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Subcellular localization of alpha-synuclein aggregates 
and their interaction with membranes

Introduction
Parkinson’s disease (PD) is the most frequent neurodegener-
ative disease among α-synucleinopathies, a family of illnesses 
that share as a common feature the accumulation of intracel-
lular proteinaceous inclusions made mainly of α-synuclein 
(αS) [for a review (Goedert et al., 2012)]. In PD, αS inclusions 
are predominantly present in the soma, named Lewy bodies 
(LB), or in neurites, named Lewy neurites (LN), of neurons of 
the central nervous system. Although PD has been previously 
considered a motor disease, the involvement of peripheral 
neurons, both sympathetic and parasympathetic bearing LBs/
LNs has been shown in recent years (Braak et al., 2003) and 
has been furthermore suggested to correlate with the pres-
ence of numerous non-motor dysfunctions, which represents 
an important aspect of PD symptomatology and negatively 
impacts the quality of life of patients. 

Pathological accumulation of αS inclusions has been 
shown to correlate with the degree of neurodegeneration 
and dysfunction in a variety of animal models [as example 
flies, worms, mice (Feany and Bender, 2000; Masliah, 2000; 
Lakso et al., 2003)] and it is thought to be a cardinal step in 
the pathogenesis of the disease. Formation of αS inclusions 
is a complex nucleation reaction where αS, a small soluble 
protein, becomes trapped in an insoluble β-sheet conforma-
tion and tightly packed in long filamentous protofibrils and 
fibrils (Lashuel et al., 2002; Cremades et al., 2012; Tuttle et 
al., 2016). Chemical and structural variables such as pH, ion-
ic salts and point mutations can influence fibril formation 
(Buell et al., 2014) and intermediate multiple high molecular 
weight (HMW) species with different structures, defined 

collectively as oligomers, can form during the aggregation 
process, raising the issue about their relative toxicity in αS 
driven pathology. While for long time αS toxic species have 
been thought to have a cytoplasmic localization, αS ability to 
bind membranes and associate with cellular organelles and 
synaptic vesicles has prompted the question about how cel-
lular localization impacts on pathology and whether mem-
brane interaction influences aggregation. 

In this review we attempt to piece together recent findings 
regarding the subcellular localization of αS toxic HMW spe-
cies and their relationship with biological membranes. Initial-
ly we will discuss αS conformation in native and physiological 
conditions as well as during aggregation and then we will fo-
cus our attention on the impact of membrane binding on αS 
structure and cellular localization in vitro and in vivo. Finally 
we will evaluate the impact of subcellular localization of αS 
and its membrane binding preference on αS pathology in PD. 

αS 
αS, together with β-synuclein and γ-synuclein, belongs to a 
family of proteins called synucleins which were discovered 
in 1988 (Maroteaux et al., 1988). Initially observed to localize 
in the nucleus and in the presynaptic terminals of neurons, 
αS was linked to the autosomal dominant form of PD, when 
a missense mutation of αS, a threonine substitution to an 
alanine at position 53 (A53T) was found in a family pedigree 
with early onset PD (Polymeropoulos, 1997). At the same 
year, αS was found to be the main constituent of LBs/LNs, 
providing strong evidence that the αS gene, mutated and 
wild-type isoforms, is associated to familial and sporadic PD 
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and other α-synucleinopathies (Spillantini et al., 1997).
The SNCA gene, which encodes for αS protein, in humans 

is located in the long arm of chromosome 4 at position 
22.1. Besides the A53T mutations, which is so far the most 
frequent and thus better characterized (Polymeropoulos, 
1997), several missense mutations linked to a genetic form 
of PD and dementia with LBs have been mapped in SNCA 
gene more recently such as A30P (Krüger et al., 1998), E46K 
(Zarranz et al., 2004), H50Q (Appel-Cresswell et al., 2013; 
Proukakis et al., 2013), G51D (Lesage et al., 2013) and A53E 
(Pasanen et al., 2014). Furthermore, duplication or triplica-
tion of the SNCA gene have also been found and linked to 
familial PD, suggesting that increasing the amount of the 
wild-type protein is also pathogenic (Singleton et al., 2003; 
Ibáñez et al., 2004). All missense mutations and amplifica-
tions of the SNCA gene were associated with a dominant 
inheritance and an early onset of the disease compared to 
the sporadic forms. Since the overexpression of wild-type 
or mutated αS causes neurodegeneration in different animal 
models [as examples (Feany and Bender, 2000; Masliah, 
2000; Lakso et al., 2003)] while its ablation has little or no 
effect in mice (Abeliovich et al., 2000), αS toxicity has been 
explained through a gain-of-function mechanism in which 
a modified version of the protein is responsible for causing 
neuronal demise. 

