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Every individual cancer develops and grows in its own specific
way, giving rise to a recognized need for the development of
personalized cancer diagnostics. This suggested that the identifi-
cation of patient-specific oncogene markers would be an effective
diagnostics approach. However, tumors that are classified as
similar according to the expression levels of certain oncogenes
can eventually demonstrate divergent responses to treatment.
This implies that the information gained from the identification of
tumor-specific biomarkers is still not sufficient. We present a
method to quantitatively transform heterogeneous big cancer
data to patient-specific transcription networks. These networks
characterize the unbalanced molecular processes that deviate the
tissue from the normal state. We study a number of datasets
spanning five different cancer types, aiming to capture the
extensive interpatient heterogeneity that exists within a specific
cancer type as well as between cancers of different origins. We
show that a relatively small number of altered molecular processes
suffices to accurately characterize over 500 tumors, showing
extreme compaction of the data. Every patient is characterized
by a small specific subset of unbalanced processes. We validate the
result by verifying that the processes identified characterize other
cancer patients as well. We show that different patients may
display similar oncogene expression levels, albeit carrying bi-
ologically distinct tumors that harbor different sets of unbalanced
molecular processes. Thus, tumors may be inaccurately classified
and addressed as similar. These findings highlight the need to
expand the notion of tumor-specific oncogenic biomarkers to
patient-specific, comprehensive transcriptional networks for
improved patient-tailored diagnostics.
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Cancer results from the acquisition of genetic alterations,
which in turn, lead to significant rewiring of molecular net-

works. Despite a diverse array of genetic mutations in tumors,
there are typically fewer distinct phenotypes than the extent of
genetic, epigenetic, and transcriptional heterogeneity would
suggest (1). Many tumors eventually rely on a limited number of
key proteins (oncogenes) that are responsible for cancer growth
and survival, a phenomenon known as “oncogene addiction” (2).
This has led to the idea that the identification of the key tumor-
specific oncogene biomarkers would be an effective diagnostics
strategy. However, extensive molecular variations between pa-
tients from the same cancer type, referred to as interpatient
heterogeneity, render it difficult to find common gene markers
that correlate well with drug sensitivity and patient survival. In-
deed, it was recently proposed that reliable genomic markers
should be identified and integrated into the pathology process to
diagnose and treat each patient optimally (3). Moreover, dif-
ferent molecular processes may give rise to the same list of on-
cogenic biomarkers (1). Hence, tumors may be classified as
similar for the purposes of diagnostics and treatment, despite
being biologically different.

Our main goal in this study was to develop a method that
classifies patients not only based on their tumor-specific list of
oncogenic biomarkers but also, based on the molecular context
that gave rise to this list of biomarkers. To this end, we in-
vestigated gene expression alterations in a cohort of 527 samples
consisting of lymphoma, bladder cancer, gastric cancer, co-
lorectal cancer, breast cancer, and normal gastric tissues, and we
identified the set of ongoing molecular processes that make up
each patient-specific transcriptional network. We show how the
numerous gene expression alterations that occurred in the large
cohort of tumors can be translated to a few altered molecular
processes (4, 5) that repeat themselves in different combinations
in every patient and accurately characterize the vast interpatient
heterogeneity. These few unbalanced processes, identified by an
information theoretic approach, achieved a significant compac-
tion of the big dataset.
We show that similar expression levels of certain oncogenes in

different patients can be attributed to different combinations of
unbalanced processes. This suggests that, to accurately classify
patients, transcriptional networks instead of lists of biomarkers
should be identified.
The approach described herein provides an important addi-

tional step toward accurately decoding cancer information in a
patient-specific manner. Our findings highlight the need to in-
corporate oncogene biomarkers into the context of transcrip-
tional networks to accurately characterize patient-specific tumor
biology and to improve patient-tailored diagnostics.

