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Abstract

We proposed a framework to detect and quantify local tumor morphological changes due to 

chemo-radiotherapy (CRT) using Jacobian map and to extract quantitative radiomic features from 

the Jacobian map to predict the pathologic tumor response in locally advanced esophageal cancer 

patients. In 20 patients who underwent CRT, a multi-resolution BSpline deformable registration 

was performed to register the follow-up (post-CRT) CT to the baseline CT image. Jacobian map 

(J) was computed as the determinant of the gradient of the Deformation Vector Field. Jacobian 

map measured the ratio of local tumor volume change where J < 1 indicated tumor shrinkage and J 
> 1 denoted expansion. The tumor was manually delineated and corresponding anatomical 

landmarks were generated on the baseline and follow-up images. Intensity, texture and geometry 

features were then extracted from the Jacobian map of the tumor to quantify tumor morphological 

changes. The importance of each Jacobian feature in predicting pathologic tumor response was 

evaluated by both univariate and multivariate analysis. We constructed a multivariate prediction 

model by using a support vector machine (SVM) classifier coupled with a least absolute shrinkage 

and selection operator (LASSO) for feature selection. The SVM-LASSO model was evaluated 

using ten-times repeated 10-fold cross-validation (10×10-fold CV). After registration, the average 

Target Registration Error was 4.30±1.09mm (LR:1.63mm AP:1.59mm SI:3.05mm) indicating 

registration error was within two voxels and close to 4mm slice thickness. Visually, Jacobian map 

showed smoothly-varying local shrinkage and expansion regions in a tumor. Quantitatively, the 

average Median Jacobian was 0.80±0.10 and 1.05±0.15 for responder and non-responder tumors, 

respectively. These indicated that on average responder tumors had 20% median volume shrinkage 

while non-responder tumors had 5% median volume expansion. In univariate analysis, Minimum 

Jacobian (p=0.009, AUC=0.98) and Median Jacobian (p=0.004, AUC=0.95) were the most 

*Corresponding author: luw@mskcc.org. 

The authors have no relevant conflicts of interest to disclose.

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2018 July 28.

Published in final edited form as:
Phys Med Biol. ; 63(14): 145020. doi:10.1088/1361-6560/aacd22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant predictors. The SVM-LASSO model achieved the highest accuracy when these two 

features were selected (Sensitivity=94.4%, Specificity=91.8%, AUC=0.94). Novel features 

extracted from the Jacobian map quantified local tumor morphological changes using only 

baseline tumor contour without post-treatment tumor segmentation. The SVM-LASSO model 

using Median Jacobian and Minimum Jacobian achieved high accuracy in predicting pathologic 

tumor response. Jacobian map showed great potential for longitudinal evaluation of tumor 

response.
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1. Introduction

Image-based evaluation of treatment response after Chemo-radiotherapy (CRT) is important 

in esophageal cancer in order to make appropriate decisions about patient follow-up and the 

necessity for further treatment, such as surgery (Duan et al., 2014; Yamashita et al., 2014; 

Blazeby et al., 2000). Current standard methods to assess the therapy response via diagnostic 

images use either unidimensional longest diameter, i.e. Response Evaluation Criteria In 

Solid Tumors (RECIST), or bi-dimensional product of longest diameter and maximal 

perpendicular diameter of active tumor, i.e. World Health Organization (WHO) criteria 

(Eisenhauer et al., 2009; Sharma et al., 2012). However, utilization of these criteria in 

esophageal cancer is limited, mostly because cross-sectional axial measurement of 

heterogeneous tumor is difficult, thus yielding poor accuracy (sensitivity 57%, specificity 

52%) (Kroep et al., 2003; Jones et al., 1999; Westerterp et al., 2005; Staal et al., 2010). 

Volumetric image analysis improved the accuracy (sensitivity 60%, specificity 73%) (van 

Heijl et al., 2011; Beer et al., 2006; Westerterp et al., 2005) however, one difficulty lies in 

the differentiation of viable tumor from normal tissues after therapy, which may lead to 

inaccurate tumor segmentation (Yanagawa et al., 2012; Westerterp et al., 2005; Geoffrey et 
al., 2011; Tang et al., 2010). For these reasons, diameter/volume-based measurements are 

not consistently correlated to important outcomes such as overall survival and pathologic 

tumor response (Kurokawa et al., 2013; Staal et al., 2010; Yanagawa et al., 2012). A method 

that can automatically detect the tumor location/shape after therapy and locally quantify the 

variations by taking voxel-by-voxel spatial distribution into account is needed (Meyer et al., 
2009).

