest X-Y region in the Y
was a result of a transposition of ARSHY and ARSFY from the
PAR (Figs. 2, 4) around 4.3 MYA coinciding with the emergence
of the Equus genus??, followed by gene conversion of ARSFY,
which reduced the age for that gene to 2.3 MYA.

The complex phylogenetic patters of X-Y genes (Fig. 3,
Supplementary Figs. 9-10) and their discordant K, values and
divergence dates suggest that diverse evolutionary processes, such
as chromosomal inversions and transpositions from the X and
autosomes suppressed X-Y recombination in a stepwise fashion,
creating evolutionary strata in the horse sex chromosomes that
remained dynamic.

The horse MSY acquired 13 genes from various autosomal
regions none of which have Y orthologs in other eutherians. The
majority of autosomal transpositions (7 out of 10) occurred
within the past 25 MY, with four very recent events occurring
right around the divergence of horse from donkey (Fig. 4,
Supplementary Table 3). The majority of autosomal transposed
genes showed broad expression in adult tissues (Supplementary
Fig. 52)!8 and had a single-copy and reduced number of exons
compared to their autosomal paralogs (Supplementary Data 6).
The SH3TC1Y and HTRA3Y genes represented two outstanding
exceptions. Both genes originate from the same region in horse
chr3, both acquired 3 copies in eMSY and retained multiple exons
in each. Sequence similarity between chr3 and eMSY was
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sufficient to be detectable by FISH (Fig. 5). This pattern, along
with 1.7-2.2% divergence between SH3TCIY and HTRA3Y
paralogs suggests a relatively recent single transposition event
around 3.3-4.1 MYA followed by gene conversion in SH3TCIY.
These genes are present in the multicopy region of the assembly
and therefore there is some uncertainty regarding number of
copies, structure, and orientation. Their broad expression pattern
is noteworthy because other multi-copy Y genes are exclusively or
predominantly expressed in testes. It is possible that because the
recent origin, they have not yet acquired a testes related function.
The recent gene acquisition events in the horse Y provide a
unique opportunity to explore the consequences of increased gene
dosage and structural rearrangements on the sex chromosomes.
Ten eMSY transcripts were considered novel Y-born and horse
specific due to the absence of autosomal and X paralogs or
orthologs in other eutherian species. As there were no sequences
for comparison, it was not possible to estimate their time of

6

origin. The majority of novel genes were ampliconic (Fig. 1), with
1-3 exons and expression in adult testis. Transcripts ETSTY]1,
ETSTY2, and ETSTY5 were detected as early as 50-days post
fertilization in embryonic gonads (Supplementary Fig. 5b). The
function, if any, of these Y-born transcripts remain enigmatic,
though some, like ETY7, represent novel equine noncoding RNAs
(Supplementary Data 6) and may have regulatory roles in
development or spermatogenesis, as recently shown for many
tetrapod long noncoding RNAs?8. Alignment of donkey testis
transcriptome sequence with eMSY in this study, along with
previous comparative analysis of eMSY genes in donkey!®
(Supplementary Note 5, Supplementary Fig. 6, and Supplemen-
tary Data 8), suggest that the majority of eMSY novel genes,
except ETSTY7, have homologous MSY sequences in both equids.
Some of these appear to be differentially expressed, like ETSTY2,
which was abundant in horse but nearly absent in donkey testis
transcriptome.
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Fig. 5 Acquisition of MSY genes by transposition from chr3. a Adjacent location of single SH3TC7 and HTRA3 in horse chr3 (http://www.ensembl.org/);
b Close location of 2 copies of SH3TCTY and 3 copies of HTRA3Y in eMSY sequence map; ¢ FISH with eMSY BAC 139C20 containing SH3TCTY and HTRA3Y
in horse metaphase chromosomes; hybridization signals are present in eMSY and chr3qter (arrows); scale bar 1um; d-e Maximum likelihood phylogeny
with bootstrap support values showing the clustering of three copies of SH3TCTY and HTRA3Y in eMSY with their autosomal paralogs indicating recent

divergence

Amplification and horizontal transfer of a testis transcript
ETSTY7. The most notable among novel Y-born transcripts was
ETSTY7. It showed testis-limited expression (Fig. 6)!8, had at
least 15 copies with 3 exons each that collectively covered 50 kb of
the most proximal 160 kb of eMSY (Fig. 1 and Supplementary
Data 6). The size of ETSTY7 repeat units ranged from 2.8 to 5.7
kb with a 9.8% average sequence divergence between the copies.
FISH analysis with ETSTY7 PCR product found additional
massively amplified ETSTY7 sequences throughout the Y het-
erochromatin, as well as in the facultative heterochromatin of
Xql7-q21 (Fig. 6).