Because of its presynaptic localization (Maroteaux et al., 
1988) and its ability to bind biological membrane, it was 
proposed that αS physiological function was implicated in 
neurotransmission. More recent findings (Burré et al., 2010; 
Nemani et al., 2010; Diao et al., 2013; Wang et al., 2014), 
have strengthened this view and now it is largely accepted 
that αS can act as a molecular chaperon and promote syn-
aptic transmission by facilitating clustering, recycling and 
docking of synaptic vesicles to the cell membrane. In addi-
tion αS has been involved in intracellular protein trafficking 
such as vesicles transport from the endoplasmic reticu-
lum (ER) to Golgi (Cooper et al., 2006; Gitler et al., 2008; 
Thayanidhi et al., 2010; Oaks et al., 2013) and from the Golgi 
to endosomes/lysosomes (Chung et al., 2013; Volpicelli-Da-
ley et al., 2014; Breda et al., 2015; Mazzulli et al., 2016). An 

active role in axonal transport has also been reported for αS 
in which the protein acts as a molecular dynamase, binding 
directly to microtubule and promoting their assembly and 
stability (Cartelli et al., 2016). 

Native αS Protein Structure
The αS protein, an acidic protein of 140 amino acids with a 
predicted molecular weight of approximately 14 kDa, is ex-
pressed mainly in neurons and possibly oligodendrocytes of 
the CNS (Asi et al., 2014), but also, under physiological con-
ditions, in the PNS, in circulating blood cells and in hemato-
poietic cells of the bone marrow (Nakai et al., 2007; Gardai 
et al., 2013). 

Biochemically and functionally the αS protein can be di-
vided into three distinct regions (Figure 1): 

i) the amphipathic N-terminal domain (residues 1–60), 
which interacts with phospholipid membranes and micelles;

ii) the hydrophobic non amyloid β-component (NAC) of 
Alzheimer’s disease (AD) (residues 61–95), which plays a 
strong role in αS self-aggregation (El-Agnaf et al., 1998); 

iii) the acidic C-terminal domain (96–140), a major site 
for post translational modifications, protein truncation (Li 
et al., 2005) and interaction with modulators of αS aggrega-
tion such as metal cations (Binolfi et al., 2006).

The overall protein contains seven imperfect 11-residues 
repeats with a conserved KTKEGV sequence: four included 
in the N-terminal region and three in the NAC core (George 
et al., 1995).

Soluble cytosolic αS has been described as an intrinsically 
disorder protein due to an unfolded native conformation 
(Weinreb et al., 1996). In fact, although αS, purified from 
mouse brain by gel-filtration, elutes as a single peak with an 
apparent molecular mass of 63 kDa, close to a folded tetram-
er, mass spectrometry and circular dichroism analysis reveal 
a monomer conformation with a single mass of 17 kDa 
(larger than the expected size, probably due to an in vivo 
N-terminal acetylation) (Burré et al., 2013). In agreement 
with these latest data, NMR studies show how acetylated αS, 
which is the predominant form in physiological conditions, 
is a disordered monomer but adopts a more compact con-