One method that measures local structural change of an object in time is Deformable Image 

Registration (DIR) based morphometry. Ashburner and Friston (Ashburner and Friston, 

2004) classify DIR morphometric methods into three categories: Voxel-based Morphometry 

(VBM), Deformation-based Morphometry (DBM) and Tensor-based Morphometry (TBM). 

VBM measures grey level difference (i.e. subtraction map) on corresponding voxels after 

image registration, which is highly sensitive to image misalignment and depends on physical 

meaning of the voxels (Chao et al., 2010; Tan et al., 2016). DBM and TBM use the 

Deformation Vector Field (DVF) obtained from DIR to characterize the structural change. 
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DBM evaluates displacement of the objects while TBM exploits the gradient of the DVF, i.e. 

the Jacobian matrix, to track the morphometric change (Rey et al., 2002; Sakamoto et al., 
2014; Dennis et al., 2016; Ou et al., 2015). The Jacobian map obtained from the Jacobian 

matrix describes local volumetric shrinkage/expansion. Jacobian map has the following 

advantages: 1) it is invariant to linear registration misalignments (Rey et al., 2002; Sakamoto 

et al., 2014) 2) the estimated change can characterize voxel-by-voxel volumetric spatial 

distribution (Meyer et al., 2009; Sarkar et al., 2008) 3) unlike conventional tumor response 

(RECIST or WHO) criteria, only the Gross Tumor Volume (GTV) in the baseline image is 

needed to calculate the change without the necessity of tumor size measurement or 

delineation on the follow-up image (Thirion and Calmon, 1999; Meyer et al., 2009).

There are many studies in Magnetic Resonance Imaging (MRI) that utilize Jacobian map to 

evaluate volumetric change at different time points in breast cancer (Ou et al., 2015) and in 

normal and cancerous brain tissues (Thirion and Calmon, 1999; Fuentes et al., 2015; Hua et 
al., 2009; Rey et al., 2002; Dennis et al., 2016). Fuentes et al. (Fuentes et al., 2015) used 

Jacobian integral to measure the net volume change of an organ, for quantifying percentage 

of atrophy and dilation in cerebral and ventricle volumes as a response to therapy in 

irradiated whole-brain tissue in MRI images. They compared Jacobian integral with 

automatic segmentation and showed that the two methods had small differences in 

calculating volume change. In Computed Tomography (CT), Jacobian map is mostly 

exploited to evaluate lung tissue function e.g. to visualize lung volumetric shrinkage/

expansion and to estimate ventilation (Michalski et al., 2017; Cao et al., 2013; Christensen et 
al., 2007; Reinhardt et al., 2008). Additionally, some efforts attempted to analyze correlation 

between Jacobians and radiation dose (Niedzielski et al., 2017; Ding et al., 2010) and to 

detect radiation-induced lung diseases (Diot et al., 2015). Sarkar et al. (Sarkar et al., 2008) 

compared Jacobian integral and subtraction map (Pre-CT - linearly aligned Post-CT) with 

manual segmentation in interval CT scans of liver cancer. In 4 subjects, they showed that 

Jacobian method is segmentation-free and the estimated change had better agreement with 

manual segmentation compared to subtraction map. Sakamoto et al. (Sakamoto et al., 2014) 

also calculated Jacobian map to visually identify temporal changes of pulmonary nodules in 

serial lung CT images. They showed that combination of Jacobian and subtraction map 

could be practical for a comprehensive visualization of temporal change, especially when 

nodules emerge or disappear. Few works using Jacobian map have been performed to assess 

the voxel-wise tumor change and to the best of our knowledge none of them quantified the 

Jacobian map features to evaluate their correlation with histopathologic response.

In this work, we developed a framework to extract novel morphometric features from the 

Jacobian map. The purpose of this study is to (1) detect and quantify voxel-wise structural 

change in tumor between baseline and follow-up CT images using Jacobian map and (2) 

extract quantitative radiomic Jacobian features from the Jacobian map to predict the 

pathologic tumor response in locally advanced esophageal cancer patients.