Significance

Accurate cancer diagnostics is a prerequisite for optimal per-
sonalized cancer medicine. We propose an information-
theoretic cancer diagnosis that identifies signatures compris-
ing patient-specific oncogenic processes rather than cancer
type-specific biomarkers. Such comprehensive transcriptional
signatures should allow for more accurate classification of
cancer patients and better patient-specific diagnostics. The
approach that we describe herein allows decoding of large-scale
molecular-level information and elucidating patient-specific
transcriptional altered network structures. Thereby, we move
from cancer type-associated biomarkers to unbiased patient-
specific unbalanced oncogenic processes.
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Using Information Theory to Identify Patient-Specific
Ongoing Cancer Processes
Tumors are biological systems in which the balanced homeostatic
state has been disturbed due to genomic and environmental
factors or constraints (6–8). These constraints bring about an im-
balance in the tissue and result in abnormal gene expression levels
reflecting ongoing unbalanced molecular processes. To quantify the
imbalance, we use a thermodynamically based information-
theoretic strategy. Thermodynamic-based approaches (9–13)
and/or information-theoretic approaches have been successfully
applied to the analysis of biological systems in a number of cases
(for example, refs. 14–17). In this study, we utilize the
thermodynamic-motivated surprisal analysis (6, 7, 18, 19). We
have previously applied this analysis to various biological systems
(4, 20–22) and also showed its experimental validity (21, 23).
The equation used in the study represents the logarithm of the

experimental transcript expression level, lnXiðkÞ, of a measured
transcript i in every patient k as (7)

where lnXo
i ðkÞ is the logarithm of the expression level of the

transcript i at the balanced state and the sum,
P

α=1GiαλαðkÞ, rep-
resents the deviations in the logarithm of the expression level of this
transcript from the balanced state level due to the environmental/
genetic constraints that may operate in the system.
Surprisal analysis identifies which transcripts are at their bal-

anced state level for every single tumor. The balanced state term
can be represented as lnXo

i ðkÞ=−Gi0λ0ðkÞ (7), allowing us to
calculate an amplitude for the balanced state, λ0ðkÞ, for every
tumor k and the extent of the participation of each individual
transcript i, Gi0, in the balanced state process α= 0. We have pre-
viously shown that this balanced state is robust, and it remains
common to normal and cancer tissues and even to different
organisms (i.e., the transcripts participating in this process do
not show any dependence on the patients) (4, 6, 7, 20). The
experimental data that we wished to analyze in this study
originated from several different datasets. We expect that the ex-
pression level of every transcript i in the balanced state, Xo

i ðkÞ,
should be common to all patients and does not depend on the
patient index, k.
The analysis further uncovers the complete set of con-

straints that operate in the system, including the transcripts that
are affected by these constraints and thus, deviate from their
balanced state levels. A constraint can result from any pertur-
bation in a biological system. Each constraint significantly influ-
ences only a subset of transcripts in a similar way, causing
collective deviations of the transcript levels (up or down) from
their balanced levels. This group of covarying transcripts repre-
sents an altered transcript correlation subnetwork that we name
an unbalanced process. The unbalanced processes are indexed by
α= 1,2,3. Each unbalanced process can consist of several bi-
ological pathways. For example, proteins involved in aerobic gly-
colysis and MAPK signaling pathways can deviate in a
coordinated manner from the balanced state and thus, par-
ticipate in the same unbalanced process (20).
Several unbalanced processes may operate in each tumor, and

each transcript can participate in several unbalanced processes
due to the nonlinearity of biological networks (20).
Singular value decomposition (24–26) is used as a mathe-

matical tool to determine the two sets of parameters that de-
termine the unbalanced processes in surprisal analysis (7): (i) the

λαðkÞ values denoting the amplitude of unbalanced process in
every tumor k and (ii) the Giα values denoting the extent of the
participation of each individual transcript i in the specific un-
balanced process, α (7). Transcripts with the highest/lowest Giα
values are used to determine the transcript composition of un-
balanced processes (SI Appendix, Fig. S1). To assign a biological
meaning for each process, transcripts with the most significant
Giα values are classified into biological categories according to
Gene Ontology database (Dataset S1). Several biological cate-
gories appear in each process (Dataset S1). Note that the weight,
Giα, of transcript i in a process α is the same for all patients (i.e.,
is independent of k). Hence, the network structure, composed of
covarying transcripts participating in process α, remains constant.
The amplitude, λαðkÞ, determines whether process α is active in
the patient k and to what extent.
Our goal was to utilize surprisal analysis to classify tumors

according to the tumor-specific sets of constraints that deviate
the cancer tissues from the stable, balanced state. We suggest
that such a classification is essential to improve personalized
cancer diagnostics.

