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Abstract

Purpose—The increasing prevalence of obesity/metabolic syndrome (O/MS) and diabetes 

mellitus (DM) remains a global health concern. Clinically relevant and practical translational 

models mimicking human characteristics of these conditions are lacking. This study aimed to 

demonstrate proof of concept of the induction of stable obesity/metabolic syndrome (O/MS) and 

type-2 diabetes mellitus (DM) in a Göttingen minipig model and validate both of these disease-

adjusted Göttingen mini-pig models as impaired healing models for the testing of dental implants.
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Materials and Methods—9 minipigs were split into 3 groups: control (normal diet), obese 

(cafeteria diet) and diabetic (cafeteria diet + Streptozotocin), and followed by placement of dental 

implants. Inflammatory markers including TNF-α, C-reactive protein, and cortisol were recorded 

for each study group. Removal torque and histomorphometric analysis (bone to implant contact 

(BIC) and bone area fraction occupancy (BAFO)) were performed.

Results—O/MS pigs showed, on average, a 2-fold increase in plasma C-reactive protein (p<0.05) 

and cortisol (p<0.09) concentrations compared to controls; DM pigs showed, on average, a 40-fold 

increase in plasma TNF-α (p<0.05) and a 2-fold increase in cortisol (p<0.05) concentrations 

compared to controls. The impact of O/MS and DM on implants was determined. Torque to 

interface failure was highest in control (200 Ncm), and significantly lower in O/MS (90 Ncm) and 

DM (60 Ncm) groups (p<0.01). Bone formation around implants was significantly greater in 

control than O/MS and DM (p<0.02).

Conclusions—Both O/MS and DM minipigs express human-like disease phenotype and both 

presented bone healing impairment around dental implants. No significant difference between 

type-2 diabetes and obesity/metabolic syndrome on bone formation around implants provides 

evidence that further investigation of the impact of obesity/metabolic syndrome is warranted.

1. Introduction

Nearly 40 and 10% of the global population suffers from obesity and diabetes, respectively, 

with a projected 20–30% increase in diabetes prevalence by 2050 1–3. Among the many 

consequences of these diseases, poor wound healing remains a primary concern to oral 

health practitioners. These patients carry an increased risk of alveolar bone loss 4 and 

periodontal diseases 5. While it is recognized that diabetes negatively impacts implant 

treatment, less is known about the impact of obesity and metabolic syndrome 6. Current 

understanding of bone pathology in obesity/metabolic syndrome (O/MS) and its progression 

to type 2 diabetes mellitus (DM) is limited to studies suggesting that adipose-derived pro-

inflammatory cytokines may be responsible for the degeneration of oral health in these 

populations 7. Thus, studies investigating the metabolic effects on dentition are warranted, 

given the paucity of clinically relevant and translational O/MS and DM animal models for 

studying disease effect on dental implants.

Swine are increasingly the preferred alternative to dogs or non-human primates for 

nonrodent biomedical and food research 8, 9. Similarities to humans permit a close 

replication of complex pathophysiology, with recent developments in obese and diabetic 

swine models demonstrating similar complications to their human counterparts, including 

hyperglycemia, hyperlipidemia, hypertension, insulin resistance, a pro-inflammatory state 
10–12, delayed wound healing 13, and reduced bone mineralization 14. The reproducibility of 

these complications, which are known to challenge the long-term success of dental implants 

in humans, makes the obese/diabetic pig particularly useful for preclinical studies on dental 

surgery and periodontitis 15. Swine models also allow for the assessment of implants used in 

humans, and thereby yield relevant translational data. However, adult obese swine are 

difficult to handle due to their size (reaching 300 – 400 kg body weight) and do not express 

an extreme obese phenotype, thereby citing a need for a more manageable model.
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Göttingen minipig models have been successfully used in oral surgery translational research. 

