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1  | INTRODUC TION

Currently, one- third of earth’s continents are covered by degraded 
land, with various intensities of vegetation degradation (FAO, 2014). 
The monitoring of degraded vegetation is an important issue for 
grazing management, the identification of conservation area, eco-
logical restoration of degraded land across the globe. This requires 

an accurate and fast estimation of plant physiological parameters at 
multiple scales (Yuan et al., 2011; Xia et al., 2014). Leaf chlorophyll 
content (Chll), defined as total chlorophyll content [chlorophyll a 
(Chla) +chlorophyll b (Chlb)], is an important variable for global plant 
physiological status monitoring (Malenovský et al., 2013; Houborg, 
Fisher, & Skidmore, 2015a; Beck et al., 2016). Plant chlorophyll con-
tent is one of valuable diagnostic indicators for the early identification 
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Abstract
Extensive studies have focused on assessing leaf chlorophyll content through spec-
tral indices; however, the accuracy is weakened by limited wavebands and coarse 
resolution. With hundreds of wavebands, hyperspectral data can substantially cap-
ture the essential absorption features of leaf chlorophyll; however, few such studies 
have been conducted on same species in various degraded vegetations. In this inves-
tigation, complete combinations of either original reflectance or first- order derivative 
spectra we conducted a complete combination on either original reflectance or its 
first- order derivative value from 350 to 1000 nm to quantify leaf total chlorophyll 
(Chll), chlorophyll- a (Chla), and chlorophyll- b (Chlb) contents. This was performed 
using three hyperspectral datasets collected in situ from lightly, moderately, and se-
verely degraded vegetations in temperate Helin County, China. Suitable combina-
tions were selected by comparing the numbers of significant correlation coefficients 
with leaf Chll, Chla, and Chlb contents. The combinations of reflectance difference 
(Dij), normalized differences (ND), first- order derivative (FD), and first- order deriva-
tive difference (FD(D)) were found to be the most effective. These sensitive band- 
based combinations were further optimized by means of a stepwise linear regression 
analysis and were compared with 43 empirical spectral indices, frequently used in 
the literature. These sensitive band- based combinations on hyperspectral data 
proved to be the most effective indices for quantifying leaf chlorophyll content 
(R2 > 0.7, p < 0.01), demonstrating great potential for the use of hyperspectral data in 
monitoring degraded vegetation at a fine scale.
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and assessment of the overall health of the vegetation, indicating its 
degradation status (Gottardini et al., 2014; Peng et al., 2014). This 
will allow us to conduct restoration and revegetation actions where 
they are required. Remote sensing, including hyperspectral remote 
sensing, is one of the most common pathways for fast and nonde-
structive Chll content estimation at leaf and canopy scales (Elarab, 
Ticlavilca, Torres- Rua, Maslova, & McKee, 2015; Houborg et al., 
2015a). Numerous spectral indices have been developed to estimate 
leaf Chll and its composition. Hyperspectral data, with its hundreds 
of wavebands and 1–3 nm resolution, can greatly improve prediction 
accuracy, have attracted extensive attention and been regarded as 
a powerful proxy to extract the information of plant physiological 
parameters. Since then, extensive studies have been conducted aim-
ing at to develop better hyperspectral indices than before (Lu & Lu, 
2015; Liang et al., 2016). With the appearances of hyperspectral sat-
ellite (Marshall & Thenkabail, 2015), hyperspectral data demonstrate 
great potential for ecological application. To date, most published 
hyperspectral indices for estimating chlorophyll content gener-
ally use the wavelength domain ranging from 400 to 860 nm, on 
either original reflectance or derivative value- based indices (Peng, 
Gitelson, Keydan, Rundquist, & Moses, 2011). Most spectral indices 
are only applicable to vegetation types which are developed, subject 
to site- specific problems. Numerous indices were developed based 
on purely statistical analysis. Specific wavelengths selected through 
this method could change from one location to another, as lack in 
the consideration of leaf Chll absorption characteristics. It can rea-
sonable to deduce that hyperspectral indices developed on narrow 
bands sensitive to leaf Chll content could perform better than empir-
ical spectral indices solely based on several bands.

Currently, the first derivative value (FD) is often used to decom-
pose a mixed spectrum and reduce the noise in hyperspectral data 
(Yao et al., 2015). Many studies have demonstrated the potential of 
derivative spectra for estimating chemical contents of noncrop veg-
etation types (Chen, Li, Wang, Peng, & Chen, 2011; Cao, Wang, & 
Zheng, 2015). Derivative spectral indices are found very sensitive 
to Chll, among them the first- order derivative spectra are the best 
predictors for Chll content (Liang et al., 2016). However, few studies 
have examined the performance of first- order derivative spectra or 
its combinations in estimating leaf Chll content through wavelengths 
from 400 to 1000 nm, which is the frequently used domain in spec-
tra for most spectral sensors worldwide.