Integrating Biological Datasets to Study Interpatient
Heterogeneity
The field of personalized medicine has been accelerating, and a
massive amount of gene expression data regarding different
types of cancer is becoming available. Five different datasets
were selected for analysis, each comprising samples from a dif-
ferent type of cancer: lymphoma, bladder cancer, gastric cancer,
colorectal cancer, and breast cancer (527 in total: 506 tumor
samples and 21 normal gastric samples). A concurrent analysis of
different datasets will allow identification of the altered biological
processes that characterize the interpatient heterogeneity. Addition-
ally, a large-scale analysis should uncover the patient-specific sets of
unbalanced processes with a better signal-to-noise ratio.
As expected, surprisal analysis of the five datasets identified a

common balanced state for each type of cancer represented by
an invariant amplitude of the balanced state λ0ðkÞ for all patients,
k, of a specific cancer type, including the normal gastric samples
(Fig. 1, gray). This result corresponds to our previous findings
showing the robustness of the balanced process (4, 6, 20). The
levels of more than 470 transcript probes of ∼20,000 probes were
well-fitted by the balanced term alone and were not influenced
by any unbalanced process. These transcripts participate in the
homeostatic functions of the cell, such as protein and RNA
metabolism, and the cell cycle (Dataset S1).

0
-100
-200
-300

-900

-400
-500
-600
-700
-800

1 244223 355 527507130

Ly Bl H Ga Co Br

After normalizationBefore normalization

 A
m

pl
itu

de
 o

f b
al

an
ce

d
pr

oc
es

s,
 λ 0

Patient index, k

Fig. 1. Identifying the steady state in cancer patients and integrating bi-
ological datasets to study intertumor heterogeneity. Amplitudes of balanced
process (λ0) for patients with lymphoma (Ly; patients 1–130), patients with
bladder cancer (Bl; patients 131–223), healthy patients (H; patients 224–244),
patients with gastric cancer (Ga; patients 245–355), patients with colorectal
cancer (Co; patients 356–507), and patients with breast cancer (Br; patients
508–527) before and after normalization.
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After determination of the balanced state term separately for
each dataset, the intensities of the different sets were normalized
and converted to a common scale, such that all five datasets
shared a common balanced state term (Fig. 1). Importantly, the
transcript composition of the steady state remained invariant
before and after the normalization, suggesting that the intensity
differences reflected experimental artifacts and not biological
differences (SI Appendix, Fig. S2). The thermodynamic-based
approach underlying surprisal analysis is what enables such
a normalization. Importantly, we show that this normalization does
not influence the amplitudes of the unbalanced processes or the
weight of individual transcripts in these processes (SI Appendix,
Integration of Different Datasets).
The notion that the balanced state is common to normal and

cancerous tissues is highly significant, because it suggests that the
search for the tumor gene markers should focus only on the un-
balanced processes, greatly reducing the number of possible targets.

Interpatient Heterogeneity Among 506 Patients Is
Characterized by 12 Unbalanced Processes
Our next step was to inspect the unbalanced processes that
characterized the 506 tumors (not including the 21 normal gas-
tric samples). The analysis revealed that 12 unbalanced processes
sufficed to reproduce the deviations from the balanced state
across the 506 tumors of five types (Datasets S1–S4). We used
three different methods to identify the number of unbalanced
processes that characterize the interpatient variability: (i) cal-
culation of error limits that were based on the fluctuations in the
expression levels of the most stable transcripts was used to de-
termine which of the processes possesses an amplitude that ex-
ceeds the noise threshold; (ii) error bars for each patient were
computed as described previously (27); and (iii) to validate that
the number of significant unbalanced processes (only those
having amplitude values exceeding error limits) is sufficient, we
verify that these processes adequately reproduce the experi-
mental data. These three methods are further discussed in SI
Appendix, Calculation of Error Bars and Threshold Values, with
results shown in SI Appendix, Figs. S3–S6.
To verify the robustness and accuracy of the analysis, we

randomly picked 50% of the patients from each cancer type (264
patients total; representing about one-half of the complete
dataset) and found that the unbalanced processes and patient-
specific signatures remained the same (SI Appendix, Figs. S7
and S8).
Transcripts can be involved in only one constraint (e.g.,