Figure 1 Human α-synuclein (αS) protein sequence. 
αS is a small protein of 140 amino acids where point mutations (in red) have been associated with familial forms of Parkinson’s disease (PD) 
(Polymeropoulos, 1997; Krüger et al., 1998; Zarranz et al., 2004; Appel-Cresswell et al., 2013; Lesage et al., 2013). The protein can be divided in 
three domains: an N-terminal domain (light blue), important for membrane binding; the non amyloid β-component (NAC) domain (yellow), 
important for fibril formation (El-Agnaf et al., 1998) and a C-terminal domain (blue) important for protein interaction. Seven 11-amino acids im-
perfect repeats (purple), a unique motif predicted to form α-helix and highly conserved, are also shown (George et al., 1995). This motif is located 
within the N-terminal domain and the NAC domain. Notably, missense point mutations that have been found thus far are all located within the 
N-terminal domain, suggesting that membrane binding may influence αS aggregation. 
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formation in solution that shields the NAC domain from 
other interaction in the cytosol (Theillet et al., 2016). Thus 
the higher molecular mass obtained previously in native 
conditions after gel filtration was associated with αS’s ten-
dency to adopt an extended conformation, thereby yielding 
a larger mass, rather than a tetramer structure. The unfolded 
and disordered monomer conformation was confirmed in 
rat, human brain and erythrocytes isolated under denatur-
ing and non-denaturing conditions as well as in bacteria 
expressed αS, while no oligomer species were found (Fauvet 
et al., 2012) under physiological conditions. 

In contrast with previous evidence, however, Bartels and 
collaborators have shown how αS extracted in non-denatur-
ating conditions and upon crosslinking in living cells (i.e., 
human erythrocytes, cell lines and brain tissue), is mainly a 
metastable homo-tetramer of 58 kDa. This αS tetramer is in 
a dynamic equilibrium with the unfolded monomer, which 
on the contrary is more susceptible to aggregation (Bartels et 
al., 2011). Under conventional extraction protocols, the 58 
kDa tetramer disappears resulting in an increase in monomer 
concentration. Interestingly in the same study 80–100 kDa 
αS homo-oligomers (i.e., hexamers and octamers) were also 
detected together with the tetramer in native conditions. A 
homo-tetramer structure in physiological conditions was also 
suggested by an independent study (Wang et al., 2011), which 
found how subunits in the αS tetramer are held together by 
hydrophobic interactions and each subunit is characterized 
by two transient α-helices structure in the first 100 N-terminal 
residues, followed by a disordered C-terminal region. Thus it 
was postulated that αS tetramer and monomer would co-exist 
in native conditions and any perturbation of this dynamic 
equilibrium with an increased accumulation of the mono-
mer would be associated with aggregation and pathology. In 
agreement with this, it was found that certain missense muta-
tions could decrease the tetramer:monomer ratio and initiate 
neurotoxicity (Dettmer et al., 2015a, b). 

Although the tetramer model was and is still widely de-
bated, more recent work by Burré et al. (2014) showed how 
αS binds synaptic vesicles in vivo not as a monomer but in a 
folded α-helical multimer conformation, larger than an oct-
amer. This conformation has a defined structural orientation 
and occurs only upon binding with vesicles that are docked 
at the cell membrane. In accordance with this finding, Bar-
tels et al. (2011) described how the αS tetramer isolated 
upon crosslinking from human erythrocytes had a greater 
lipid-binding ability than the single monomer although the 
NMR structure obtained by Wang and coworkers did not 
show any phospholipid molecule (Wang et al., 2011). Thus 
while tetramer and membrane-bound multimer might be in 
reality part of the same complex, more evidence is necessary 
to fully understand the physiological structure of αS. 

αS Aggregation
Besides the controversy about αS native physiological state, 
it is known that transition to an aggregated β sheet confor-
mation is the necessary step for the formation of insoluble 
inclusions or LBs. In its amyloid form, αS monomers form 

antiparallel in-register β-sandwich fold, which in turn stack 
into a parallel arrangement forming the fibril protofilament 
(Vilar et al., 2008; Tuttle et al., 2016). Protofilaments further 
assemble into fully mature fibrils. 

The aggregation process (summarized in Figure 2) is a nu-
cleation-type reaction thought to occur in a sequential series 
of steps, even though “ramifications” of this path are likely 
to occur. The in vitro characterization of the fibrillation pro-
cess revealed a precise time course, with an initial lag phase, 
in which the monomers convert into an oligomer-type of 
conformation (nucleation), a growth phase and a steady 
state that terminates with the accumulation of α-sheet rich 
amyloid fibrils (Cremades et al., 2012). Oligomers are de-
fined in general as low-molecular weight aggregates, soluble 
or insoluble, that have not acquired a fibrillary organization. 
Once the seeds are formed, αS fibrils are believed to grow 
through the addition of monomers rather than oligomers 
(Buell et al., 2014). At least two different aggregate poly-
morphs, fibrils and ribbons, that present different biochem-
ical and seeding properties, have been described in vitro, 
depending on the aggregation protocol used (Bousset et al., 
2013; Guo et al., 2013). 