2. Materials and Method

The main flowchart of our framework is presented in Figure 1. Image registration and 

Jacobian map calculation were performed using Elastix and ITK toolbox (Klein et al., 2010; 
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Shamonin et al., 2013; Ibanez et al., 2003) and statistical analysis was implemented in 

RStudio (RStudio, 2015).

2.1. Patient and Image dataset

This retrospective study included 20 patients with esophageal cancer who were treated with 

trimodal therapy from 2006 to 2009 and underwent pre- and post-CRT PET/CT imaging at 

University of Maryland Medical Center. Pre-CRT imaging was performed at 3~5 weeks 

before CRT and post-CRT imaging was performed at 4~6 weeks after completion of CRT 

but before surgery. Surgical resection (Ivor–Lewis, transhiatal, or 3-field esophagectomy) 

was performed 1–7 weeks after post-CRT PET/CT imaging. Resolution for CT images was 

0.98 × 0.98 × 4 mm3. A physician manually delineated a baseline GTV and a follow-up 

GTV on the pre-CRT and post-CRT PET/CT respectively. The GTV were delineated 

according to both abnormal esophagus wall thickening on CT and increased FDG uptake on 

PET. Furthermore, the physician manually placed 16~20 corresponding anatomical 

landmarks on each image. The landmarks were placed on anatomical structures which are 

less affected by imaging orientation, such as vessel bifurcation, retroperitoneal organs or 

calcification spots on bones and vessels. Resected surgical specimens were evaluated by a 

pathologist and categorized into two groups: 9 responders (pathologic complete response or 

microscopic residual disease) and 11 non-responders (gross residual disease). For more 

details about the patient cohort please refer to Tan et al (Tan et al., 2013).

2.2. Image registration

The purpose of image registration is to find the optimized transformation T that spatially 

maps the corresponding points between baseline and follow-up images. We performed 

registration in a cropped region 5cm (AP/LR/IS) surrounding the GTV. We first linearly 

registered follow-up CT to baseline CT images to roughly align the global structures. A 

multi-resolution BSpline deformable registration was then performed at four resolutions 

128, 64, 32 and 16 mm. Displacement between the corresponding points is denoted by a 

discrete Deformation Vector Field i.e. u (x, y, z) = T(x, y, z) − (x, y, z), where T(x, y, z) 

represents the transformed point of (x, y, z). An Adaptive Stochastic Gradient Descent 

optimizer with pixel level step size was used to minimize a cost function (Equation 1) to 

obtain the transformation (T) between baseline (Ib) and follow-up (If) images:

C(T , Ib°I f ) = Csim + αCReg (1)

where Csim was a similarity metric, Creg was a regularization term, and α was a weight that 

balanced the two terms. We used Sum of Square Difference (SSD) as Csim (Hill et al.) and 

bending energy of transformation (Equation 2) as Creg (Riyahi-Alam et al., 2014):

CReg = Ebending = ∬ ∫ ∂2T ∂x2
2

+ ∂2T ∂y2
2

+ ∂2T ∂z2
2

+ ∂2T ∂x∂y
2

+ ∂2T ∂x∂z
2

+ ∂2T ∂y∂z
2

(2)
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This function penalized discontinuity in DVF such as folding/tearing, but had no impact on 

sink (converging) and source (diverging) vectors which we intended to preserve. Converging 

vectors create a sink point that is mapped to many points in its vicinity and represents a 

morphological shrinkage. On the other hand, diverging vectors create a source point that 

represents a morphological expansion. Usually 0 ≤ α ≤ 1.0 (Kanai et al., 2014; Shusharina 

and Sharp, 2012) and in this study α was experimentally set to 0.1.

To evaluate the registration accuracy, we first visually assessed the alignment of the two 

images. Then we computed the Target Registration Error (TRE) and Dice Similarity 

Coefficient (DSC) between baseline landmarks/contours and the transformed follow-up 

landmarks/contours. We also used percentage of negative determinant of Jacobians and 

Inverse Consistency Error (ICE) to assess the plausibility and smoothness of the 

transformation, respectively. Moreover, we compared BSpline SSD to two other registration 

methods: i) BSpline transformation with Mutual Information (MI) similarity metric (Qiao et 
al., 2015) and ii) non-diffeomorphic Demons method (Thirion, 1998). We used the same 

multi-resolution BSpline grid configuration, regularization α and number of iterations for 

MI metric with Limited Memory Broyden–Fletcher–Goldfarb–Shanno (LMBFGS) Quasi 

Newton optimization function (Qiao et al., 2015). Number of joint histogram bins was set to 

64. For Demons, three levels of registrations with 100 iterations were performed where DVF 

in each iteration was regularized in an elastic manner using Gaussian smoothing function 

(∂=2).