GRB2, PTK2B, and CALM3) (Dataset S3), whereas others
participate in two or more unbalanced processes, such as EGF
receptor (EGFR), programmed death ligand 1 (PD-L1; CD274),
CD44, IRS2, EIF4E, and CDK1 (Dataset S3). Dataset S1 shows
that each unbalanced process can include multiple (sometimes
overlapping) biological categories. Importantly, we found that, in
every cancer type, one or more unbalanced processes are shared
by all of the patients with this cancer type (Fig. 2A). For example,
all of the lymphoma patients were found to harbor the process
α= 1 with a positive amplitude [λ1ðkÞ> 0], which we define as
process 1+ (Fig. 2A). Process 2+ was found in all patients with
lymphoma as well (Fig. 2A). Genes involved in these processes
were classified to multiple categories (for example, B-cell sig-
naling, cell proliferation, platelet deregulation, and DNA repair)
(Dataset S1). Recall that the weights, Giα, are independent of the
patient index, k, and that it is the amplitude, λαðkÞ, that deter-
mines whether a process is active in the specific patient. The sign
of λαðkÞ determines the direction to which the process deviates
from the transcripts. Thus, if all lymphoma patients harbor
process 1+, it means that process 1 deviates the transcripts in the
process in the same manner in all lymphoma patients (i.e., up-
regulates or down-regulates them). Process 1− was found in all
patients with bladder cancer (Fig. 2A) and includes genes in-
volved, for example, in intracellular signal transduction and
GTPase activation (Dataset S1). Process 3+ appeared in all
patients with gastric cancer (Fig. 2A) and includes genes involved

in angiogenesis and antiapoptosis (Dataset S1). Process 2− appeared
in all patients with colorectal cancer (Fig. 2A) and includes
genes involved in IL-4 and IL-10 production and NF-κB sig-
naling (Dataset S1). The breast cancer patients were all found
to harbor process 7+ (Fig. 2A), which includes VEGFR sig-
naling and glucuronidation (a mechanism of intrinsic drug
resistance) (Dataset S1). The finding that certain unbalanced
processes are shared by all patients with a particular cancer
type is consistent with our earlier findings that there is a
dominant process that characterizes a particular type of can-
cer compared with normal samples (4, 6, 7). Note, however,
that the same process may also appear in other cancer types,
possibly less frequently. For example, process 3− is shared by
lymphoma, bladder, and colorectal cancers (Fig. 2A). This con-
straint includes transcripts involved, for example, in PGDFR
signaling pathway, mRNA processing, and splicing (Dataset
S1). Process 5− appears in bladder, gastric, and breast cancers
and comprises transcripts involved in, for example, Wnt signal-
ing, cell–cell adhesion, and RNA splicing (Dataset S1). Processes

A B

C

Fig. 2. Transcriptomic data from 506 patients were reduced to a 12D space
of unbalanced processes. Each patient harbors a combination of 2–5 un-
balanced processes of 12. (A) The frequency of the unbalanced processes in
every cancer type: −100 denotes 100% with negative amplitude. Note that
at least one unbalanced process is common to all patients with a given
cancer type. For example, processes 1+ and 2+ were found in all patients
with lymphoma (Ly); process 1− was found in all patients with bladder
cancer (Bl). Furthermore, most of the processes each appear in at least two
types of cancer. For example, process 3 (+ or −) was found in all cancer types
[Ly, Bl, colorectal cancer (Co), gastric cancer (Ga), and breast cancer (Br)]. (B)
Patient-specific combinations of unbalanced process. Two selected patients
from each cancer type are shown. Although cancer patients can have the
same type of cancer, they may harbor different sets of unbalanced processes.
For example, patients 11 and 26 were diagnosed with Ly; they have process 1
and 2 in common and differ in the rest of the active unbalanced processes.
Dataset S4 includes the full list of patient-specific combinations of
unbalanced processes. Negative/positive amplitude denotes how the patients are
correlated with respect to a particular process (SI Appendix, Signs of Giα, and λα
(k)). For example, patient 165 harbors process 1−, whereas patient 272 harbors
process 1+. Therefore, transcripts that participate in process 1 (Dataset S1) de-
viate from their balanced level in opposite directions in these patients. (C) A
patient-specific combination of unbalanced processes was calculated for
every patient. A total of 144 different combinations of two to five un-
balanced process (Dataset S4) appeared in the entire dataset. Some cancer
types possess a significantly higher degree of heterogeneity (e.g., Bl has 80
different combinations in the population of 93 patients), whereas others,
such as Co, are less heterogeneous (14 combinations in the population of
152 patients).
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of higher index appear in a smaller number of patients
(Dataset S2).

