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Background-—In-hospital cardiac arrest is a major burden to public health, which affects patient safety. Although traditional track-
and-trigger systems are used to predict cardiac arrest early, they have limitations, with low sensitivity and high false-alarm rates.
We propose a deep learning–based early warning system that shows higher performance than the existing track-and-trigger
systems.

Methods and Results-—This retrospective cohort study reviewed patients who were admitted to 2 hospitals from June 2010 to July
2017. A total of 52 131 patients were included. Specifically, a recurrent neural network was trained using data from June 2010 to
January 2017. The result was tested using the data from February to July 2017. The primary outcome was cardiac arrest, and the
secondary outcome was death without attempted resuscitation. As comparative measures, we used the area under the receiver
operating characteristic curve (AUROC), the area under the precision–recall curve (AUPRC), and the net reclassification index.
Furthermore, we evaluated sensitivity while varying the number of alarms. The deep learning–based early warning system (AUROC:
0.850; AUPRC: 0.044) significantly outperformed a modified early warning score (AUROC: 0.603; AUPRC: 0.003), a random forest
algorithm (AUROC: 0.780; AUPRC: 0.014), and logistic regression (AUROC: 0.613; AUPRC: 0.007). Furthermore, the deep learning–
based early warning system reduced the number of alarms by 82.2%, 13.5%, and 42.1% compared with the modified early warning
system, random forest, and logistic regression, respectively, at the same sensitivity.

Conclusions-—An algorithm based on deep learning had high sensitivity and a low false-alarm rate for detection of patients with
cardiac arrest in the multicenter study. ( J Am Heart Assoc. 2018;7:e008678. DOI: 10.1161/JAHA.118.008678.)
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I n-hospital cardiac arrest is a major burden to public health,
which affects patient safety.1–3 More than a half of cardiac

arrests result from respiratory failure or hypovolemic shock,
and 80% of patients with cardiac arrest show signs of
deterioration in the 8 hours before cardiac arrest.4–9 However,
209 000 in-hospital cardiac arrests occur in the United States
each year, and the survival discharge rate for patients with
cardiac arrest is <20% worldwide.10,11 Rapid response systems
(RRSs) have been introduced in many hospitals to detect
cardiac arrest using the track-and-trigger system (TTS).12,13

Two types of TTS are used in RRSs. For the single-parameter
TTS (SPTTS), cardiac arrest is predicted if any single vital sign
(eg, heart rate [HR], blood pressure) is out of the normal

range.14 The aggregated weighted TTS calculates a weighted
score for each vital sign and then finds patients with cardiac
arrest based on the sum of these scores.15 The modified early
warning score (MEWS) is one of the most widely used
approaches among all aggregated weighted TTSs (Table 1)16;
however, traditional TTSs includingMEWShave limitations, with
low sensitivity or high false-alarm rates.14,15,17 Sensitivity and
false-alarm rate interact: Increased sensitivity creates higher
false-alarm rates and vice versa.

Current RRSs suffer from low sensitivity or a high false-
alarm rate. An RRS was used for only 30% of patients before
unplanned intensive care unit admission and was not used for
22.8% of patients, even if they met the criteria.18,19
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Consequently, most previous studies focused on improving
sensitivity.20,21 Nevertheless, number of false alarms is also
an important criteria when evaluating TTSs. Whenever alarms
sound, medical staffs need to intervene and reverify the
alarms in real time for RRSs. False alarms waste the time of
medical staff and increase operating costs for RRSs; there-
fore, the false-alarm rate is a key factor in making the RRS
practical.

A practical TTS should satisfy 2 criteria simultaneously:
high sensitivity and low false-alarm rate. We developed a deep
learning–based early warning system (DEWS) that satisfies
both. Deep learning approaches have recently achieved state-
of-the-art performance in several domains such as computer
vision and speech.22–24 An advantage of deep learning is the
ability to learn features automatically from given data.25 Our
DEWS extracts the useful features from the vital signs (eg, HR
and blood pressure) and learns the relationship with the
cardiac arrest. To the best of our knowledge, this study is the
first to predict cardiac arrest using deep learning.

Methods
The data, analytic methods, and study materials will not be
made available to other researchers for purposes of repro-
ducing the results or replicating the procedure.