Ampliconic ETSTY7 sequences were also detected in other
equids but with different distribution patterns (Fig. 6 and
Supplementary Fig. 7). In donkey, the sequences were in Xq
only, suggesting that the low-level transcription of ETSTY7 as
previously observed by RT-PCR!® and by RNAseq in this study,
originate from X chromosome copies. In the zebras, ETSTY7
sequences were in Y, Xpq, and the subtelomeres of several
autosomes. No ETSTY7 sequences were detected by FISH or PCR
in the rhinoceros, an evolutionarily distant Perissodactyl species
(Supplementary Note 6). We propose that the ETSTY7 transcript
family was acquired by the Equidae X chromosome after
divergence from other Perissodactyls about 52-58 MYA?°, but
before equids split 4.0-4.5 MYA?2. Subsequently, the sequences
were amplified and transposed to the Y in horses, and to the Y
and autosomes in zebras (Fig. 6). Alternatively, it may be that
ETSTY7 copy number in donkey Y is too low for detection by
FISH. Even though expansion of lineage-specific testis transcripts

is a characteristic feature of all studied mammalian Y
chromosomes>!013:1426 ETSTY7 distribution in equids is unique
with no analogy in other eutherians.

Perhaps the most intriguing discovery was ETSTY7 sequence
similarity with the equine intestinal parasite Parascaris equorum
(PEQ; genome assembly GenBank LM462759), better referred to
Parascaris spp, because of difficulties delineating parasite
species’®. The region of homology included part of ETSTY7
intron 2/3 (containing a LTR element) and exon 3, with 84-96%
sequence similarity to multiple contigs in Parascaris genome
assembly. To rule out the potential that these shared sequences
were the result of the host horse sequences contaminating the
parasite assembly, we extracted DNA from multiple individual
adult worms, dissected adult tissues, L4 larvae and eggs
(Supplementary Table 6) and designed primers from horse-
specific, Parascaris-specific, and horse-parasite shared sequences
(Supplementary Data 11). Only the horse-parasite shared-
sequence primers amplified in both organisms (Fig. 6, Supple-
mentary Note 6 and Supplementary Fig. 8).

We sequenced ETSTY7 amplicons from multiple parasite
samples and developmental stages and showed 90-95% similarity
between horse and Parascaris. Multiple sequence alignment of
horse ETSTY7 and ETSTY7-like sequences from donkey,
Przewalski’s horse and Parascaris were used to reconstruct a
phylogenetic tree (Fig. 6). The most divergent ETSTY7-like
sequences were from the horse X chromosome and donkey
unplaced scaffolds. The ETSTY7 sequences of known equine Y
origin formed a clade (97% bootstrap value), which also included
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3 X copies, 7 Przewalski’s horse sequences, and 6 Parascaris
sequences. Of the latter, three were from GenBank and three were
our sequences derived from whole worms, dissected gonads and
body wall, and eggs and larvae (Supplementary Data 7).
Clustering of Y copies and their divergence from the majority
of X copies suggest they may be evolving separately. There were
numerous Parascaris sequences placed across the tree, suggesting
HT likely happened several times, while amplifications and
transpositions in different equid lineages indicate ETSTY7 as an
active and mobile element (Fig. 6). Since Parascaris spp. is a

cosmopolitan intestinal parasite of equids®® and ETSTY7
sequences were abundant in donkey and zebra genomes, we
cannot resolve when HT occurred.

Altogether, our data provide strong evidence of a putative HT
between the horse and its parasite. Of immediate interest is to
determine the origin of ETSTY7 (e.g., transposon, noncoding
RNA), and whether these sequences have any biological
functions. Testis-specific expression alone provides limited clues
because the permissive epigenetic regulation of testis allows
transcription of many potentially nonfunctional sequences®!. To
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the best of our knowledge, this is the first HT described in equids,
and among only a few verified HTs within vertebrates>2-34. The
exact mechanisms of eukaryotic HT are unknown, though host-
parasite interactions are among the main known gateways32. It is
possible that HT in eukaryotic genomes is more common than
currently appreciated with more evidence emerging from the
rapidly expanding genomic and transcriptomic data®*3>. Unique
male-specific ampliconic testes-expressed sequences have been
identified in every Y chromosome studied this far, yet their origin
has remained puzzling. Horizontal transfer of an ampliconic
transcript we detected in equids suggests this may be one
potential mechanism for the acquisition of novel genes.