2.3. Computing Jacobian Map from the deformation vector field (DVF)

As a preprocessing step, the DVF was smoothed using an Anisotropic Diffusion Filter 

(Ibanez et al., 2003) to remove the noise while preserving the high frequency structures. A 

3×3 Jacobian matrix j and its determinant J were calculated from the DVF u  at a voxel 

(Chung et al., 2001):

j(u) =

∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z

(3)

J(u) = Det( j(u))

j is the first derivative of the DVF and encodes the local stretching, shearing and rotation. 

These were calculated at every voxel to produce a map of J, which was termed Jacobian 
map. The Jacobian map indicates the volumetric ratio of an object g before and after the 

transformation (Equation 4):
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J(g) = Volume(g′) Volume(g)
J > 1 volume expansion
J = 1 no volume change
J < 1 volume shrinkage

(4)

where g′ = T(g). J > 1 means local volume expansion, J < 1 means shrinkage and J = 1 

denotes no local volume change (Chung et al., 2001). Net volume change of g can be 

computed using Jacobian integral as (mean J − 1) × initial volume (Fuentes et al., 2015).

Figure 2 presents a conceptual illustration of Jacobian map using a synthetic sphere that 

simulates tumor shrinkage/expansion.

2.4. Radiomic Features for Prediction of Tumor Response

Quantitative image features or “radiomics” have shown a significant role in prediction of 

therapy response (Lambin et al., 2012; Zhang et al., 2014). We extracted 664 features in total 

(Supplemental Table 5) including both baseline and follow-up PET/CT features (n=378), 

their changes (n=189) and features from the Jacobian map (n=97) using the Insight 

Segmentation and Registration Toolkit (Ibanez et al., 2003). These radiomic features 

quantified the intensity, texture and geometry (Haralick et al., 1973; Galloway, 1975; 

Xiaoou, 1998) of a tumor in the baseline and follow-up PET/CT images along with their 

changes, and in the Jacobian map. Intensity features quantify the level and distribution of 

intensity and Jacobian values. Shape features describe geometric characteristics (e.g., shape 

and size) of a tumor. Texture features quantify the spatial patterns of tissue density, such as 

homogeneity, coarseness, and correlation of intensity by using Gray-level co-occurrence 

matrix (GLCM) (Haralick et al., 1973) and gray-level run-length matrix (GLRM) (Galloway, 

1975; Tang, 1998). The average value of each texture feature was computed over all 13 

directions to obtain rotationally invariant features. Some features were also extracted on the 

slice with the largest area (2D features). Since each voxel in the Jacobian map represents 

local volumetric shrinkage/expansion, the Jacobian features quantified the distribution and 

spatial patterns of volumetric shrinkage/expansion within the tumor.

The importance of radiomic features as well as patient’s clinical and demographic 

parameters (Tan et al., 2013) in predicting pathologic tumor response was evaluated by both 

univariate and multivariate analysis. In univariate analysis, p-value and Area Under the 

Receiver Operating Characteristic Curve (AUC) for each feature was calculated using 

Wilcoxon rank sum test. P-values were adjusted using Bonferroni correction, because we 

tested multiple features (n=664) for one single outcome (Pagano and Gauvreau, 2000). In 

multi-variate analysis, firstly distinctive features were identified by using a pair-wise 

correlation cutoff (r=>0.85). Only independent features and representative features, which 

had the smallest mean absolute correlation were kept for subsequent analysis. A linear 

Support Vector Machine (SVM) model was then constructed coupled with a Least Absolute 

Shrinkage and Selection Operator (LASSO) feature selection. All distinctive features were 

fed to the SVM classifier in a manner of a 10-fold cross-validation (CV). Within each fold 

CV of the model building process, LASSO was applied to automatically select the ten most 

important distinctive features by using another (inner loop) 10-fold CV. We repeated the 
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outer-loop 10-fold CV ten times to obtain the model accuracy (10×10-fold CV). RStudio 

software (RStudio, 2015) was used for construction of the prediction model.