From Unbalanced Processes to Patient-Specific Signatures
Twelve unbalanced processes repeat themselves across 506 tu-
mors. However, not all processes are active in all tumors. Every
individual tumor harbors a specific subset or signature of active
unbalanced processes (Fig. 2 B and C and Dataset S4). Typically,
every patient can be accurately represented by a combination of
one to five ongoing processes (Fig. 2B and Dataset S4). Dataset
S4 contains the entire list of 144 patient-specific sets of un-
balanced processes that are repeated across 506 tumors.
Twelve unbalanced processes can be assembled into thousands

of unique subsets of one to five processes. We found varying
degrees of intertumor heterogeneity in each of the tumor types
(Fig. 2C): 17 combinations of processes were found in the pop-
ulation of 130 lymphoma patients, 80 combinations were found
in the population of 93 bladder cancer patients, 21 combinations
were found the population of 111 gastric cancer patients, 14
unique combinations were found in the population of 152 co-
lorectal cancer patients, and 12 combinations of processes were

found in the population of 20 breast cancer patients. Thus, some
cancer types possess a high degree of heterogeneity (e.g., blad-
der), whereas others, such as colorectal cancer, are significantly
less heterogeneous (Fig. 2C).

Similar Gene Expression Levels Can Result from Different
Combinations of Unbalanced Processes
One of the main features of surprisal analysis is its ability to
assign transcripts to more than one unbalanced process (see
above) (7). For example, EGFR was found to independently
participate in processes 4–6 and 9; PD-L1 (CD274; inhibitor of
the immune system) participates in processes 5, 7, 8, and 10
(Dataset S3). Therefore, two patients can display similar gene
expression levels, but their tumors may harbor different combi-
nations of unbalanced processes. To demonstrate this point, we
selected two bladder cancer patients, indexed 164 and 172, and
inspected their tumor-specific experimental expression levels of
five bladder cancer-associated genes: NF-κBIA (the inhibitor of
NF-κB) (28, 29), PD-L1 (30), CD44 (31), EGFR (32), and
PLAU (33) (Fig. 3A). In both tumors, these biomarkers were up-
regulated relative to their median expression level (Fig. 3A).

A

C

B

Fig. 3. Similar gene expression levels in different
patients may be attributed to different unbalanced
processes. Two bladder cancer (Bl) patients were se-
lected for the demonstration of the concept. (A) The
fold changes of five selected Bl-associated oncogenes
are shown. NF-κBIA, PD-L1, CD44, EGFR, and PLAU
were up-regulated in both patients relative to their
median expression levels across 506 patients. (B)
Patient-specific combinations of unbalanced pro-
cesses. Patient 164 harbors processes 1, 2, 5, and 7.
Patient 172 harbors unbalanced processes 1, 2, 5, 9,
and 10. Selected genes from these processes are
shown in C. (C) The influences of these unbalanced
processes on 19 selected oncogenes are shown. The
complete list of transcripts that participate in each of
the processes (∼370–1,500 transcripts for each pro-
cess) can be found in Dataset S1. Red denotes up-
regulation, green denotes down-regulation, and
gray denotes no change due to the process. Func-
tional connections are according to STRING data-
base. For example, CD44 was up-regulated in both
patients to a similar extent. This is attributed to un-
balanced processes 2 and 5, which are active in both
patients. The up-regulation of PD-L1 in patient 164 is
attributed to processes 5 and 7, whereas in patient
172, the up-regulation in PD-L1 is attributed to pro-
cesses 5 and 10. The up-regulation of PLAU in both
patients is associated with process 5. However, in
patient 172, the up-regulation of PLAU is also at-
tributed to process 9, which is active in his tumor
as well.
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However, surprisal analysis revealed that the tumors are bi-
ologically different: patient 164 is characterized by a combina-
tion of processes 1, 2, 5, and 7, whereas patient 172 harbors a
combination of processes 1, 2, 5, 9, and 10 (Fig. 3B and Dataset
S4). Fig. 3C shows 19 selected genes and how they were affected
by these unbalanced processes in the two patients. In both pa-
tients, the induction of NF-κBIA is associated with unbalanced
process 2 (Fig. 3 B and C), and the induction of CD44 is asso-
ciated with processes 2 and 5 (Fig. 3 B and C). However, the in-
duction of other oncogenes was attributed to different processes.
For example, in patient 164, PD-L1 induction was attributed to
processes 5 and 7, whereas in patient 172, PD-L1 induction was
attributed to processes 5 and 10 (Fig. 3 B and C). Similarly, EGFR
was induced by process 5 in patient 164, whereas in patient 172, it
was induced due to processes 5 and 9 (Fig. 3 B and C).
The full lists of Giα values, representing the extent of the

participation of each transcript in processes α= 1,2, ..., 12, are
presented in Dataset S3.
Patients 164 and 172 serve as an example of two patients carrying

tumors of the same type that may present with similar lists of on-
cogenic biomarkers, although their tumors are not the same. Clas-
sification of tumors according to similar biomarkers may lead to
significant differences between cancer patients in terms of response
to treatment, survival prediction, and more. Deciphering the com-
plete altered transcriptional network in every tumor should enable
more accurate diagnosis and classification of patients.