Candidate MSY genes for stallion fertility. One of the main
incentives for Y chromosome research in humans and domestic
animals is that the Y accumulates sequences favorable for male
biology and fertility due to hemizygosity and inheritance exclu-
sively through the male germline (reviewed by ref.!°). Studies of
MSY mutations in humans*3¢ and mice3”~3% provide compelling
evidence for this. However, except for corroborating that Y
chromosomes are enriched with testis expressed genes, no such
research has been done in other eutherians'>~1°. Here we gen-
erated testis RNAseq data for horse, donkey, and mule. Although
some fertile F1 generation mules have been occasionally descri-
bed#, mules are generally sterile hybrids between a male donkey
and a female horse. Thus, they carry the donkey Y chromosome.
Sterility of mules is likely due to meiotic arrest during sperma-
togenesis or oogenesis*!, although other unknown genetic
mechanisms may contribute?.

We hypothesized that MSY genes with comparable expression
in horse and donkey testis, but significant dysregulation in mules,
may have roles in spermatogenesis or reflect more general genetic
hybrid incompatibilities. Three-way RNAseq comparison
revealed three genes that were significantly downregulated in
mule testis: HSFY (66-fold), HSPAILY (68-fold), and XKR3Y
(395-fold) (Supplementary Fig. 6 and Supplementary Data 8). Of
these, the multi-copy testis-specific HSFY is proposed as a
candidate male-benefit gene in other eutherians. It belongs to
critical azoospermia region (AZFb) in human MSY%, and is
massively expanded in the MSY of pig?® and cattle!?. Further-
more, HSFY has a chicken orthologue that is predominantly
expressed in testis!2, suggesting that this is an ancient vertebrate
male fertility gene, though HSFY biological functions remain
currently enigmatic?®. Even less is known about the functions of
HSPAILY and XKR3Y. HSPAILY is a single-copy, broadly
expressed, transposed gene whose autosomal paralog is a heat-
shock protein and chaperone that facilitates protein folding. The
XKR3Y gene shares sequence similarity with XK family of
membrane transport proteins but has acquired testis-limited
expression in horses (Supplementary Fig. 5). Functional dysre-
gulation of these genes in mule testis suggests their role in

spermatogenesis and is supported by genome-wide gene ontology
(GO) enrichment analysis of all other dysregulated genes in mule
(Supplementary Note 5 and Supplementary Data 1). It is also
possible that Y gene regulation and fertility phenotypes in equids
depend on the numerical and functional balance between
ampliconic gametologs—something similar to how the Sly/Slx
loci regulate sex chromosome transmission and male fertility in
mice*4. However, current knowledge on such genes in horses/
equids is too limited for speculations.

Evolutionary dynamics of Y in ancient and modern horses and
equids. Besides stallion fertility, the Y is of interest for tracking
male lineages and the history of breeds and populations using
MSY sequence variants. Because eMSY assembly was not avail-
able until now, all previous population genetics studies have relied
on relatively short MSY fragments. These studies unanimously
indicate that the horse Y has experienced a drastic reduction in
diversity following initial domestication some 5500 vyears
ago*>~%/, with a putative coalescence time of around 500 years!®.
In contrast, notable Y variation was present in ancient horses*
and other extant members of Equus*’.

In order to gain more information about MSY variation, we
mapped short-read whole genome data from 18 male horses and
equids to our 9.5Mbp eMSY assembly. The samples included
eight modern horses of six breeds, four Yakutian horses, two
ancient horses, two Przewalski’s horses, a donkey, and an onager
(Fig. 7 and Supplementary Data 9)2246:47:50 After normalization,
all samples mapped with similar (~1X) coverage to eMSY single-
copy regions but showed a large drop in mappability to the
ampliconic region (Fig. 7a and Supplementary Data 14). Such
collapse in mappability was expected because the region is dense
in sequences with almost 100% identity (Fig. 1c) and incompa-
tible for mapping short reads. Further, there was an order of
magnitude greater coverage in the first 0.25 Mbp of eMSY for all
caballine (domestic and Przewalski’s horse), but not asine
(donkey and onager) samples (Fig. 7a). This is consistent with
mapping ETSTY7 arrays to this region in horses but not in
donkeys (Fig. 6). Next, a small but prominent drop in coverage
for all samples at around 0.3-0.4 Mbp coincided with PAR
transposition, confirming that the transposition is present across
equids (Fig. 2). Additional alignment of these sequences in the
PAR explains the lower coverage. Finally, a region around 5.5 Mb
showed increased coverage for the two ancient horses suggesting
a duplication. We also noted a duplication in donkey at around
8.8 Mbp and a deletion in onager at around 5.8 Mbp, which
remain tentative until confirmed in more individuals.