3. Results

3.1. Registration Accuracy

After registration, warped CTs were visually checked and they were well aligned to the 

baseline CTs. Quantitatively, average percentage of negative J in GTV was 0% and was less 

than 1% in the cropped image for all the registrations. Negative J indicates folding/tearing 

vectors and thus smoothness of transformation is not guaranteed. Average TRE (LR, AP, SI, 

3D), ICE and DSC for each registration is shown in Supplemental Table 1 and Supplemental 

Figure 1. The BSpline SSD registration achieved the best TRE (4.30±1.09mm) and DSC 

(0.66±0.11). TRE in LR and AP were within 2 voxels and TRE in SI was within the slice 

thickness (4mm) for all registrations. BSpline SSD had slightly lower ICE (2.77±1.33 vs. 

3.04±1.95) than BSpline MI. Demons achieved the lowest ICE (1.48±0.49 mm) mainly due 

to the Gaussian regularization of DVF that was applied in each iteration to avoid negative 

Jacobian. This led to an over-smoothed DVF that could not accurately capture the shrinkage/

expansion in tumor and showed poor performance in detecting the corresponding anatomical 

landmarks and hence larger TRE.

3.2. Tumor growth/shrinkage measured using Jacobian map

An Example Responder case—Figure 3 shows a responder tumor with its DVF and 

Jacobian map. Esophageal wall thinning/shrinkage was visible in the follow-up image (white 

arrows). Tumor shrinkage was illustrated by DVF overlaid on the baseline image that shows 

vectors are converging from right to left in axial view and from the boundary toward the 

center of GTV (red contour) in sagittal view. Converging vectors generated a sink point in 

the middle of GTV where Jacobians were much smaller than 1 (dark blue) indicating large 

shrinkages. Quantitatively, majority of voxels (97.48%) were shrinking with average 

Jacobian of 0.66±0.13, indicating overall a 34% shrinkage in the tumor volume.

An Example Non-responder case—Figure 4 shows a non-responder tumor with its 

DVF and Jacobian map. In the follow-up image, a large expansion appeared on the right 

distal side of esophageal wall (white arrows). DVF overlaid on the baseline image illustrates 

that vectors are diverging toward the right distal side of GTV (red contour) where Jacobians 

were much larger than 1 (dark red), indicating large expansions. In this case, majority of 

voxels (97.24%) were expanding with Jacobian greater than 1. The mean Jacobian was 

1.29±0.17, indicating overall a 29% expansion in the tumor volume.

3.3. Univariate analysis of PET/CT and Jacobian Features for Pathologic Tumor Response 
Prediction

Table 1 lists the p-value, AUC and correlation to responders for all significant features 

(p<0.05 after Bonferroni correction) in univariate analysis. The Minimum Jacobian and 

Median Jacobian inside the tumor were the only two significant features with high AUCs of 

0.98 and 0.95 respectively. Figure 5 shows that both features can differentiate responders 

from non-responders very well. None PET/CT features was significant after Bonferroni 
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correction. The average Median Jacobian for responders was 0.80±0.10 indicating 20% 

median shrinkage in tumor volume. In contrast, the average Median Jacobian for non-

responders was 1.05±0.15 indicating 5% median expansion in tumor volume. Both features 

had negative correlation to responders, suggesting that responder tumors tended to have 

lower Jacobians, i.e. greater volumetric shrinkage. The Median Jacobian and Minimum 

Jacobian features were independent (r=0.51).

3.4. Multi-variate analysis of PET/CT and Jacobian Features for Pathologic Tumor 
Response Prediction

Using Jacobian features only, the SVM-LASSO model achieved the highest accuracy when 

two features -Median and Minimum Jacobian were selected into the SVM classifier (Table 

2). Median and Minimum Jacobian were selected as the first feature 6 and 94 times, 

respectively. They were selected as the second feature 94 and 6 times, respectively. 