Twelve Unbalanced Processes Identified Are Active in Other
Cancer Patients
Our next step was to verify whether the 12 unbalanced processes
that were identified in 506 tumors are relevant to other cancer
patients as well. To answer this, we obtained an additional
dataset, which consists of 39 pancreatic tumors. This additional
dataset will be referred to as the validation set. The dataset was
merged with the previously analyzed five datasets (utilizing the
normalization method described above), and the combined
dataset, comprising 566 patients, was analyzed using surprisal
analysis (Fig. 4). Thirteen unbalanced processes were identified
in this analysis. Strikingly, the first 12 unbalanced processes
appeared to be the same 12 unbalanced processes that were
identified in the analysis of the original 527 samples (SI Ap-
pendix, Figs. S9 and S10), and they could fully characterized 36%
of the pancreatic patients (Fig. 4B and Dataset S5). The 13th
process, which appeared only on addition of the validation set to
the analysis, was essential for the characterization of the remaining
∼64% of pancreatic patients (Fig. 4C and Dataset S5). This process
did not appear in the original dataset, suggesting that it is a pan-
creatic cancer-specific constraint. The transcripts involved in
unbalanced process 13 were categorized, among others, to the
Notch, IL-1, NF-κB, and EGFR signaling pathways (Dataset S5).
These pathways were shown to be involved in pancreatic cancer
(34–37).
Interestingly, unbalanced processes 1+ and 3− appeared

active in all pancreatic patients (Fig. 4D). Unbalanced process
11, which was found in 14 patients with bladder cancer (Fig. 2A),
was active in ∼28% of the validation pancreatic set (Fig. 4D). Process
12, which represented only bladder cancer patients previously (Fig.
2A), was found only in one pancreatic patient (Fig. 4D). Overall, 16
different combinations of unbalanced processes were found in 39
pancreatic patients, showing a relatively high degree of interpatient
heterogeneity (Fig. 4E and Dataset S5).

Discussion
Personalized medicine aims to subdivide patients into different
categories based on molecular-level information. Such a classi-
fication often uses biomarker lists to make more informed
medical decisions regarding patient diagnosis or treatment. In
this study, we expand the idea of gene biomarker profiling and
show that integration of biomarkers into tumor ongoing un-
balanced processes is critical for accurate identification of
patient-specific cancer biology.

To obtain exhaustive patient signatures, we assembled a large-
scale patient dataset of transcript expression levels comprising
different cancer types. We showed that the notion of the bal-
anced state allows us to integrate datasets from different ex-
periments into one big dataset, thereby increasing the amount of
information that can be extracted from the experimental data
collected by different groups. The approach can, therefore, be
used in a large spectrum of different studies that require large-
scale analysis and integration of various molecular datasets.
Using 506 tumors from five different cancer types, we showed

that this diverse collection of tumors can be altogether charac-
terized by only 12 unbalanced processes. The majority of un-
balanced processes spanned across different cancer types (Fig.
2A), suggesting that unbalanced processes can often be in-
dependent of cancer type.
The heterogeneity among the cancer patients was attributed to

different patient-specific combinations of 1–5 unbalanced pro-
cesses of 12, leading eventually to 144 different combinations
that represent 144 types of disease. The fact that 144 different
diseases can be characterized by only 12 processes makes our
approach toward personalized diagnostics quite effective.
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Fig. 4. The 12 original unbalanced processes and an additional pancreatic-
specific unbalanced process fully characterize 39 pancreatic patients. (A) The
39 pancreatic cancer patients in the validation set were found to harbor 13
unbalanced processes. Processes 1–12 are the same processes found for 506
original patients. R2 values were calculated for all pancreatic patients with
pancreatic cancer by plotting the natural logarithm of the experimental data
lnXiðkÞ vs.