Following the initial mapping, we masked eMSY ampliconic
sequences, removed ancient sample CGG10023 due to low
coverage (Supplementary Data 9 and 14), and estimated the
mismatch rate (Fig. 7b) and sequence variants (Fig. 7c). Donkey
and onager were the most divergent from horse, consistent with

Fig. 6 ETSTY7 horizontal transfer between horse/equids and Parascaris. a Maximum likelihood tree for 73 ETSTY7 and ETSTY7-like equid and Parascaris
sequences (blue boxes) (sequence data Supplementary Data 7); copies verified to have originated from eMSY (red font) and sequences derived directly
from horse and parasite samples noted; BS—bootstrap replicates; b HT validation by PCR using gDNA samples originating from 13 Parascaris individuals,
tissues and developmental stages, C. elegans as negative invertebrate control, and male and female horses; Parascaris photo by R. Juras; primers represent
the putative HT region (ETSTY7-3 exon3), Parascaris-specific sequences (PEQ0O01.2), and three multicopy horse-specific sequences - mtDNA (ND7),

olfactory receptor genes in chr14 (Chr14 CNV OR), and a CNV in chrUn (ChrUn CNV); 100 bp ladder (NEB); ¢ ETSTY7-3 exon3 612 bp PCR amplicons from
Parascaris individuals, tissues and developmental stages that were used for Sanger sequencing; d Reverse transcriptase PCR (RT-PCR) with ETSTY7 primers
on a panel of 9 adult equine tissues showing testis-specific expression; e-f FISH with 612-bp ETSTY7-3 PCR product in horse sex chromosomes (red FISH
signals in @) and metaphase spreads of donkey and two zebra species (green FISH signals in f); scale bars 1um; equid images purchased from Bigstock
(https://www.bigstockphoto.com/), and g PCR with ETSTY7-3ex3 primers in equids, Perissodactyls and unrelated diverse mammals showing that these
sequences are limited to equids; M male; F female (see Supplementary Data 11 for primer information and Supplementary Note 6 and Supplementary Fig. 8

for more HT validation)
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Fig. 7 Comparison of equid MSY. a Normalized coverage for each group of samples in 1 kbp blocks. Mappability (between O and 1) is shown in gray.
b Average mismatch rates (relative to reference sequence) in 1kbp blocks. ¢ Variable sites in eMSY. Only sites called in the eMSY sequence and covered in
at least one individual in each group are shown. EquCab 2.0 shows the nucleotide observed on eMSY, while rows for individuals show the SNP observed at
that site for an individual, or nothing if the reference nucleotide is observed. Gray indicates sites not called in that individual. d and @ Maximum likelihood
phylogenies generated from supermatrix of high-mappability genomic blocks for equids and horse breeds, respectively
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the basal Equus divergence 4.0-4.5 MYA?2. Mismatch levels were
intermediate for the 5200 years old Batagai horse?” and
Przewalski’s horses, and lowest for modern horse breeds.
Mismatch and divergence analyses confirmed earlier findings
that Batagai is equally distant from Yakutian and all modern
breeds*®, and that MSY diversity was present in ancient horses
but largely lost in modern horse breeds. However, these
comparisons were limited to single-copy MSY and excluded the
potentially more variable ampliconic region.

The alignment of eMSY with whole-genome short-read data
from numerous horses and equids allowed reconstruction of MSY
phylogeny for caballine and asine equids (Fig. 7d). The trees
supported an early divergence of the ancient Batagai MSY,
followed by a split between the Przewalski’s and domestic horses.
Among domestic horses, the most basal split separated two
Yakutian haplotypes, followed by two Icelandic horses, which had
the most divergent eMSY sequences among European breeds.
Notably, Yakutian horses had substantially greater level of MSY
diversity compared to the other domestic breeds®. The more
divergent Y sequence in Icelandic horses suggested a unique breed
history. The Standardbred horses also showed different ancestral
haplotypes compared to those derived from the Arabian.

The first representative Y assembly in Perissodactyla. We pre-
sent the first comprehensive MSY sequence assembly for the
genus Equus and the first representative MSY of the eutherian
order Perissodactyla. We compared the content of eMSY with
recent most comprehensive comparative mammalian MSY
studies!1>13 and added newly available data for pig Y'426. This
enabled a comparison across 12 species encompassing five
eutherian orders (Perissodactyla, Primates, Carnivora, Cetartio-
dactyla, and Rodentia) and expanding comparison across meta-
therians by including data for opossum gametologs!2.