We performed a multicenter retrospective cohort study in 2
hospitals. The study population consisted of all patients
admitted to 2 hospitals over 91 months. The characteristics

of the 2 hospitals are different (hospital A is a cardiovascular
teaching hospital, and hospital B is a community general
hospital), as shown in Table 2. We excluded patients who
were admitted or discharged outside the study period and
patients who underwent cardiac arrest or death within
30 minutes after admission. The institutional review boards
of Sejong General Hospital and Mediplex Sejong Hospital
approved this study (2017-452, 2017-004) and granted
waivers of informed consent based on general impracticability
and minimal harm. Patient information was anonymized and
deidentified before the analysis.

The hospital A data were split by date into a derivation set
(June 2010–July 2016) and a validation set (August 2016–
January 2017). The derivation and validation sets were used to
develop the DEWS and to determine the parameters of the
DEWS, respectively. We evaluated the accuracy of the DEWS
using hospital A data (February 2017–July 2017), which were
not used for model derivation. Furthermore, we used hospital
B data (March 2017–July 2017) to verify that the DEWS was
applicable across centers.

The primary outcome was cardiac arrest, and the sec-
ondary outcome was death without attempted resuscitation.
For cardiac arrest, we used only the first cardiac arrest if
cardiac arrest occurred several times during a patient’s length
of stay. We reviewed electronic health records to identify the
exact time of each outcome.

We used only 4 vital signs as predictor variables: systolic
blood pressure, HR, respiratory rate, and body temperature
(BT). These vital signs are associated with adverse clinical
outcomes and are measured periodically and frequently.6,16,26

Furthermore, they are objective values that are barely
affected by medical staff measuring them.27 We defined the
input vector as the predictor variables observed at the same
time, and each input vector consisted of 4 vital signs: systolic
blood pressure, HR, respiratory rate, and BT. The vital signs of
the general ward patient were measured at least 3 times per
day manually by the medical staff. In contrast, the vital signs
of intensive care unit patients were measured every 10 min-
utes automatically by monitoring devices, and the medical
staff verified that measurements were correct. Because
human errors could exist in the electronic health records,
we excluded systolic blood pressure, HR, respiratory rate, and
BT values that were outside the ranges of 30 to 300 mm Hg,
10 to 300 beats/min, 3 to 60 breaths/min, and 30 to 45°C,
respectively.

The objective of this study was to predict whether an input
vector belonged within the prediction time window. The
prediction time window was defined as the interval from 0.5
to 24 hours before the outcomes.28,29 It is important to note
that the prediction unit was not the patient but the input
vector. For a patient with outcomes, if the input vector
belonged to the prediction window, it was labeled as event

Clinical Perspective

What Is New?

• We developed a deep learning–based early warning system
(DEWS).

• The DEWS found >50% of patients with in-hospital cardiac
arrest 14 hours before the event. This means that the
medical staff would have enough time to intervene.

• The DEWS had high sensitivity with a low false-alarm rate for
detection of patients with in-hospital cardiac arrest in the
multicenter study. Compared with a modified early warning
system, the DEWS achieved up to 24.3% higher sensitivity
and reduced alarms by 41.6%.

What Are the Clinical Implications?

• The rapid response team needs an accurate track-and-
trigger system to prevent in-hospital cardiac arrest.

• With the DEWS, the rapid response team can find patients
with cardiac arrest faster and more accurately than with the
current system.

• The DEWS is easy to apply in various hospital environments
because it uses only 4 vital signs.
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(eg, an alarm sounded); otherwise, it was labeled as a
nonevent. For a patient without outcomes, all input vectors
were labeled as nonevents. For example, when a patient was
hospitalized and vital signs were measured 8 times, the model
predicted an event or a nonevent 8 times.

When an alarm was set off in the clinical environment,
medical staff examined and observed the patient for a few
hours and ignored the alarm during the examination. To make
our experiments like the clinical environment, we regarded
the alarms in the window (1 hour) to 1 alarm. If a vital sign

data was missing, the most recent value was used. If no value
was available, the median value was used.

The DEWS used time series data as an input. Given the
input, the DEWS evaluated the risk score using all input
vectors measured during the 8 hours. For example, when
calculating the risk score of an input vector measured at 11
am, DEWS used all input vectors measured from 3 am to 11
am, as shown in Figure 1. The DEWS calculated the risk score,
which ranged from 0 (nonevent) to 100 (event), every time the
input vector was measured.