Extensive literature has focused on the role of αS oligo-
mers and aggregates in PD pathology. Despite the presence 
of fibrillar αS in LBs strongly suggests an involvement of the 
aggregation process in α-synucleinopathies, it has been pro-
posed that fibrils formation could constitute an innocuous 
by-product or even a neuroprotective response. For instance, 
LBs deposition is not always associated with neurological 
symptoms (Braak et al., 2003), whereas in some forms of fa-
milial PD there are no signs of αS aggregation (Schneider and 
Alcalay, 2017). However, Peelaerts et al. (2015) showed that 
all the in vitro-generated αS aggregates (fibrils and ribbons) 
are potentially toxic and can elicit distinct histopathological 
phenotypes, posing a structural base for heterogeneity among 
α-synucleinopathies. 

Just as with αS fibrils, multiple forms of oligomers have 
been described in vitro, differing in size and morphology, 
including spherical, annular and tubular structures (Lashuel 
et al., 2002). Some of them are described as on-fibrillization 
pathway, while others generate amorphous, nonfibrillar as-
semblies. Since the fibrillation process can be influenced by 
numerous factors, including protein concentration, specific 
physicochemical conditions, the presence of certain ligands 
(including dopamine) and cross-linking (Buell et al., 2014), 
it is still unclear whether this heterogeneity in the oligomers 
population is due to the aggregation protocol used or has 
physiological relevance. More recent data obtained by di-
rectly following the oligomerization reaction using single 
molecule fluorescence technique showed how the oligomers 
population is mainly composed of two different species, 
named type A and type B, that form during early stages of 
aggregation (Cremades et al., 2012; Chen et al., 2015). These 
two oligomer populations seem to differ for chemical, struc-
tural and toxic properties. Type B is more resistant to pro-
tease K digestion than type A and requires a longer lag time 
for formation, suggesting that these species could derive 
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from the conversion and rearrangement of type A oligomer. 
In addition, type B has a higher content in β-sheet struc-
tures that is instead negligible in type A (Fusco et al., 2017). 
In vivo, type B oligomers were shown to induce cell death 
in neuronal cells, via disruption of cellular ion homeostasis 
and production of reactive oxygen species with concomitant 
mitochondrial dysfunction (Danzer et al., 2007; Fusco et al., 
2017), while type A were able to enter cells and induce intra-
cellular aggregation, leading indirectly to cell death. Recently 
the structural basis of these different mechanisms of pathoge-
nicity has been investigated by Fusco et al., who showed that 
while both oligomers bind biological membranes, only type 
B form a rigid β-sheet core that is able to insert into the lipid 
bilayer and induce directly membrane disruption and cellular 
toxicity (Fusco et al., 2017). Thus based on this model, both 
αS oligomers and aggregates are toxic. On-pathway type A 
oligomers are converted in compact protofibrils and fibrils 
and are responsible for seeding formation of new aggregates 
and propagate the αS pathology, while off-pathway type B 
oligomers are still largely detrimental, acting directly on bi-
ological membranes but do not self-propagate. In agreement 
with this, our group found that microsomes-associated αS 
toxic species behaved differently, in terms of seeding abilities 
of intracellular aggregates, when isolated from diseased αS 
transgenic (Tg) mice as opposed to aged presymptomatic lit-
termates, suggesting the presence in vivo of at least two types 
of αS HMW species depending on the stage of αS pathology 
(Colla et al., 2018). For instance when isolated from presymp-
tomatic mice, microsomes-associated αS oligomers induce 
cell death of primary neurons without seeding the formation 
of intracellular aggregates as opposed to microsomes-associ-
ated αS species (probably a mixture of oligomers and aggre-
gates) isolated from diseased mice that had both properties. 
Thus the heterogeneity of αS toxic species, that is coming to 
light with recent findings shows a complicated picture of αS 
aggregation in which both aggregates and oligomers are tox-
ic for cellular functions and the biochemical and functional 
diversity of αS toxic species is pathologically translated in at 
least two different and interconnected mechanisms of disease. 
It becomes evident that targeting one single HMW species 
of αS is not sufficient to stop successfully aggregation and 
αS-driven neurodegeneration. 