Among all sequenced eutherian MSYs, we recorded 88 unique
genes and transcripts (Fig. 8 and Supplementary Data 10), of
which 55% (49) were species-specific or lineage-specific. The
highest number (23) of such genes was in eMSY, including several
novel Y-born and autosomal transposed loci. The remaining 39
were X-Y genes and shared between species, allowing tracking
lineage specific evolutionary events of acquisition, loss, and
amplification. Notably, only six X-Y genes (SRY, ZFY, TSPY,
DDX3Y, UTY, and USP9Y) are actively transcribed in all taxa,
although a few were recently pseudogenized in one or two species.
The trio, DDX3Y-UTY-USPYY, as pointed out before®!213:18
represents the only MSY conserved linkage group known to date.
The horse MSY shared more X-Y genes with primates than with
other eutherians, as a direct result of shorter PARs that evolved
independently in these two lineages?!>>. Among other shared
X-Y genes were BCORY (horse-dog-pig), AP1S2Y (horse-pig),
ZRSR2Y (horse-pig-cattle), and CUL4BY (horse-pig-carnivores)
(Fig. 8).

One of the more surprising findings was that conservation of
MSY in equids was much greater than expected based on the
patterns observed in primates®’. While the 4-4.5 MYA
divergence time between horse and donkey?? is comparable to
the 6-7 MYA between human and chimpanzee®, MSY evolu-
tionary rate is different in the two groups. Over 30% of human
and chimpanzee MSY sequence maps are not homologous and
have substantially different gene content®. In contrast, horse and
donkey retain nearly the same single-copy MSY and many of the
multi-copy sequences, as revealed by short-read sequence
alignment (Fig. 7a) and comparative gene expression analysis in
this (Supplementary Fig. 6) and previous studies!8.

The 9.5 Mbp annotated sequence assembly of eMSY is
currently one of the most complete MSY assemblies for any

non-primate/non-rodent eutherian mammal, and provides addi-
tional insight into the dynamic nature of this chromosome and its
heterogeneity between different mammalian lineages. The eMSY
assembly also fills a primary gap in the current horse genome
reference sequence, and establishes an important foundation for
future research into stallion biology. Our analysis showed that
while the eMSY shares organization and transcriptional patterns
common to all eutherian Y chromosomes studied to date, it also
exhibits novel features. Distinctive features of the eMSY included
the largest retention of X-Y ancestral genes of any eutherian
mammal studied thus far, and a unique collection of Y-borne and
transposed genes. The unprecedented horizontal transfer between
the horse Y and equine parasite, coupled with testis expression
and amplification of this sequence in Y and X heterochromatin,
provides a potentially novel model for the studies of host-parasite
genome interactions and adaptation.

Methods

Ethics statement. Procurement of blood and tissue samples followed the United
States Government Principles for the Utilization and Care of Vertebrate Animals
Used in Testing, Research and Training. The protocols were approved by Insti-
tutional Animal Care and Use Committee as AUP 2012-076 and CRRC09-47.

BAC tiling path map: (Supplementary Note 1, Supplementary Figs. 1-3 and
Supplementary Data 4-5). We constructed a BAC contig map of eMSY by
sequence tagged site (STS)-content analysis, chromosome walking, and
fluorescence in situ hybridization (FISH) using methods described
elsewhere!®°1:52, Briefly, we designed primers for known and new eMSY markers
with Primer3 software and screened the CHORI-241 male horse BAC library
(Thoroughbred “Bravo”) (http://bacpacresources.org/) by PCR. If no clones were
found in CHORI-241, we also screened the TAMU (L. C. Skow, unpublished) and
INRA>* BAC libraries, constructed from a male Arabian and a male Selle Frangais,
respectively. The BAC DNA was isolated with Plasmid Midi Kit (Qiagen) and
Sanger end-sequenced for STS development using standard T7 and SP6/M13
primers and BigDye chemistry. We used blood lymphocyte and/or fibroblast
cultures and standard procedures®? to obtain metaphase, interphase and DNA fiber
preparations from a Thoroughbred stallion (Bravo), and metaphase and interphase
preparations from a male donkey (Equus asinus; EAS), the quagga plains zebra
(Equus burchelli; EBU) and Hartmann’s mountain zebra (Equus zebra hartmannae;
EZH). We labeled DNA from individual BAC clones with biotin-16-dUTP and/or
digoxigenin-11-dUTP by nick translation (Roche) and hybridized the BACs
individually or in combinations of 2 or 3 to metaphase/interphase chromosomes
and DNA fibers. We analyzed a minimum of 10 metaphases and 30 interphase or
DNA fiber-FISH images per experiment using a Zeiss Axioplan2 fluorescent
microscope and Isis v 5.2 (MetaSystems GmbH) software. We arranged the BACs
into a tiling path by STS content mapping (PCR with all STS primers on all BAC
clones) and determined the order and orientation of contigs and the size of gaps by
interphase and/or fiber-FISH. The BAC contig map formed the basis for eMSY
sequencing.