The DEWS consisted of 3 recurrent neural network layers
with long short-term memory unit which deal with the time-
series data well.30 The recurrent neural network is a neural
network with loops, allowing it to process sequential data such
as electronic health records. In Figure 2, a loop allows previous
information to influence the present task. This is similar to
referring to a patient’s past information when medical staff
checks a patient’s condition. The recurrent neural network,
however, has a problem called “long-term dependency.”25 As
the length of sequential data increases, the information that is
important early is hard to reach until the end. The long short-
term memory unit is designed to avoid long-term dependency
via gates that can keep the information in early. The output of
the k-th long short-term memory unit at a time t is hit, which is
passed on to the next time t+1. The calculation is as follows:

hkt ¼ oittanh ckt
� �

okt ¼ r Woxt þ Uoht�1 þ boð Þk

ckt ¼ fkt c
k
t�1 þ ikt ~c

k
t

~ckt ¼ tanhðWcxt þ Ucht�1 þ bcÞk

fkt ¼ rðWfxt þ Ufht�1 þ bfÞk

ikt ¼ rðWixt þ Uiht�1 þ biÞk

where W, U, and b are input weights, recurrent weights, and
biases, respectively, into the long short-term memory unit.
The input, output, and “forget” gates are denoted by i, o, and f,

Table 1. Modified Early Warning Score

Score 3 2 1 0 1 2 3

SBP, mm Hg ≤70 71–80 81–100 101–199 . . . ≥200 . . .

HR, beats/min . . . ≤40 41–50 51–100 101–110 111–129 ≥130

RR, breaths/min . . . ≤8 . . . 9–14 15–20 21–29 ≥30

BT, °C . . . ≤35 . . . 35.1–38.4 . . . ≥38.5 . . .

Mental status . . . . . . . . . Alert Reacting to voice Reacting to pain Unresponsive

BT indicates body temperature; HR, heart rate; RR, respiratory rate; SBP, systolic blood pressure.

Table 2. Characteristics of Study Population

Characteristic

Model Derivation Test for Model Comparison

Hospital A Hospital A Hospital B

Study period Jun 2010–
Jan 2017

Feb–Jul
2017

Mar–Jul
2017

Total patients, n 46 725 3634 1772

Input vectors, n 2 769 324 152 587 60 782

Patients with in-
hospital cardiac
arrest, n

396 19 4

Input vectors, n 10 772 352 82

Patients with death
without attempted
resuscitation, n

770 25 19

Input vectors, n 28 208 801 446

Age, y, mean�SD 56.7�23.3 58.2�21.7 58.1�17.2

Male sex, n (%) 24 171 (51.7) 1878 (51.7) 829 (46.8)

Maximum DEWS score, mean�SD

Nonevent 16.3�28.4 9.2�20.9 6.6�17.5

Cardiac arrest 89.0�21.0 60.6�35.7 67.2�38.3

Death without
attempted
resuscitation

97.9�7.9 84.5�27.8 81.1�18.5

Hospital type Cardiovascular
teaching hospital

Community
general
hospital

Number of beds 310 310 172

DEWS indicates deep learning–based early warning system.
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respectively, whereas the memory cell is denoted by c. The r
is a logistic sigmoid function. The input and forget gates
determine whether or not to forget the previous information
and to keep the current information, respectively. The output
gate adjusts the current information, and the memory cell has
the previous and current memory contents.

We used the Adam optimizer with the default parameters
and a binary-cross entropy as a loss function.31 To validate
our model, we used the hyperparameters of the model with
the best performance on 10% of the data from the derivation
data during the training process.

We compared the performance of the DEWS, the MEWS,
SPTTS, logistic regression, and random forest. The details of
SPTTS are shown in Table 3. In the previous studies, logistic
regression and random forest were the most commonly used
machine-learning methods and showed better performance
than traditional TTSs.32,33 We used the area under the

receiver operating characteristic curve (AUROC) and the area
under the precision–recall curve (AUPRC) to measure the
performance of the model. AUROC is one of the most used
metrics and shows sensitivity against 1�specificity. Com-
pared with AUROC, AUPRC is suitable for verifying false-alarm
rates with varying sensitivity and shows precision (ie, 1�false-
alarm rate) against recall (ie, sensitivity).34,35

Another important criterion to evaluate TTSs is the number
of alarms. As the number of alarms increases, the operating
costs for RRSs also increases because of medical-staff
expenses; therefore, we evaluated sensitivity against mean
alarm count per hour per patient (MACHP). For example, 0.02
MACHP means that if there are 1000 patients in the hospital,
the number of alarms is 20 times an hour. It is easy to know
the effect of the TTS (ie, sensitivity and the number of alarms)
when applied to RRSs because MACHP normalizes the
number of alarms.