αS Binding to Biological Membranes and 
Subcellular Localization 
αS is known to bind lipids and biological membranes in 
vitro and in vivo. But does it bind them with the same effi-
ciency? The answer is probably no. Physical properties and 
chemical composition of biological membranes or presence 
of cationic compounds able to bind lipids (Perni et al., 2017) 
dictate the strength of αS binding. In vitro αS binding prefer-
ence is toward membranes composed of negatively charged 
phospholipids [such as phosphatidylethanolamine (PE), 
phosphatidic acid (PA) and phosphatidylinositol (PI) over 
phosphatidylserine (PS), or phosphatidylcholine (PC) (Mid-
dleton and Rhoades, 2010; Galvagnion et al., 2016)] or con-
taining lipid packing defects, such as cone-head phospholip-

ids (Ouberai et al., 2013). In addition, αS senses membrane 
curvature, preferring to bind to small, highly curved vesicles 
such as synaptic vesicles, rather than large multilamellar 
bodies (Middleton and Rhoades, 2010). 

Membrane interaction is mediated by the αS N-terminal 
that, upon binding, undergoes a conformational transition 
from random coil to α-helix, adopting a long extended 
one-single α-helix (Ferreon et al., 2009) in the presence of 
big vesicles (diameter larger than 100 nm) or two anti-par-
allel curved α-helices linked with a short residues chain 
(Chandra et al., 2003) in the case of small vesicles. In both 
conformations the amphipathic helices insert between the 
lipids polar groups at a depth corresponding to that of the 
glycerol group (Fusco et al., 2016). While both structures 
seem interchangeable and physiologically relevant (Geor-
gieva et al., 2010), it is not clear if other conditions in vivo, 
besides vesicles size, would dictate a conformational change 
toward one structure over the other. Also, of note, is that 
part of the N-terminal αS region binding lipids contains 
the NAC domain, which is responsible for αS fibril forma-
tion (El-Agnaf et al., 1998). Interaction with membranes is 
known to modify not only αS conformation, but also the 
membranes’ physical properties, e.g., inducing changes in 
melting temperature (Galvagnion et al., 2016) and mem-
brane remodelling (Jiang et al., 2013) such as lateral expan-
sion of membrane lipids and lipid packing modifications 
(Ouberai et al., 2013). In addition αS binding to membrane 
promotes clustering of synaptic vesicles (Diao et al., 2013). 

How does αS preference for membranes translate in a 
cell context, in vivo? Physiologically, αS is believed to shift 
between a free, cytosolic and a membrane-bound state in 
a dynamic equilibrium with the membrane-bound state 
accounting for 10–15% of the total protein amount. In line 
with this, membranes of specific organelle such as the mito-
chondria and the ER, and synaptic vesicles have been shown 
to be associated at different extent with αS (Figure 3). 

αS can bind synaptic vesicles at the synapses and this 
binding is believed to mediate its synaptic function in neuro-
transmission. For instance, αS acts as a molecular chaperon 
to promote SNARE-complex assembly (Burré et al., 2010), 
which is necessary to regulate docking of synaptic vesicles 
to the cell membrane. Vesicle binding is mediated not only 
by the interaction with acidic phospholipids such as PE, PC, 
PS, or cholesterol, of which the synaptic vesicles are rich, but 
also by specific proteins such as SNARE-protein synapto-
brevin-2/vesicle-associated membrane protein 2 (VAMP2) 
(Diao et al., 2013). αS interaction with synaptic vesicles that 
occurs through a multimer conformation, promotes vesicu-
lar clustering and thus reducing synaptic vesicles trafficking 
and recycling (Wang et al., 2014). 