Horse MSY sequencing and assembly: (Fig. 1, Table 1; Supplementary Note 2,
Supplementary Fig. 1 and Supplementary Data 4-5). We sequenced 94 BACs from
the BAC tiling path map using a multi-platform strategy which included 454 GS-
FLX Titanium (Life Sciences) and MiSeq (Illumina) approaches. Single-end (SE)
454 GS-FLX was applied to 45 single-copy BACs from contigs Ia, Ic, IL, III, IV with
approximately 1.5X tiling path. Clones for each of the contigs were pooled
respectively and sequenced to a depth of 30X. Contigs III and IV were short (~1
Mb), did not appear to share any sequences, and were pooled together. From the
multi-copy region of contig IIb, we sequenced 11 BACs that represented all classes
of sequence and content (based on STS content analysis): 3 BACs were sequenced
individually, four were pooled into pairs, and four were pooled together. The pools
combined clones that did not have any known shared sequence, thus increasing
chances of assembling sequences unique to each BAC. Large insert (6 kb) mate-pair
paired-end (PE) 454 GS-FLX was applied to build large scaffolds of 45 single-copy
and 11 multi-copy BACs, as above. Short read 2 x 250 bp PE Illumina MiSeq was
applied to 65 clones that were individually barcoded and sequenced in pools. Long-
read PacBio was conducted in 2 SMRT cells—one containing a pool of 18 single
and multi-copy BACs from contigs Ia and Ib, another with 36 clones from contigs
Ic, II, III, and IV. Sequencing depth per BAC was 300X and 150X, respectively.

We used Newbler (454 Life Sciences) for de novo assembly of the 454 data based
on respective BAC pools. Assembly parameters were optimized to yield the longest
contigs and scaffolds. All scaffolds and contigs were aligned with eMSY STS
markers (Supplementary Data 4) by BLAST (https://blast.ncbi.nlm.nih.gov/Blast.
cgi) to further orient and assemble scaffolds/contigs based on the physical map. We
used Velvet> for de novo assembly of the Illumina data and selected parameters
yielding the longest contigs and scaffolds. For BACs sequenced on 454 and
Illumina platforms, we conducted both Newbler and Velvet assemblies for
comparison. We aligned and compared multi-copy BACs in Mauve®®. Due to the
complexity of multi-copy sequences, it was difficult to create scaffolds with high
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confidence, and we concatenated all representative BACs into one large scaffold.
Therefore, the multi-copy portion of the eMSY assembly remained tentative.
Attempts to incorporate the PacBio data with Illumina data using Celera Assembler
(discontinued and replaced by Canu: http://canu.readthedocs.io/en/stable/) did not
significantly improve the assembly and we dropped this strategy. Finally, we
experimentally validated by PCR the assembly of selected gene containing regions
(Supplementary Data 11) and considered amplification of the expected size
products as proof of assembly correctness.

Testis RNAseq. We extracted high quality (RIN > 9.6) RNA from the testis of two
normal adult stallions, two normal adult donkeys and two normal adult mules
using PureLink RNA Mini Kit (Ambion). The RNA was converted into cDNA,
prepared into 2 x 100 bp PE TruSeq libraries (Illumina), and sequenced on HiSeq
(Ilumina) platform. We obtained, on average, 80 million PE reads per sample and
used Trinity®” to assemble transcriptomes of the horse, donkey and mule testis by
combining data from two individuals per species.