Metabolic syndrome Göttingen minipig models have already been developed through a high 

energy feeding diet for short periods of up to 3 months 16, 17. Minipigs can achieve body 

mass index levels characteristic of O/MS while maintaining a far more manageable adult 

body weight that rarely exceeds 80–90 kg. A type 2 diabetes-like state has also been induced 

in obese Göttingen minipigs by low dosage administration of streptozotocin 17, 18, 

demonstrating the potential to study the progression of obesity to diabetes, closely 

resembling human metabolic compromise. To date, studies have not reported stable 

pathological changes to the Göttingen minipig in long-term models 16–18. In this pilot study 

we aimed to: 1) demonstrate proof of concept of the induction of stable, obesity/metabolic 

syndrome (O/MS) and type-2 diabetes mellitus (DM) in a Göttingen minipig model and 2) 

validate both of these disease-adjusted Göttingen mini-pig models as impaired healing 

models for the testing of dental implant osseointegration.

2. Materials and Methods

2.1 Establishment/Maintenance of obese/metabolic syndrome and diabetic minipig models

Animal selection, surgery protocol and study management were approved by the Animal 

Care and Use Committee and followed ARRIVE guidelines 19. A total of 9 female 

Göttingen minipigs (Ellegaard, Dalmose, Denmark) 18 months of age were used for this 

study. Minipigs were split into 3 groups: (1) control (normal diet) (n=3), (2) obese (cafeteria 

diet) (n=3) and (3) diabetic (cafeteria diet + Streptozotocin) (n=3). Normal diet was 

characterized as being low in fat Standard Diet (SDS Standard Diet Service, UK# 801586), 

while a diet high in saturated and hydrogenated fats/cholesterol/sugar was defined as 

“cafeteria” diet by RDS Cafeteria Diet (Research Diet Services NL) (obese/metabolic 

syndrome and diabetic groups). The total weight of raw material between the two diets were 

equivalent20 (Table 1). Animals were fed twice a day. Diet progression was split into 3 

phases: conversion, growth, and maintenance phases. To induce O/MS, minipigs (n = 6; 

O/MS and DM groups) were gradually introduced to the cafeteria diet over a period of 4 

weeks (conversion phase, 25% decrease in normal diet on a weekly basis and restricted 

feeding to two 500g meals per day), after which time they remained at 100% cafeteria diet 

for 8 months and were allowed to feed ad libitum (growth phase). Once O/MS and DM 

animals approximately doubled their original weight, the cafeteria diet was then halved and 

combined with control diet (maintenance phase). Control animals were fed the control diet. 

Minipigs assigned to the DM group (n = 3) were induced by slow injection of filter-sterilized 

streptozotocin solution (STZ, Enzo Life Sciences, Raamsdonksveer, the Netherlands) (20 

mg/kg in 0.1 mol/L Na-citrate, pH 4.5) on two consecutive days after overnight fasting18. 

STZ-injected swine were given 25g glucose to offset insulin release from dying β-cells, 

thereby preventing hypoglycemia.

The following criteria were used to characterize and validate the induction of O/MS and DM 

in this study: animal weight, blood analysis including glucose, ketones, tumor necrosis 

factor-alpha (TNF-α), C-reactive protein (CRP), plasma cortisol, plasma insulin levels, and 

pancreatic histology. Animal weight was measured at animal reception, 8 weeks, 14 weeks 

and subsequently every 2 weeks for the remainder of the study. Additionally, at time of 
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euthanasia, internal organs were independently weighed (wet weight) including the heart 

(right and left ventricles independently), liver, spleen, and kidneys. The pathophysiology 

associated with metabolic syndrome in humans and swine models are presented in Table 2. 
21–36

Fasting plasma glucose and ketone levels were monitored weekly using Glucomen LX (A. 

Menarini Diagnostics, Germany). Plasma TNF-α, c-reactive protein (CRP), insulin and 

cortisol levels were tested at the time of implantation and termination (late maintenance 

phase weeks 43 and 47, respectively) through commercially available kits: TNF-α 
(Invitrogen Elisa Kit for Swine TNF-α Assay, Invitrogen Corporation, USA), CRP (Porcine 

C-reactive Protein Assay, Tridelta Development Ltd, Ireland), cortisol (Radioimmunoassay 

Coat-a-count cortisol, Siemens Healthcare Diagnostics Inc., CA, USA), and insulin (Porcine 

Insulin ELISA kit, Mercodia AB, Uppsala, Sweden).