P
 GiαλαðkÞ for different values of α. The value of R2 approaches

one as more unbalanced processes are added to the calculation. Mathe-
matically, 506 unbalanced processes are calculated for each patient. How-
ever, not all of them are significant. The figure shows that all patients reach
a plateau after 13 processes, suggesting that the first 13 unbalanced pro-
cesses are significant and that the rest of the processes represent random
noise in the biological system. (B) Thirty-six percent of the pancreatic pa-
tients were fully characterized by the first 12 unbalanced processes. Four
selected patients are shown. The gray box highlights that the addition of the
13th constraint had no significant effect on the R2 value for these patients.
(C) Sixty-four percent of the pancreatic patients were found to harbor an
additional pancreatic-specific constraint, unbalanced process 13, which did
not appear in the analysis of 506 original patients. The gray box highlights
that the addition of the 13th constraint is significant for these patients. (D)
The frequency of the unbalanced processes in the 39 pancreatic cancer pa-
tients; 64% of the pancreatic patients were found to harbor the additional
pancreatic-specific unbalanced process 13. (E) Sixteen combinations of un-
balanced processes were identified in the pancreatic cancer dataset.
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Each patient-specific signature is a set of a small number of
unbalanced processes, thereby offering a considerable compac-
tion of the data. The compaction means that there is a limited set
of processes characterizing the entire dataset. Furthermore, each
patient is represented by a subset of those processes.
The finding that each person usually harbors several processes

and not only one unbalanced process may result from the co-
existence of different intratumor cellular subpopulations in each
patient. Each process may characterize a distinct cellular sub-
population. However, in some of the tumor cells, these processes
may be active in parallel. Single-cell analysis of a large number of
patients will be able to accurately address this topic.
We propose that our approach can provide guidance for

patient-specific combined therapies, targeting distinct unbal-
anced signaling processes in each patient (this is an ongoing
project in our laboratory). We validated the approach by adding
an independent pancreatic cancer dataset. We show that the
same set of 12 unbalanced processes remained valid; 36% of the
pancreatic patients from the additional dataset were found to
harbor different combinations of the previous 12 unbalance
processes. However, the remaining 64% of the pancreatic pa-
tients were not fully characterized by the previous 12 unbalanced
processes and were found to harbor an additional, pancreatic
cancer-specific unbalanced process, indexed 13. This is consis-
tent with our earlier finding that each cancer has a cancer type-
specific dominant process.
The approach that we present herein enables extraction of

significant signals from large datasets and gaining in-depth, un-
biased, patient-specific information. Surprisal analysis efficiently
uncovers the altered transcriptional networks in every individual
patient, potentially allowing improved classification of cancer
patients. Our finding that similar oncogene expression levels in
different patients may stem from distinct sets of unbalanced

processes underscores the need to extend the initial analysis of
tumors and to increase the resolution of cancer patient diagnosis.

Methods
Surprisal Analysis. All of the gene expression datasets used as an input in the
study were obtained from Gene Expression Omnibus database and are
publicly available: GSE17920 (lymphoma), GSE31684 (bladder cancer),
GSE54129 (gastric cancer), GSE71222 (colorectal cancer), GSE82173 (breast
cancer), and GSE15471 (pancreatic cancer). Surprisal analysis was carried out
as described before (5–7) and in the text. The notion of the stable steady
state, which was determined separately for each dataset, allowed us to in-
tegrate different datasets in one large matrix. This matrix was analyzed
further to determine the unbalanced processes characterizing five different
cancer types. More details are in the text and SI Appendix. SI Appendix in-
cludes sections comparing surprisal analysis with principal component
analysis (PCA) and k-means clustering.

Calculation of Error Bars and Threshold Values. To find significant unbalanced
processes characterizing each patient and then, to calculate a patient-specific
set of the processes, we calculated error bars for the amplitudes of the
processes in each sample (27) as well as a threshold limit for each type of
cancer using stable transcripts, representing baseline fluctuations in the
population as described previously (27) and in SI Appendix, Calculation of
Error Bars and Threshold Values.

Calculation of Patient-Specific Combinations of Unbalanced Processes. Com-
binations presented in Dataset S4 were generated using λαðkÞ (α= 1,2,3, ...)
values that exceeded threshold limits and had error bars above 0 (SI Ap-
pendix, Calculation of Patient-Specific Combinations of Unbalanced Pro-
cesses has more details).
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