Sequence annotation: (Supplementary Data 2 and Supplementary Note 3). The
eMSY sequence was analyzed for GC content and the content of interspersed

repeats in RepeatMasker (http://www.repeatmasker.org/) (Supplementary Table 2).
Sequences with 100% intra-chromosomal identity were revealed with a custom Perl
code (similar to that applied to human MSY?) and BLAST (http://blast.wustl.edu/)
(Fig. 1c; Supplementary Note 3 and Supplementary Fig. 4). Annotation of eMSY
genes and transcripts was a combination of rigorous bioinformatics analysis
against: (i) known horse MSY genes18 and STSs (Supplementary Data 4), (ii)
available animal cDNA and EST databases, and horse, donkey and mule testis
transcriptomes. First, we downloaded and analyzed by BLAST against eMSY
assembly all available sequences (genomic fragments, mRNAs, ESTs) of
mammalian MSY genes from Ensembl (http://www.ensembl.org/) and NCBI
(https://www.ncbi.nlm.nih.gov/). Annotation of genes followed rigorous criteria:
there had to be at least 80% sequence similarity, presence of at least 75% of the
exons, and conservation of exon order and exon-intron boundaries. We excluded
highly repetitive and fragmentary alignments. Next, we combined the annotated
eMSY to the horse reference genome EquCab2 (https://www.ncbi.nlm.nih.gov/
genome/?term=horse) and mapped horse testis transcriptome to it (Supplementary
Data 8). This confirmed and refined the gene models obtained by BLAST,

and identified novel genes and transcripts. Finally, we used in silico annotation
with Maker® combining all horse EST, mammalian MSY ¢cDNAs and horse testis
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transcriptome (RNAseq assemblies) data. We validated all annotations by BLAST
or BLASTP using the closest homolog (https://blast.ncbi.nlm.nih.gov/Blast.cgi/).

Gene expression analysis: (Supplementary Note 4). Expression profiles of all
newly discovered genes, i.e., those not reported in the first horse MSY gene
catalog'®, and selected known ampliconic transcripts, were determined by reverse
transcriptase PCR (RT-PCR) in 9 adult male tissues and 9 tissues of 50-day-old
male embryos. The adult tissues included brain, kidney, heart, skeletal muscle, liver,
lung, spleen, seminal vesicle, and testis. Embryonic tissues included brain, kidney,
heart, liver, lung, GI tract, chorio-allantois, gonad, and gubernaculum. All tissues
were preserved in RNAlater (Ambion). We isolated RNA with RNeasy Plus and
RNeasy Lipid kits (Qiagen) and converted it into cDNA with Verso cDNA
Synthesis kit (ThermoFisher) following manufacturers’ protocols. Tissue-specific
cDNA together with male and female horse genomic DNA controls, served as
templates for PCR reactions with primers specific to eMSY genes/transcripts
(Supplementary Data 11 and Supplementary Fig. 5).

Raw reads from the six RNAseq libraries (2 horses, 2 donkeys, 2 mules) were
aligned to the hybrid assembly of eMSY and the female horse reference genome
EquCab2 (https://www.ncbi.nlm.nih.gov/genome/?term=horse). We used STAR
two-stage aligner®® and non-stringent mapping parameters (SI) to allow divergent
read mapping across species. Read counting was performed with the Python
framework HTSeq (10.1093/bioinformatics/btu638). Per-individual read coverage
per gene is presented in Supplementary Data 8, inter-species comparison in
Supplementary Data 12, Supplementary Fig. 6 and Supplementary Table 4, and
genome-wide comparison in Supplementary Data 1.

Validation of horizontal transfer (HT). Analysis by BLAST (https://blast.ncbi.
nlm.nih.gov/Blast.cgi/) aligned ETSTY7 transcript sequence with Parascaris equorum
(Parascaris spp.) genome (GenBank LM462759). To validate putative horizontal
transfer and check for possible contamination, we conducted a rigorous series of
experiments. Using established protocols), Parascaris spp. eggs, larval stage 4 (14)
and adult specimens were collected from affected horses. We dissected adult gonads,
body wall and intestine, and isolated genomic DNA from all developmental stages
and organs using standard phenol-chloroform protocol. We designed primers from
3 types of sequences: (i) Parascaris-specific sequences; (ii) horse-specific MSY,
autosomal, and mitochondrial DNA sequences, and (iii) horse-parasite shared
sequences (see Fig. 6, Supplementary Note 6, Supplementary Data 11 and Supple-
mentary Fig. 8). We sequenced ETSTY7-3 ex 3 amplification products from adult
worms, their gonads, body wall, eggs, and L4 larvae by BigDye chemistry, and
estimated the rate of parasite and eMSY sequence homology by BLAST.