Therefore, the two features were always selected into the best SVM classifier. The best 

single-feature model achieved 78±0.08% accuracy (0.77±0.08 AUC). When adding the 

second feature in the model, the prediction accuracy was improved to 94.0±0.03% 

(0.94±0.03 AUC). However, the performance was worsened when adding more than two 

features. Using PET/CT features only, the model achieved its highest accuracy with three 

features. Mean of Inertia in follow-up PET and standard deviation (SD) of Inertia in baseline 

CT were selected as the first two features (Accuracy 51.5±0.06%). When the third feature – 

SD of Short Run High Gray Level (SD SRHG) in follow-up PET was added, the accuracy 

increased to 82.0±0.05%. Lastly using both PET/CT and Jacobian features, the best model 

was the same as that using Jacobian features only. The same two features (Median and 

Minimum Jacobian) were selected into the best model and it achieved the same accuracy. 

Mean of Short Run Emphasis and Mean of Inertia in follow-up PET were selected as the 

third and fourth feature but they did not improve the accuracy. This indicated that PET/CT 

features were not significant against Jacobian features in predicting pathologic tumor 

response.

Median Jacobian measured the median tumor shrinkage/expansion. It was more robust than 

mean Jacobian since it was not affected by outlier Jacobians from inaccurate registration. 

Minimum Jacobian measured the greatest shrinkage within the tumor. The smaller the 

Median or Minimum Jacobian, the greater was the volumetric shrinkage. Figure 6 shows a 

scatter plot of the Median and Minimum Jacobian and the classification line by the SVM-

LASSO model that clearly separates responders from non-responders. In general, responders 

had lower Median and Minimum Jacobians, i.e., larger tumor shrinkage, compared to non-

responders. Clearly when combining the two features in the classifier, the prediction 

accuracy was improved over that of each feature.

4. Discussion

4.1. Comparison with studies using conventional response measurements in CT

Table 3 summarizes a few studies that used global changes in tumor volume or diameter 

measured in CT for the prediction of pathologic tumor response in esophageal cancer. 

Although the reported changes and accuracies were not consistent, van Heijl et al. (van Heijl 
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et al., 2011), Jones et al. (Jones et al., 1999) and Griffith et al. (Griffith et al., 1999) 

concluded that neither change in tumor volume nor diameter was associated with pathologic 

tumor response. However, Beer et al. (Beer et al., 2006) reported that change in tumor 

volume was associated with pathological tumor response (p=0.04) while change in diameter 

was not (p=0.37).

Due to differences in therapy, tumor histology, time of follow-up CT, and definition of 

response, it was impossible to fairly compare the proposed Jacobian method to other studies. 

Nevertheless, Jacobian method achieved a very high accuracy of AUC 0.94 mainly due to 

the following reasons: 1) In this study, both pathologic complete response and microscopic 

residual disease were considered as responders because they are associated with similar rates 

of survival (Mandard et al., 1994; Koshy et al., 2011) and this classification led to a balanced 

dataset. Van Heijl (van Heijl et al., 2011) used the same classification while all other studies 

considered only pathologic complete response as responders, which was more challenge to 

predict particularly in an imbalanced dataset (much fewer responders than non-responders). 

2) it measured local tumor volumetric change rather than global tumor volume change 

(Meyer et al., 2009). 3) it only required baseline tumor contour without the need of post-

treatment tumor segmentation, which is associated with higher uncertainty. 4) it used a 

multivariate machine learning model (SVM-LASSO) that selected two important features 

from 664 features. Other studies used only one feature – change in tumor volume or 

diameter. 5) thinner CT slice (4mm) was used while thicker CT slice was used in some of 

the other studies – Griffith (Griffith et al., 1999) (8mm) and Jones (Jones et al., 1999) 

(10mm), which led to inaccuracy in the measurement of tumor volume. In contrast to other 

studies that reported tumor shrinkage, van Heijl reported tumor expansion in both 

responders and non-responders (van Heijl et al., 2011), This was likely due to inflammatory 

response to radiation in Mid-treatment (14 d) of CRT (van Heijl et al., 2011).

In this study, Spearman correlation (ρ) and percentage of difference between volume change 

calculated by BSpline SSD Jacobian method and manual segmentation was 0.63 and 24%, 

respectively. Supplemental Table 1 shows very similar results for BSpline MI and Demons 

registrations. The main reason for this large difference was that the post-treatment manual 

contour was drawn using both PET and CT images where metabolic tumor volume change 

was also taken into account. However, Jacobian map was calculated only on CT where 

anatomic change was smaller. Therefore, computed tumor change using Jacobian map was 

much smaller than conventional volume change measured by manual contouring.