Figure 1. The process of the DEWS. DEWS indicates deep learning–based early warning system; HR, heart rate; RNN, recurrent neural
network; RR, respiratory rate; SBP, systolic blood pressure; BT, body temperature.

Figure 2. The architecture of the recurrent neural network.
X
t and

h
t indicate input and output at time t; W, weights.

Table 3. Single-Parameter Track-and-Trigger System*

Parameter Value

SBP, mm Hg ≤85

HR, beats/min ≤50 or ≥130

RR, breaths/min ≤8 or ≥25

BT, °C ≤35 or ≥39

Mental status (AVPU) V, P, U

*If >1 parameter is positive, activate rapid response team.
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We also evaluated positive predictive value (PPV ¼
True positive

True positiveþFalse positive), negative predictive value

(NPV ¼ True negative
True negativeþFalse negative), net reclassification

index, and F-measure ð2� precision�recall
precisionþrecallÞ. Net reclassifi-

cation index is used to compare the improvement in
prediction performance gained.35,36 The comparison is per-
formed at the same sensitivity because the results of these
metrics are different depending on sensitivity. We compared
the DEWS and the MEWS at 3 sensitivities according to the
cutoff score. The cutoff scores for the MEWS that were most
commonly used were 3, 4, and 5.37,38 The comparison of the
DEWS and SPTTS was performed at 1 sensitivity, as SPTTS
has only one sensitivity. We also compared DEWS with logistic
regression and random forest at 75% sensitivity, in accor-
dance with the previous study.32

Results
A total of 56 076 patients were admitted during the study
period. We excluded 448 patients who were admitted or
discharged outside the study period and 3497 patients who
experienced an event or were discharged within 30 minutes

after admission. The study population consisted of 52 131
patients, of which 1233 patients underwent cardiac arrest or
death without attempted resuscitation. The DEWS was
developed using 2 769 324 input vectors from 46 725
patients of Hospital A, and a test was performed using
213 369 input vectors for a total of 5406 patients
(Figure 3).

As shown in Figure 4, the DEWS (AUROC: 0.850; AUPRC:
0.044) significantly outperformed the MEWS (AUROC: 0.603;
AUPRC: 0.003), random forest (AUROC: 0.780; AUPRC:
0.014), and logistic regression (AUROC: 0.613; AUPRC:
0.007) for 352 input vectors labeled cardiac arrest in
hospital A. We also validated that the DEWS is applicable
across centers by measuring AUROC and AUPRC for 88
input vectors labeled cardiac arrest in hospital B. Note that
hospital B is unrelated to hospital A, and the data collected
from hospital B were not used for model derivation. The
DEWS was the most accurate among all methods, as shown
in Figure 4.

In the following set of experiments, we used the combined
data from hospitals A and B. We also evaluated specificity,
positive predictive value, negative predictive value, net
reclassification index, F-measure, and MACHP with the same
sensitivity (Table 4). Negative predictive values were all high

Figure 3. Study flow chart. DEWS indicates deep learning–based early warning system.
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because labels of input vectors were mostly nonevent.
Conversely, DEWS was the most consistently accurate of all
metrics. Compared with the widely used MEWS ≥5, the DEWS
achieved 8.7%, 484.0%, and 466.9% higher specificity, positive
predictive value, and F-measure, respectively, and reduced
MACHP by 82.2%. Compared with random forest, which
showed the best performance in the previous study, the
DEWS also achieved 10.1%, 30.6%, and 30.5% higher

specificity, positive predictive value, and F-measure, respec-
tively, and reduced MACHP by 13.5%.32

The main goal of this study was to develop a TTS with
high sensitivity and a low false-alarm rate. We estimated
sensitivity with varying MACHP, as shown in Figure 5. The
DEWS, MEWS, random forest, and logistic regression showed
42.7%, 4.0%, 26.7%, and 25.0% sensitivity, respectively, at
0.04 MACHP.