Moreover, αS has been found to be associated with the 
ER and Golgi in mice and human cells cultures (Colla et 
al., 2012a). Protease K sensitivity assays have shown how 
microsomes-associated αS is partially protected from di-
gestion, therefore associating with the lumenal side of the 
microsomes (a membrane fraction including ER/Golgi and 
synaptic vesicles) in mice and human cell lines (Lee, 2005; 
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Colla et al., 2012a). While no lipid binding involvement has 
been described yet, αS was found to bind, in αS Tg mice and 
human cell lines overexpressing αS, to gpr78/binding im-
munoglobulin protein (BIP), an ER chaperone bound to the 
luminal side of the ER, transiently associated with the ER 
translocon import pore, and directly implicated as a sensor 
of protein misfolding and initiator of the unfolded protein 
response (Bellucci et al., 2011; Colla et al., 2012a). Moreover 
overexpression of αS was shown to impair vesicular traffick-
ing at the ER-Golgi level in yeast and other organisms (Coo-
per et al., 2006) causing accumulation of ER proteins with 
induction of ER stress, Golgi fragmentation and depletion of 
lysosomal enzymes (Oaks et al., 2013; Mazzulli et al., 2016). 
Interestingly, this transport defect was rescued by overex-
pression of proteins implicated in vesicles transit from the 
ER to the cell membrane such as Rab1 (ER-Golgi), Rab8 
(Golgi) and Rab3A (post-Golgi) (Gitler et al., 2008) but also 
from endolysosomal pathway such as Rab-11A (recycling 
endosomal) (Breda et al., 2015), implicating a major role for 
αS in vesicle trafficking and recycling, outside the synapses. 

In addition, αS has been found to bind mitochondrial out-
er and inner membrane [(Devi et al., 2008; Nakamura et al., 
2008) and our lab (unpublished results)]. Since most of the 
data were obtained from in vivo observations, it is not clear 
whether this binding was based on lipids, according to αS 
preference to cardiolipin, which is rich in the mitochondria 
membranes, or was also mediated by specific proteins. Inter-
estingly a translocase of the mitochondria outer membrane 
has been described as responsible for the import of αS into 
the mitochondria and one of its subunit, TOM20, has been 

shown to bind αS in vivo (Di Maio et al., 2016). Moreover 
overexpression of αS was found to promote mitochondria 
dysfunction in αS Tg mice (Martin et al., 2006, 2014) and 
mitochondria fragmentation in vitro and in primary neu-
rons. This last effect was dependent on the direct interaction 
of αS with mitochondria since disruption of αS N-terminal 
membrane-binding domain, rescued mitochondria mor-
phology (Nakamura et al., 2011). 

Impact of Membrane Binding and Subcellular 
αS Localization In Vivo on αS Pathology
While αS cytosolic and membrane bound-state are both 
physiologically relevant, it still unclear how their localization 
affects αS pathology and where aggregation initiates. Accu-
mulating evidence has shown that membrane binding and 
lipid interaction can stimulate but also attenuate αS fibrilla-
tion (Narayanan and Scarlata, 2001; Lee et al., 2002; Jo et al., 
2004; Burre et al., 2015; Galvagnion et al., 2016). 

In line with this controversial aspect is the observation 
that point mutations in αS associated with familial PD are 
located in the N-terminal lipid-binding domain, suggesting 
that lipid binding can be implicated in αS acquired pathoge-
nicity. This is somewhat true for some point mutations such 
as A30P, where membrane binding is reduced while aggre-
gation increased, but not others. In fact pathological amino 
acid substitutions in αS such as A53T, E46K and H50Q, 
lead to an increase in fibril formation without affecting lipid 
binding (Bussell and Eliezer, 2004; Fredenburg et al., 2007; 
Khalaf et al., 2014) while other mutations such as G51D, 