To determine the amount of insulin-producing cells, tissues were immersion-fixed in 4% 

buffered formaldehyde processed for paraffin embedding. Immunohistochemistry was 

performed using a polyclonal guinea-pig anti-swine insulin antibody (DAKO, Glostrup, 

Denmark), with diaminobenzidine/H2O2 as a chromogen to visualize the horseradish 

peroxidase-labeled secondary (rabbit anti-guinea-pig) antibody. The insulin stain was 

quantified by determining the total surface of insulin-producing cells as a percentage of the 

total area in that section.

2.2 Dental Implant Surgical Placement and Implant Analyses

Surgeries were performed following previously described methodology37. At the initiation 

of the study, and prior to O/MS and DM induction, mandibular premolars and first molars 

(P1, P2, P3 and M1) were extracted. Healing was allowed for 3 months prior to metabolic 

disease induction. After induction and stabilization of O/MS and DM conditions, custom 

designed 4.2 × 6 mm implants were placed bilaterally (2 per side) and allowed a 4-week 

implant healing period prior to euthanasia.

After euthanasia, the right mandibular implants were subjected to removal torque in 

counterclockwise rotation to the implant axis at a rate of 0.1 degree/second and maximum 

torque was recorded as previously described 38. The left mandibular implants underwent 

non-decalcified histologic processing as previously described 39. Photographs were taken 

from all samples at 200X. Each histologic section was assessed for bone-to-implant contact 

(BIC) and bone area fraction occupancy (BAFO) within the implant healing chambers as 

previously described 40.

2.3 Statistical Analysis

Results are expressed as means ± SD and the criterion of statistical significance was set at p 

< 0.05. All of the data (except biomechanical and histomorphometric) were subjected to the 

analysis of variance procedure (ANOVA) followed by the student’s t-test of Genstat 5 

(Payne RW, Lane PW, Ainsley AE: Genstat 5 Reference Manual Oxford, UK: Oxford 

University Press; 1987) for determination of differences between the three pig groups. A 

linear mixed model was utilized to evaluate biomechanical and histomorphometric data.
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3. Results

Animal and Organ Weights

At initiation of the study, Göttingen minipigs presented with an average weight of 28kg. 

Upon initiation of respective diets the control animals continued to grow for about 14 weeks 

when weight plateaued at ~45 kg. Weights of both groups of pigs receiving the cafeteria diet 

(DM and O/MS) increased over time to ~73 and ~83kg at termination, respectively (Figure 

1A). Macroscopically, necropsy revealed excessive fatty deposits surrounding the internal 

organs, with particularly thick deposits around the heart and subcutaneous tissue. Organ wet 

weights showed that O/MS group with heavier left ventricle and right ventricle relative to 

control and DM groups (Figure 1B). The DM group presented higher lung, liver, and kidney 

weights compared to O/MS and control groups (Figures 1B and 1C). Spleen weights 

decreased from control to O/MS to DM (Figure 1C).

Blood Assays

Following STZ administration, the DM group presented average blood glucose levels 5-

times greater (~12 mmol/L) than the O/MS and control groups (average of 3 mmol/L). These 

values remained relatively constant throughout the experiment (Figure 2A). Ketone levels 

similarly demonstrated an increase in the DM group after STZ administration at an average 

of 0.5 mmol/L, with fluctuation, while the control and O/MS groups presented close to 

undetectable levels (Figure 2B). TNF-α plasma levels were significantly higher in the DM 

group (p<0.05) compared to both control and O/MS groups (Figure 2C). Plasma CRP levels 

were greatest in the O/MS group, compared to controls, values that were significant (p<0.05) 

at the time of animal sacrifice (O/MS: 3.1±0.6 mg/L, control: 1.0±0.2 mg/L) (Figure 2D). 

The average plasma cortisol levels at implantation were not statistically different between 

groups. However the levels were significantly (p<0.05) increased for the DM group 

compared to the control group at euthanasia. The O/MS group showed a tendency (p<0.09) 

towards increased cortisol levels compared to controls (Figure 2E). Plasma insulin levels 

were slightly greater in the O/MS group, but were not significantly different among groups 

at implantation or termination (Figure 2F).

Pancreatic Insulin Stain

Quantitative immunohistochemical staining demonstrated that O/MS pigs had a significantly 

higher levels of insulin staining compared to control and DM animals (p<0.02). Insulin 

staining was not significantly different between the DM and control groups (p>0.15) 

(Figures 2G–J).