4.2. Comparison with studies using Jacobian integral

Sarkar (Sarkar et al., 2008) (1 synthetic, 3 clinical cases) used Jacobian integral to measure 

net volume change of lesions in CT liver cancer in a small number of cases and compared it 

to manual segmentation where average volume difference was as small as 2.86cm3. Fuentes 

(Fuentes et al., 2015) (15 cases) reported 2.8% difference in cerebral shrinkage and 1% 

difference in ventricle increase between Jacobian integral and automatic segmentation. They 

evaluated the brain tumor change in MRI images using a diffeomorphic image registration 

where the differentiation of viable tumor and the surrounding normal tissue are thought to be 

more trivial compared to esophageal tumor in CT images.
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In studies by Sarkar (Sarkar et al., 2008) and Fuentes (Fuentes et al., 2015), Jacobian 

integral was the only feature calculated. The main novelty of our work was that we 

quantified the Jacobian map with quantitative radiomic features and we integrated these 

features in a multi-variate model (SVM-LASSO) to evaluate their association with 

pathologic response. As a result, combination of Median and Minimum Jacobian features 

showed potential for an accurate response evaluator.

4.3. Influence of registration parameters on Jacobian map

The accuracy of Jacobian map depends on the accuracy of the image registration. We 

experimentally chose an optimal set of registration parameters that reduced the percentage of 

negative Jacobians and ICE while TRE was within 2 voxel resolution. The weight (α) of the 

regularization term and the BSpline grid size were the most sensitive parameters. Larger α 
over-regularized or over-smoothed the DVF so that sink/source was lost in the Jacobian map. 

On the other hand, smaller α led to a distorted alignment. Smaller BSpline grid size 

increased the accuracy of alignment but also captured noises and produced undesired 

irregular deformations such as folding, tearing and vorticity. We experimentally chose α = 

0.1 and multi-resolution BSpline grid size of 128, 64, 32 to 16 mm, which worked for small 

to relatively large deformations.

However, the optimal set of parameters failed for 5 cases with large non-correspondence 

between baseline and follow-up CT scans. Figure 7 shows one non-responder case whose 

baseline CT contained a large air cavity inside the GTV (Fig. 7a), which was filled in the 

follow-up CT (Fig. 7b). Using the default registration parameters, we obtained a shrinking 

Jacobian map (Fig. 7e) as consequence of DVF converging toward the center of tumor (Fig. 

7c). The Median and Minimum Jacobian were 0.79 and 0.23 respectively that led to 

misclassification of this case as a responder. Because of the severe violation of the 

correspondence assumption for a deformable image registration algorithm, the registration 

was not accurate. In this case, the soft tissues is attempting to fill the air cavity and thus the 

DVF is pointing towards a sink caused by the air cavity, producing a Jacobian map that 

reflecting untruthful tumor shrinkage. To resolve this issue, we first masked the air cavity 

(with a threshold of −150HU) out from both baseline and follow-up CTs, so that non-

corresponding points were excluded from the registration. This removes the untruthful sink 

in the DVF (Fig. 7d). Then, we experimentally set α = 0.5 to make the DVF smoother and 

set the finest BSpline grid size = 22mm to take more global deformations into account. 

These resulted in a reasonably smooth DVF (Fig. 7d) and overall no-change Jacobian map 

with Median and Minimum Jacobian of 0.98 and 0.63 respectively (Fig. 7f) that led to 

correct classification of this case as a non-responder.

Anisotropic CT voxel size may affect the registration result due to lower resolution in SI 

component (Ashburner and Friston, 2004). However, its impact on the estimation of the 

DVF and the Jacobian map was minimal if the registration is accurate and performed with a 

set of optimized parameters.

Finally, no texture features were significant in Jacobian map for predicting the tumor 

pathological response, mainly because Jacobian map computed volumetric change in CT 

images and change in CT texture feature has been proved to be less predictive in esophageal 
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cancer (Westerterp et al., 2005; van Rossum et al., 2016; Tan et al., 2013; Zhang et al., 
2014). Instead, PET texture features have shown better prediction value (Tan et al., 2013). 

Moreover, Median and Minimum Jacobian represented local tumor volume change and 

shrinkage which expected to be more correlated to tumor response than the texture features.