Phylogenetic trees and estimation of gene acquisition. Gene sequences for X
and autosomal paralogs and Y homologs were obtained from the mRNA RefSeq
database (https://www.ncbi.nlm.nih.gov/) for representative eutherian mammals,
opossum and platypus. Outgroup sequences from the chicken were also obtained if
a clear homolog was present. Przewalski’s horse, donkey, and onager Y sequences
were obtained by mapping whole genome shotgun sequences from males to the
eMSYv3 and extracting the sequences based on our annotation. Sequences were
aligned using MUSCLE® and phylogenies reconstructed in RAxML®! with the
Maximum Likelihood algorithm using the General Time Reversible + Gamma +
Invariant sites and significance evaluated with 1000 bootstrap replicates. Nodes in
the best scoring ML tree for each gene were constrained using the 95% CI interval
estimates (Supplementary Data 13 and Supplementary Table 5) from (http://www.
timetree.org)®? and the previous estimate of 4.0-4.5 for MRCA of Equus®%. The
divergence times and 95% ClIs of the horse Y gene from its nearest autosomal or X
homolog were estimated using independent rates model and soft constraints in
MCMCTREE.%3(Supplementary Data 7 and Supplementary Figs. 9-10). For 5 genes
the program did not produce 95% CI intervals and so they were approximated
from the mean of 95% CI of other genes in their age range. The yn00 program in
PAML® was used to estimate the K, between the horse Y and X gene-pair using the
method by Li et al. 1993%4. Test for gene conversion was performed in the program
GENCONV® (Supplementary Data 3).

Horse MSY comparison in equids and ancient and modern horses. Published
short-read (Illumina) sequence data for 18 equids?24%:47->0 (Supplementary Data 9)
were mapped to the eMSY sequence using previously described procedures*® for
mapping reads, and for mapping to Y chromosome fragments, specifically. We
analyzed the data in the context of MSY sequence coverage, mismatch rate, hap-
lotypes, and phylogeny. Note that the ancient horse CGG10023 had a low coverage
(max 7.4X; min < 4X) and poor quality sequence (average mismatch rate 3-fold
higher than Batagai), and we excluded this sample from plots that are sensitive to
the coverage, i.e., everything but the average coverage plot; Fig. 7a.

Average coverage for each sample was calculated in blocks of 50 kbp,
considering only sites called in the eMSY reference sequence. Consequently, each
physical block could cover more than 50 kbp of the eMSY reference sequence. The
resulting averages were normalized using the mean coverage of high-mappability
blocks.

Mappability was calculated by running the GEM Mappability v1.315 tool on the
eMSY sequence using 100 bp k-mers (http://algorithms.cnag.cat/wiki/
The_GEM_library). Scores were converted to WIG format, and the average

mappability of each 50 kbp genomic block was calculated, considering only sites
covered in the eMSY sequence (see Supplementary Data 14).

The full eMSY sequence of each sample was genotyped as described in Schubert
et al. 2014%7. Thereafter, mismatch rates were calculated for each sample as the
fraction of called sites containing non-reference nucleotides, grouped into 50 kbp
blocks (see Coverage), considering only high-mappability blocks. The results were
averaged across groups, to produce the final mismatch rates.

Genomic blocks were demarcated as described for Coverage statistics, and 1 kbp
blocks with an average mappability greater than or equal to 0.9 were selected. The
resulting genomic blocks were genotyped and phylogenetic trees were calculated
from a super-matrix of these sequences as described by Schubert et al. 201447,

Comparative analysis with eutherian MSY. We compiled data for all MSY
coding genes, pseudogenes and transcripts known in horses (this study) and
eutherian species with sequenced or partially sequenced MSYs: man®, chimpanzee®,
gorillal!, rhesus macaque’, marmoset, pig!426:60, cattle®1267, dog and cat!3,
mouse®!? and rat (https://www.ncbi.nlm.nih.gov/; http://www.ensembl.org/). To
expand phylogenetic scope, we included data for opossum X-Y genes!2. The
comparative data were visualized with Circos (http://circos.ca/).

Data availability. Sequences and metadata generated in this work are publicly
available. BioProject Accession PRINA420505 includes information about project,
samples, and SRA accessions including SRR636826-SRR636831 for RNAseq
reads of 6 samples from 2 horses, 2 donkeys, 2 mules) and SRR6361136-
SRR6361138 (for 54 single-end reads and mate-pair reads for tiling path BACs,
and Illumina paired-end reads of individually barcoded multi-copy BACs. The
eMSYv3.1 assembly has been deposited in GenBank under accession number
MH341179. In the v3.1 accession, two vector sequences (18,381-bp in position
2,505,950 and 1396-bp in position 8,066,811) have been trimmed from assembly
with respect to v3.0. The GTF file for v3.0 available as Supplementary Data 2
with information on how to modify v3.1 assembly to match the v3.0 GTF
annotations used in our analysis. GenBank accessions to BAC end sequences,
MSY STS sequences and Sanger sequences of Parascaris samples can be found in
Supplementary Data 4 and 7.
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