Figure 4. Accuracy for predicting in-hospital cardiac arrest and death without attempted resuscitation. AUPRC
indicates area under the precision–recall curve; AUROC, area under the receiver operating characteristic curve; CI,
confidence interval; DEWS, deep learning–based early warning system; MEWS, modified early warning score; SPTTS,
single-parameter track-and-trigger system.
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Discussion
In this study, the DEWS predicted cardiac arrest and death
without attempted resuscitation better than a MEWS, SPTTS,
logistic regression, and random forest in all metrics. In
particular, the DEWS showed higher sensitivity with fewer
alarms than other TTSs. This result demonstrates that the
DEWS is applicable to RRSs. The performance of the DEWS was
also verified through the multicenter study. The reasons for the
high performance of the DEWS are as follows. First, the DEWS
finds the relationship between vital signs, unlike MEWS and
SPTTS. For example, although HR is high, it is interpreted
differently depending on BT. Second, one of the most important
advantages of the deep learning model compared with logistic
regression and random forest is feature learning. In this study,
feature learning is applied to find useful features to predict the
risk score from vital signs.25 Using a large amount of data, the
deep learning model automatically learns features or repre-
sentations needed for given tasks such as classification and
detection. This is why deep learning shows better results than
traditional machine learning.39–41

Class imbalance is one of the most significant problems in
machine learning. When the data are very imbalanced, the
trained model tends to perform poorly on minority class (ie,
low sensitivity). Unfortunately, this often occurs in medical
data sets because most data are nonevents. To mitigate this
problem, we adjusted the ratio of nonevent/event data in a
training process by copying the data labeled as events.
Although this solution is simple, it provides high sensitivity
(before 21%, after 63%).

We evaluated accuracy according to MACHP for similarity
to the clinical environment. The MACHPs for a MEWS ≥5 and

SPTTS were 0.143, and 0.334; this means that for a hospital
with 1000 beds, there are 143 and 334 alarms, respectively,
every hour (Table 4)—too many for an RRS to handle.
Considering limited resources for an RRS, if the MACHP is set
to 0.04, as in Figure 4, sensitivity of the DEWS and the MEWS
is 42.7% and 4.0%, respectively. This is why the existing TTSs
were not successfully applied to RRSs in some hospitals and
is consistent with previous studies.17,42

The risk (ie, score) of cardiac arrest and death without
attempted resuscitation predicted by the DEWS increased
from 24 hours ago (Figure 6). The DEWS found >50% of
patients with cardiac arrest 14 hours before the event (death
without attempted resuscitation 24 hours before the event).
This result means that the medical staff could have enough
time to intervene when using the DEWS. In addition, the
DEWS found 78% of cardiac arrests 30 minutes before the
event. Even in situations in which it was too late to prevent
cardiac arrest, it is important for the rapid response team to
have the information before cardiac arrest occurs; the faster
that cardiopulmonary resuscitation is conducted after cardiac
arrest, the greater the chance that the patient will survive. The
survival rate decreases by 10% per minute before cardiopul-
monary resuscitation. Consequently, the DEWS can reduce
the number of preventable deaths in hospitals and help more
patients survive.

A multicenter study is not supposed to use a variety of
different hospital data but rather was used to separate the
test and derivation sets independently. For example, instead
of mixing data from 2 hospitals to separate test and derivation
data, data from 1 hospital were used for model derivation and
data from the other hospital were used only for test purposes.
In this respect, the result is not guaranteed in other hospitals

Table 4. Comparison of Accuracy of In-Hospital Cardiac Arrest Prediction Model With Same Sensitivity Point

TTS Sensitivity Specificity PPV NPV F-Measure MACHP NRI (95% CI)

MEWS ≥3 63.0 79.9 0.5 99.9 1.0 0.293

DEWS ≥7.1 63.0 87.0 0.8 99.9 1.5 0.199 0.071 (0.061–0.082)

MEWS ≥4 49.3 86.8 0.6 99.9 1.2 0.198

DEWS ≥18.2 49.3 94.6 1.4 99.9 2.8 0.084 0.078 (0.067–0.089)