Figure 2 α-Synuclein (αS) fibrils formation. 
In physiological conditions, αS has been reported to be a highly disordered 
monomer in a dynamic equilibrium with a multimer conformation when 
bound to synaptic vesicles (Weinreb et al., 1996; Burré et al., 2010, 2014; 
Fauvet et al., 2012; Theillet et al., 2016). Others have suggested that αS na-
tive structure is a homo-tetramer and dissolution of this latest conformation 
gives rise to an increase of the monomer form that drives pathology (Bartels 
et al., 2011; Wang et al., 2011; Dettmer et al., 2015a, b). Apart from its phys-
iological state, it is still unclear which conformation is more susceptible to 
aggregation. Formation of αS fibrils is a nucleation reaction in which solu-
ble αS monomer is converted to an insoluble β-sheet rich structure, tightly 
stacked in a parallel configuration, that give rise to protofibrils and fibrils 
(Lashuel et al., 2002; Vilar et al., 2008; Tuttle et al., 2016). During this pro-
cess, a heterogeneous population of intermediate configurations, collectively 
called oligomers, has been described in vitro (Cremades et al., 2012; Chen 
et al., 2015). αS fibrils obtained with in vitro fibrillation can have a ribbon or 
a fibril structure (Bousset et al., 2013; Guo et al., 2013). Both oligomers and 
fibrils can be toxic though with different mechanisms of pathology (Danzer 
et al., 2007; Peelaerts et al., 2015; Fusco et al., 2017). 

Figure 3 Influence of subcellular localization on α-synuclein (αS) 
oligomers/aggregates toxicity. 
αS has been found to selectively bind to synaptic vesicles, endo-
plasmic reticulum (ER)/Golgi and the mitochondria and mem-
brane binding seems to be part of its physiological function (Devi 
et al., 2008; Nakamura et al., 2008; Burré et al., 2010; Colla et al., 
2012a). Although it is still unclear if association with membranes 
interferes with or accelerates αS aggregation, accumulation of 
αS toxic species selectively along these subcellular locations can 
primarily impact specific cellular functions such as neurotrans-
mission, protein trafficking and mitochondrial respiration directly 
linked to the above-mentioned organelles. 
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attenuate both membrane binding and aggregation (Fares 
et al., 2014). Thus while membrane binding and aggregation 
may not always be directly correlated, other factors, besides 
point mutations, such as intramolecular interaction between 
the N and C termini or protein binding to the C-terminal 
can influence the propensity of αS to aggregate and com-
pensate for amino acid substitutions (Ulrih et al., 2008; 
Burré et al., 2010). In addition the presence of oxidative 
stress-induced posttranslational modifications of αS [such 
as nitrosylation, metal ion-catalyzed oxidation and presence 
of dopamine (or its oxidative metabolites) adducts] has been 
shown to increase oligomerization and, possibly, influence 
αS ability to bind vesicle membranes as a monomer or in 
an oligomer conformation (Binolfi et al., 2006; Xiang et al., 
2013; Follmer et al., 2015; Plotegher et al., 2017).

More recently, two independent papers proposed how two 
different small compounds, one of synthesis, NPT100-18A 
and the other naturally produced, squalamine, could reduce 
αS oligomers/aggregates content and subsequently rescue 
behavioural deficits in mice and worms, by interfering with 
αS binding to membranes (Wrasidlo et al., 2016; Perni et al., 
2017). Notably, while NPT100-18A and squalamine have a 
different origin, they both bind only to membrane-associ-
ated αS, inducing a rearrangement of the protein structure 
that would lead to a displacement from the lipids, therefore 
reducing the amount of aggregation-prone αS. Thus while 
these results greatly suggest that aggregation might initiate 
from a pathological conversion of the membrane-bound αS 
fraction, because αS membrane-binding is required for αS 
function, development of therapeutic strategy that would 
block aggregation by interfering with αS membrane binding 
has to be taken with caution. 

In vivo subcellular localization of αS and association with 
specific membranes can determine pathobiology processes 
connected to aggregation and neuronal degeneration. Our 
group and others (Colla et al., 2012a, b; Fagerqvist et al., 
2013) have shown that αS aggregates can be selectively asso-
ciated with the secretory pathway including the ER and Gol-
gi, in pathogenic conditions in αS Tg mice but not with oth-
er organelles such as the mitochondria. Notably in absence 
of pathology, aged Tg mice already accumulated specifically 
oligomer species associated with the ER, Golgi and synaptic 
vesicles before neuronal degeneration appearance. When 
compared to other αS species that co-precipitate at lower 
g, microsomes-associated αS oligomers (i.e., HMW species 
associated with membranes from the secretory pathway) 
obtained from healthy aged Tg mice with no overt accumu-
lation of αS insoluble aggregates, were increasingly harmful 
and able to induce apoptosis, after exogenous administra-
tion to murine neuronal cultures (Colla et al., 2018). Addi-
tionally, αS oligomers have been found to decrease axonal 
transport and influence microtubule stability, a condition 
that could exacerbate synaptic vesicles traffic dysfunction 
(Prots et al., 2013). 