4.4. Robustness Analysis

As an external validation of SVM-LASSO model and Jacobian features, we dilated and 

eroded the baseline tumor GTV by 2mm respectively to mimic the uncertainty in tumor 

contour delineation. We then computed the two features (Median and Minimum Jacobian) 

from the dilated/eroded Jacobian map and fed them to the SVM-LASSO model in 3.4 for 

response prediction. For agreement in feature values, we examined Bland-Altman plots 

(Bland and Altman, 2007) (Supplemental Figure 2) and calculated the intra-class correlation 

coefficient (ICC) (Parmar et al., 2014) among the original and dilated/eroded GTVs 

(Supplemental Table 3). The Bland-Altman plots showed that the mean differences (bias) 

were close to zero and the 95% limits of agreement were small. The bias of Median Jacobian 

was almost zero for both dilated and eroded GTVs. The bias of Minimum Jacobian was 

slightly lower than zero suggesting greater maximum tumor shrinkage for dilated GTV, but 

slightly higher than zero suggesting smaller maximum tumor shrinkage for eroded GTV. The 

ICCs were 0.98 for Median and 0.95 for Minimum Jacobian, suggesting high agreement. 

The prediction accuracy increased by 1% for dilated GTV and decreased by 4% for eroded 

GTV (Supplemental Table 4). In summary, the prediction accuracy was similar and the 

proposed method showed consistent results across dilated/eroded contours.

4.5. Limitations

One limitation of Jacobian map was that it can’t affirm that the measured shrinkage/

expansion was indeed due to tumor volume shrinkage/expansion, i.e., tumor response to 

therapy. The measured shrinkage/expansion could have been the results of daily anatomy 

variations (e.g., esophageal lumen filling) or of radiation-induced normal tissue 

inflammation. This limitation was generally seen in tumor response measurements based on 

anatomic imaging.

Another limitation was that this was a retrospective analysis of a small patient cohort (n=20). 

Although we used 10-fold cross-validations to avoid potential overfitting, the predictive 

accuracy and stability of the model should be validated in a larger and independent patient 

cohort.

4.6. Future Work

We observed much larger metabolic tumor volume change in PET than the measured 

volumetric change in CT. Furthermore, the metabolic tumor volume change is more likely 

due to tumor response to therapy than due to daily anatomy variations. Therefore, we plan to 

calculate Jacobian map from the blended PET/CT images to quantify the metabolic tumor 

volume change.
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5. Conclusion

Novel features extracted from the Jacobian map quantified local tumor morphological 

changes using only baseline tumor contour without post-treatment tumor segmentation. The 

SVM-LASSO model using Median and Minimum Jacobian features achieved high accuracy 

in predicting pathologic tumor response. Jacobian map showed great potential for 

longitudinal evaluation of tumor response.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Main framework for Jacobian feature extraction.
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Figure 2. 
Conceptual illustration of Jacobian map. Red contour simulates GTV in the baseline image. 

Top row: smaller follow-up sphere illustrates shrinkage of a tumor. The DVF converge 

towards the tumor center (sink) resulting in a Jacobian map with shrinkage (blue). Bottom 

row: larger follow-up sphere simulates expansion of a tumor resulting in a diverging DVF 

(source) and a Jacobian map with expansion (red).
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Figure 3. 
Responder case: Baseline, follow-up, DVF and Jacobian images in axial, sagittal and coronal 

views. Red contour is GTV and white arrows indicate shrinking esophageal wall.
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Figure 4. 
Non-Responder case: Baseline, follow-up, DVF and Jacobian images in axial, sagittal and 

coronal views. Red contour is GTV and white arrows indicate expanding esophageal wall.
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Figure 5. 
Box plots of the Median Jacobian and Minimum Jacobian features inside the tumor. × 

indicates average value.
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Figure 6. 
Scatter plot of the Median and Minimum Jacobian and the classification line by the SVM-

LASSO model.
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Figure 7. 
(a) baseline CT containing air cavity in GTV (red contour). (b) follow-up CT filled with soft 

tissue. (c) DVF using default registration parameters. (d) DVF using masked optimized 

registration. (e) Jacobian map using default registration parameters. (f) Jacobian map using 

masked optimized registration.
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Table 1

The P-value, AUC and correlation to responders for all significant features in univariate analysis.

Features P-value AUC Correlation to responders

Minimum Jacobian 0.009 0.98 −0.79

Median Jacobian 0.046 0.95 −0.72
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