Biomechanical Testing and Histomorphometric Analysis

The torque to interfacial failure was significantly (p<0.001) decreased in the O/MS group 

and the DM group compared to controls (Figure 3A). Qualitative histologic examination 

demonstrated increased amounts of bone growth around implants placed in control group 

animals compared to metabolically compromised groups (Figures 4A–C). No bone 

morphologic difference between groups was evident. Histomorphometric analysis showed 

that the control group exhibited significantly higher values of BIC (bone-to-implant contact) 
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compared to O/MS (p<0.01) and DM (P<0.001) (Figure 3B). Similarly, the control group 

exhibited significantly higher values (p<0.02) of BAFO (bone area fraction occupancy) 

measurements compared to metabolic disease groups (Figure 3C). There was no significant 

difference between the O/MS and DM groups in both BIC and BAFO measurements.

4. Discussion

Compromised healing around endosteal implants due to metabolic conditions such as O/MS 

and DM are prominent health concerns that remain unaddressed 41. The present 

investigation aimed to demonstrate proof of concept of the induction of stable, obesity/

metabolic syndrome (O/MS) and type-2 diabetes mellitus (DM) in a Göttingen minipig 

model and determine whether obesity induced metabolic syndrome had the same impact on 

the initial stability of dental implants as type-2 diabetes and to determine whether 

mechanistically it was caused by reduced bone formation around the implant.

While bone healing impairment around implants was observed upon induction of a stable 

diabetic state, we also observed that in the obese state impaired bone healing reached 

comparable impairment levels to those found in uncontrolled diabetic animals. The O/MS 

minipigs had high weight gain, high levels of systemic inflammation as evidenced by 

elevated CRP, and high levels of insulin production in the pancreas. Weight gain through a 

diet high in saturated and hydrogenated fats and sugars resulted in disease induction 

phenotypically similar to human in these animals. Animal weight increase and stabilization 

without reversing the disease process strongly suggests that Göttingen minipigs manifest a 

similar disease process to humans 42, 43. The DM group followed the natural progression of 

obesity with a mild state of diabetes (detectable glucose metabolism deficiency) successfully 

achieved with a mild STZ regimen that has been reported to have no metabolic effect on 

Göttingen minipigs. Yet, when following diet induced O/MS, such STZ regimen effectively 

induced a disease phenotype similar to type-2 diabetes mellitus, 17, 44 indicating that O/MS 

Göttingen minipigs are predisposed to type-2 diabetes and the modest additional damage to 

beta-cells by low dose STZ is sufficient to induce a type 2 DM phenotype. Importantly, 

following induction of DM, animals reached diagnostic levels of hyperglycemia.

Previous studies 41, 45 have used swine as a systemically compromised and clinically 

relevant model for dental implant testing. However, these differed from the current 

investigation as they utilized the substantially larger domestic pig model using STZ to 

induce a diabetic state without prior O/MS induction resulting in a Type I diabetes 

phenotype (no obesity induction was performed prior STZ diabetes induction).

In the context of insulin-resistance in both O/MS and DM 46, elevated cortisol levels are 

expected given the known insulin antagonistic effects of cortisol 47. Conversely, and in 

agreement with previous reports 48, TNF-α levels were not significantly elevated in the 

obese phenotype but were elevated in the DM group, suggesting that further inflammatory 

state evolution is induced by the diabetic state, contributing to clinical sequelae prevalent in 

this metabolic disease. A previous study has shown that inflammatory factors are not as 

affected in obese mice relative to the values observed in the present investigation.49
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For both metabolic conditions, initial bone formation around implants was significantly less 

pronounced compared to controls and affected the biomechanical stability of implants. Such 

histomorphometric and biomechanical results in diabetic animals have been explained by 

previous investigations and include reduced osteoblast expression, reduced osteoid 

production, impaired bone apposition to implants,5, 50–52 and decreased expression of bone 

matrix proteins 53, 54. While no reports are currently available regarding impaired 

osseointegration of implants in O/MS subjects, recent work in humans has demonstrated 

reduced bone mineral density in adolescents.