At the synapse, exogenous administration of large oligo-
mers of recombinant αS was shown to bind synaptic vesicles 
through synaptobrevin-2 causing vesicle docking inhibition 

to the membrane (Choi et al., 2013) and to lower synapsin-I/
II abundance (Larson et al., 2017). Although direct mea-
surement of ER-Golgi traffic was not assessed in these con-
ditions, it is plausible that accumulation of toxic species of 
αS might affect the whole protein transport system from the 
ER to the membrane. Moreover, electrophysiology studies 
showed that αS oligomers impair long-term potentiation 
(Diogenes et al., 2012; Martin et al., 2012) and reduces neu-
ronal excitability (Kaufmann et al., 2016).

αS oligomers have been shown to be particularly toxic to 
mitochondria. Mitochondrial damage such as inhibition 
of complex I activity with subsequently increase of reactive 
oxygen radical production and oxidative stress (Devi et al., 
2008; Cremades et al., 2012), alteration of membrane poten-
tial and Ca2+ homeostasis, induction of mitochondrial frag-
mentation (Nakamura et al., 2011), mitochondrial protein 
import impairment (Di Maio et al., 2016), and, more recent-
ly externalization of cardiolipin to the outer mitochondrial 
membrane, a process that stimulates mitophagy in response 
to cellular stress (Ryan et al., 2018), has been associated with 
accumulation of toxic αS. High-ordered αS structure such as 
a small oligomer but not the monomer was found to be able 
to associate and cluster artificial mitochondria and induced 
fragmentation, a process similar to that described in the case 
of synaptic vesicles (Diao et al., 2013). In addition cardiolip-
in has been shown to associate and promote refolding of αS 
fibrils in vitro, a process negatively affected and reduced by 
the presence of PD-related αS point mutations (Ryan et al., 
2018). 

Because of most of those evidence were obtained in vitro, 
it is not clear whether mitochondria could be a primary site 
of aggregation or if mitochondrial dysfunction, due to toxic 
αS, might be the result of a secondary generalized spreading 
of αS aggregates in the neuron. Thus while more evidence 
will be necessary to fully understand the influence of mem-
brane binding on αS pathology, it is plausible to hypothesize 
that the initial pathologic transition of αS toward a toxic 
conformation might occur in proximity of the membranes 
in the above mentioned specific locations and then spread to 
other sites in neurons. 

Conclusions
αS has been found to shift between a free native conforma-
tion and a membrane-bound state in a dynamic equilibrium. 
What dictates this transition is not clear but αS has been 
found to associate with specific membranes in neurons such 
as that of synaptic vesicles and some cellular organelles, like 
the ER/Golgi and the mitochondria. Although it is still not 
clear whether membrane-bound αS is more susceptible to 
aggregation or binding to membrane prevents the pathologic 
conversion to toxic species, initial phases of αS aggregation 
might begin selectively along those specific membranes and 
compromise, as has been reported, processes linked to these 
sites such as synaptic transmission, protein folding and traf-
ficking, energy production. Initial damage from these sites 
would spread to other cellular functions, exacerbating αS 
aggregation and lead ultimately to neuronal demise. In line 
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with this, compounds that would modify αS interaction with 
membranes might inhibit the initiation of αS aggregation 
and clarify whether membranes are necessary for the initi-
ation of αS aggregation. At the same time though, a wide-
spread inhibition of αS binding to membranes might result 
in a decrease in cellular functions mediated by αS, therefore 
the use of such strategies in mammals might be difficult and 
not directly result in a pathology improvement. A way to 
bypass this problem could be to implement strategies that 
would act on the initial phases of cellular dysfunction de-
scribed above. New data will be necessary in the near future 
to clarify the impact that membrane binding and subcellular 
localization have on αS toxicity and to understand how to 
intervene in the early phases of the αS aggregation process 
before a generalized damage occurs. 
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