VOLUME 289 (2017) PAGES 2745–2754 DOI 10.1074/jbc.AAC118.004605

First evidence for a covalent linkage between enterobacterial common antigen and lipopolysaccharide in *Shigella* sonnei phase II ECA_{LPS}.

Tomasz K. Gozdziewicz, Czeslaw Lugowski, and Jolanta Lukasiewicz

There was an error in the structure of *Shigella sonnei* phase II ECA_{LPS}. The anomeric configuration of residue J should be assigned as a β anomer [\rightarrow 4)- β -D-Glc*p*NAc-(1 \rightarrow] based on its chemical shifts (Tables 1 and 2) and $J_{H1,C1}$ (162 Hz). The correction results in an inverted anomeric configuration of the D-GlcNAc residue in the first ECA unit linked to the core oligosaccharide, whereas an α -configuration is characteristic for polymeric chain (Fig. 3). Chemical shifts of the residue J were in agreement with predictions carried out by the CASPER program (http://www.casper.organ.su.se/casper/),¹ where professor Göran Widmalm is kindly acknowledged for the error identification (1, 2). This correction does not affect the general results and conclusions of this work.

Table 1

¹H and ¹³C NMR chemical shifts of fraction IV containing core OS substituted by ECA trisaccharide ([ECA]-dLOS) isolated from *S. sonnei* phase II LOS

		Chemical shift (ppm)								
				H-3(H3ax,eq)/			H-6a, H-6b/	H-7a, H-7b/C-7	H-8a, H-8b/C-8	
Residue	Description	H-1/C-1	H-2/C-2	C-3	H-4/C-4	H-5/C-5	C-6	(NHAc)	[C(O)]	
А	\rightarrow 5)- α -Kdop	ND^{a}	-/96.3	(1.90, 2.25)/34.1	4.11/66.3	4.17/73.3	3.69/69.7	3.80/72.6	3.47, 3.93/64.7	
В	\rightarrow 3)-L- α -D-Hepp4PPEtn-(1 \rightarrow	5.20/100.1	4.01/71.6	4.08/78.5	4.61/72.3	4.22/72.0	4.10/69.3	3.72, 3.72/63.8		
С	\rightarrow 3,7)-L- α -D-Hepp4P-(1 \rightarrow	5.10/103.5	4.38/70.6	4.12/79.8	4.40/69.4	3.80/73.2	4.23/68.5	3.58, 3.75/68.4		
D	L- α -D-Hep p -(1 \rightarrow	4.98/100.2	3.93/70.7	3.87/71.4	3.84/66.9	3.61/71.9	4.04/69.5	3.65, 3.72/63.7		
E	\rightarrow 3)- α -D-Glcp-(1 \rightarrow	5.20/102.0	3.66/71.0	4.07/76.7	3.77/71.2	3.91/73.1	3.79,3.92/60.5			
F	$\rightarrow 2,3$)- α -D-Glcp-(1 \rightarrow	5.80/95.3	3.87/73.3	4.17/78.7	3.56/68.7	4.10/71.9	3.78,3.95/61.0			
F' ^b	$\rightarrow 2,3$)- α -D-Glcp-(1 \rightarrow	5.81/95.1	3.88/73.3	4.19/78.8	3.57/68.7	4.11/72.0	3.79,3.96/61.0			
G	$\rightarrow 2$)- α -D-Galp-(1 \rightarrow	5.61/92.1	3.98/73.2	4.19/68.9	3.98/70.7	4.13/72.0	3.74,3.74/61.9			
Н	α -D-Gal p -(1 \rightarrow	5.31/96.6	3.85/69.0	3.95/70.1	3.99/70.1	4.13/72.0	3.75,3.75/61.9			
Ι	\rightarrow 3)- β -D-Glcp-(1 \rightarrow	4.73/103.1	3.39/73.6	3.68/85.4	3.49/68.9	3.44/76.3	3.72,3.89/61.4			
I'c	β -D-Glc p -(1 \rightarrow	4.75/103.1	3.33/73.9	3.51/76.6	3.40/70.4	3.45/76.6	3.73,3.91/61.4			
J	\rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow	4.78/102.3	3.75/56.3	3.74/72.7	3.68/79.5	3.54/75.2	3.86,3.70/60.9	(2.03/23.0)	[175.5]	
K	\rightarrow 4)- β -D-ManpNAcA-(1 \rightarrow	4.93/99.7	4.49/54.2	4.07/73.2	3.82/74.8	3.86/77.2	-/175.1	(2.07/22.6)	[176.2]	
L	α -D-Fucp4NAc-(1 \rightarrow	5.35/99.5	3.64/69.3	4.00/69.1	4.20/54.6	4.18/66.5	1.06/16.2	(2.07/22.6)	[176.3]	
PPEtn	-	4.20/63.1	3.29/40.7							