5. Conclusion

Obesity/metabolic syndrome and diabetes have known associations with higher dental 

implant faiure and are regarded as significant risk-factors for implant therapy 55. In this 

study, we present a highly translational large animal model of O/MS where a pro-

inflammatory state is established in the early phases of obesity and persists upon induction 

of diabetes. Moreover, we showed the equally compromised bone healing around dental 

implants in O/MS and uncontrolled DM pigs compared to controls. Given the increasing 

prevalence of these progressive metabolic conditions, the animal models described may be a 

useful in future translational development of preventive/therapeutic approaches that 

minimize oral rehabilitation morbidity related to O/MS and DM.
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Figure 1. Progressive weight gain in Göttingen minipigs and critical organ wet weights
A) Gross weight of control, O/MS, and DM pigs throughout the experiment demonstrating 

rapid weight gain for animals receiving the cafeteria diet (O/MS and DM) in the first phase, 

followed by weight stabilization in DM group and slower increase in O/MS group. STZ 

indicates the time of Streptozotocin administration. Time represents weeks after dental 

extraction. B) Average Heart (left and right ventricles weighed separately) and lung weights 

at 47 weeks (sacrifice) demonstrating higher average weights for critically affected organs in 

O/MS and DM animals. C) Average weights of liver, spleen, and left and right kidneys of 

each group at time of sacrifice.
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Figure 2. Blood marker profiles demonstrate effective induction of metabolic syndrome and a 
DM phenotype
A) Blood glucose levels following STZ administration. Glucose levels are particularly 

elevated in DM animals while O/MS animal levels are comparable to control. B) Blood 

ketone levels are elevated in the DM group. Obese and control groups remain at basal levels. 

C–F) Average plasma levels of Tumor necrosis factor-α (TNF-α), Creactive protein (CRP), 

Cortisol and Insulin taken at the time of implantation and termination. Overall pro-

inflammatory status is evident in the O/MS and DM groups. G–J) Immunohistochemical 

staining and quantification of insulin on pancreatic tissue sections demonstrate significantly 

increased staining in (H) O/MS pigs compared to (G) controls and (I) DM, however no (J) 

statistical differences was detected between controls and DM. The number of asterisks 

denotes statistically homogeneous groups.
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Figure 3. Biomechanical and histomorphometric measurements
A) Maximum torque-out values for implants at time of sacrifice. Lower torque-out vales 

demonstrate that the osseointegration of implants in O/MS and DM animals is significantly 

less than in the control group. There are no significant differences between O/MS and DM 

groups. B) Histomorphometric analysis of tissue/implant sections. BAFO corresponds to the 

new bone area per total area within a defined region of interest (ROI), here defined as the 

total area from the defect border to the implant surface. BIC corresponds to the total bone to 

implant contact and is expressed as a percentage of the bone physically attached to the 

implant surface as compared to the total implant surface. Histological evidence supports the 

biomechanical measurements and demonstrates the significantly less new bone formation 

around dental implants is O/MS and DM groups as compared to the control group. The 

number of asterisks denotes statistically homogeneous groups.
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Figure 4. Histological sections demonstrate bone formation surrounding implants
Hematoxylin and eosin stained sections of mandibular implant sites of A) Control, B) O/MS 

and C) DM pig groups demonstrating considerable amounts of newly formed bone 

encompassing dental implants seen as a darker pink compared to existing bone seen in 

lighter pink.
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Table 1

Basic formulation of the control and cafeteria diets

Raw Material Control diet Cafeteria diet

Soya beans, extracted (cf<50g/kg) 164.5

Potato protein (ash<10g/kg) 50 50

Wheat gluten meal 8.7 106

Barley 396.2

Wheat 500

Porcine fat (lard) 100

Hydrogenated soya bean oil 100

Hydrogenated coconut oil 50

Soy bean oil 17.3

Fructose 200

Sucrose 200

Limestone 13 9.6

Mono calcium phosphate 6.9 10.8

NaCl 4 4.7

Mineral/vitamin.Premix 2 2

L-lysine HCl 1.9 2.4

Cholesterol (extra) 10

Total (g/kg) 1000 1010

Gross energy (GE; MJ/kg) 17.3 23.5
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