MEWS ≥5 37.3 90.6 0.6 99.9 1.3 0.143

DEWS ≥52.8 37.3 98.4 3.7 99.9 7.1 0.025 0.079 (0.068–0.090)

SPTTS 60.7 77.0 0.4 99.9 0.8 0.334

DEWS ≥8.0 60.7 88.3 0.8 99.9 1.6 0.180 0.151 (0.138–0.163)

Random forest 75.3 69.9 0.4 99.9 0.8 0.409

DEWS ≥3.0 75.3 77.0 0.5 99.9 1.0 0.354 0.071 (0.060–0.082)

Logistic regression 76.3 34.6 0.2 99.9 0.4 0.622

DEWS ≥2.9 75.7 76.5 0.5 99.9 1.0 0.360 0.413 (0.399–0.427)

CI indicates confidence interval; DEWS, deep learning–based early warning system score; MACHP, mean alarm count per hour per patient; MEWS, modified early warning score; NPV,
negative predictive value; NRI, net reclassification index; PPV, positive predictive value; SPTTS, single-parameter track-and-trigger system; TTS, track-and-trigger system.
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because the model memorizes the characteristics of the
derivation set. Wolpert explains the “No Free Lunch” theorem:
If optimized in one situation, an algorithm cannot produce
good results in other situations.43 To overcome this issue, we
experimented in 2 ways. The derivation set (June 2010–
January 2017) and the test set (February–July 2017) were

completely exclusive. We also used the data collected from
hospital B only for test purposes.

Previous studies attempted to predict deterioration using
machine learning. Churpek et al confirmed that logistic
regression and random forest outperformed a MEWS.32

Pirrachio et al developed the “Super ICU Learner Algorithm

Figure 5. Sensitivity according to MACHP for predicting in-hospital cardiac arrest. DEWS indicates deep learning–
based early warning system; MACHP, mean alarm count per hour per patient; MEWS, modified early warning score;
SPTTS, single-parameter track-and-trigger system; TTS, track-and-trigger system.
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(SICULA)” using a combination of multiple machine learning
methods for patients in intensive care units.44 Although
machine learning outperformed the existing TTSs, they used
more variables. To show the effect of deep learning, we used
fewer variables than a MEWS. The DEWS and random forest

were more accurate than the MEWS, but logistic regression
was less accurate than the MEWS. The DEWS, which uses
fewer variables, has the advantage of being applicable to
various hospital environments and devices (eg, wearable
device). To validate the effect of the DEWS in a clinical
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Figure 6. Trend of the DEWS score. A, The change in the mean of the DEWS scores over time as a group of patients. B, Cumulative percentage
of cardiac arrest patients on detection time before event. We used the DEWS with sensitivity 70% for this plot. DEWS indicates deep learning–
based early warning system.
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environment, we are planning a multicenter prospective study.
Furthermore, we are developing DEWS+ using more variables
(eg, clinical note and laboratory data) to improve accuracy.

Our study has 2 limitations. First, deep learning is known as
a “black box” because it is used to find the relationship
between the given data and a result, not to create a rule based
on knowledge. When alarms sound, the medical staff does not
knowwhat immediate action to take until teammembers check
the patient. If the medical staff immediately knows the likely
reason for the alarm, team members can take care of the
patient promptly by considering the likely reason. Interpretable
deep learning has been studied recently and is our next area of
focus for research.45,46 The interpretation of the DEWS can
help medical staff reduce decision time. Second, we consider
only the first cardiac arrest in the patient’s length of stay,
although second and third cardiac arrests are also significant.
Nevertheless, the first cardiac arrest is the highest priority
because medical staffs focus on patients after cardiac arrest.

The DEWS is not interpretable but assists the medical staff
as a screening tool. Because it reduces the number of alarms
and increases accuracy at the same time, the medical staff
could have enough time to reverify every alarm. Furthermore,
staff can intuitively guess the reason for the prediction
because fewer variables are used in the DEWS than in a
MEWS, which is based on medical knowledge.

Conclusion
An algorithm based on deep learning had high sensitivity and
a low false-alarm rate for detection of patients with cardiac
arrest in a multicenter study. In addition, the DEWS was
developed with only 4 vital signs: systolic blood pressure, HR,
respiratory rate, and BT. Consequently, it is easy to apply in
various hospital environments and offers potentially greater
accuracy by using additional information.

Disclosures
None.
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