^a ND, not determined.

^b Residue F' is a variant of residue F present in the core OS that is devoid of ECA trisaccharide.

^{*c*} Residue I' is a terminal residue I present in the core OS that is devoid of ECA trisaccharide.

Table 2

Selected inter-residue NOE and ³J_{H,C} connectivities from the anomeric atoms of ([ECA]-dLOS) dodecasaccharide isolated from *S. sonnei* phase II LOS

Data indicating the covalent linkage between ECA and LOS are shown in boldface type.

			Connectivity to		
Residue	Description	Atom $\delta_{\rm H}/\delta_{\rm C}^{}$ (ppm)	$\delta_{\rm C}$	$\delta_{_{ m H}}$	Inter-residue atom/residue
В	\rightarrow 3)-L- α -D-Hepp4PPEtn-(1 \rightarrow	5.20/100.1	_	4.17 ^a	H-5 of A
С	\rightarrow 3,7)-L- α -D-Hepp4P-(1 \rightarrow	5.10/103.5	78.5	4.08^{a}	C-3, H-3 of B
D	$L-\alpha$ -D-Hep p -(1 \rightarrow	4.98/100.2	68.5	$3.59/3.74^{a}$	C-7, H-7a, H-7b of C
E	\rightarrow 3)- α -D-Glcp-(1 \rightarrow	5.20/102.0	-	4.12	H-3 of C
F	$\rightarrow 2,3$)- α -D-Glcp-(1 \rightarrow	5.80/95.3	-	4.07	H-3 of E
F'	$\rightarrow 2,3$)- α -D-Glcp- $(1 \rightarrow b)$	5.81/95.1	-	4.07	H-3 of E
G	$\rightarrow 2$)- α -D-Galp-(1 \rightarrow	5.61/92.1	-	3.87 ^a	H-2 of F
Н	α -D-Gal p -(1 \rightarrow	5.31/96.6	-	3.97 ^a	H-2 of G
Ι	\rightarrow 3)- β -D-Glcp-(1 \rightarrow	4.73/103.1	78.7	4.17	H-3 of F
I'	β -D-Glcp-(1 \rightarrow^{c}	4.75/103.1	78.8	4.19	H-3 of F'
J	\rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow	4.78/102.3	85.3	3.68	H-3 of I
K	$\rightarrow 4$)- β -D-ManpNAcA-(1 \rightarrow	4.93/99.7	79.4	3.69 ^a	H-4 of J
L	α -D-Fucp4NAc-(1 \rightarrow	5.35/99.5	74.7	3.81	H-4 of K

^a Value represents NOE connectivities only.

^b Residue F' is a variant of residue F present in the core OS that is devoid of ECA trisaccharide.

^{*c*} Residue I' is a terminal residue I present in the core OS that is devoid of ECA trisaccharide.

¹ Please note that the JBC is not responsible for the long-term archiving and maintenance of this site or any other third party-hosted site.

References

- Lundborg, M., and Widmalm, G. (2011) Structure analysis of glycans by NMR chemical shift prediction. *Anal. Chem.* 83, 1514–1517 CrossRef Medline
- Jansson, P. E., Stenutz R., and Widmalm, G. (2006) Sequence determination of oligosaccharides and regular polysaccharides using NMR spectroscopy and a novel Web-based version of the computer program CASPER. *Carbohydr. Res.* 341, 1003–1010 CrossRef Medline