Considering above background analysis, this study uses the entire 
reflectance data ranges from 350 to 1000 nm, and complete combi-
nation of reflectance or its FD, followed by correlation and stepwise 
regression, which were not used before, to improve hyperspectral 
indices. The main aim of this study was therefore oriented toward 
developing suitable hyperspectral indices for estimating leaf chloro-
phyll content in temperate degraded vegetation. To achieve this key 
objective, this study will identify the narrow wavebands sensitive to 
these elements, through the comparison of correlation coefficients 
among a complete combination of reflectance and its FD. This will be 
performed across the entire available wavebands. We use a stepwise 
linear regression analysis for combination optimization. The newly 

developed indices are then compared with published empirical in-
dices in order to select the best performing hyperspectral indices 
for the estimation of leaf Chla, Chlb and Chll status. An extensive 
dataset of in situ hyperspectra and leaf Chla, Chlb, and Chll contents 
was collected over three degraded intensity vegetation sites in Helin 
County, Inner Mongolia over a 2- year period (2012–2013), and also 
used for simulation and validation.

2  | MATERIAL S AND METHODS

2.1 | Study area

The study was conducted in Helin County, Inner Mongolia, China. 
Helin County locates at the northern agro- pastoral ecotone, char-
acterized by a collection of flat plains, hills, and mountains with rela-
tively equal area (Figure 1). The highest elevation was 2031 meters 
and was a total area of 3401 square kilometers. Helin County has 
a temperate climate with obvious wet (summer) and dry (winter) 
seasons. Its annual average temperature is 5.6°C, with a seasonal 
average temperature of - 12.8°C in January and 22.1°C in July. The 
average annual precipitation is 417 millimeters, with approximately 
30 millimeters in January and 103 millimeters in July. The average 
wind speeds are slightly higher in spring and winter than in the sum-
mer and fall seasons. The average relative humidity for the whole 
year does not show obvious seasonal changes. The semi- arid climate 
supports sandy vegetations, in which grass and shrubs are predomi-
nant in this area.

2.2 | In- situ hyperspectral and chlorophyll 
measurements

In- situ datasets were collected from degraded sparse- forest 
grassland in Helin County (Fig. 1). The degradation intensity of 
vegetation was classified into three intensities: light, moderate 

F IGURE  1 The land use map of Helin County, China, indicates 
the location of present study
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and severe degradation, according to canopy coverage, plant 
diversity and soil conditions (Peng et al., 2014). Light degraded 
vegetation has highest canopy coverage (76%), species diver-
sity (richness is 32 and Shannon–Weaner index is 2.36) and soil 
moisture (Relative weight in 20 cm soil depth, 24%), followed by 
moderate (52%, 28 and 1.34, 16%) and severe degraded vegeta-
tion (33%, 22 and 0.88, 7%). The field measurements were col-
lected on July 2012 and August 2013 at the climax of the growing 
period in the area of study and under clear sky conditions be-
tween 10:00 and 14:00 local time (Beijing Time). Hyperspectral 
data, from the middle leaf samples of seven plants in each six 
dominant plant species in light, moderate and severe degradation 
vegetation, respectively, were recorded using a Hand–Held ASD 
portable FieldSpec 2 spectrometer (Analytical Spectral Devices 
Inc., USA). The spectrometer has a spectral range extending from 
325 to 1075 nm, and a 1 nm bandwidth. Leaf reflectance values 
were acquired through a leaf clip attached to the device with an 
optical fiber. The source of light was integrated in the leaf clip 
and the black reference panel on the opposing side was used to 
calibrate the instrument for the reflectance values. Leaf chloro-
phyll content measurements were punched after leaf reflectance 
measurements and then analyzed in the field using dual- beam 
scanning ultraviolet- visible spectrophotometers (Ultrospec 
3300 pro, Amersham Biosciences, Piscataway, NJ, USA). Arnon’s 
method (1949) was applied to calculate leaf Chla, Chlb and Chll 
contents after absorption. Totally, there were 126 samples ac-
quired (7 plants multiple by 6 species multiple by 3 intensities) 
as original reflectances and leaf Chla, Chlb, Chll measurements, 
respectively. Of these, 64- pair samples were used for spectral 
models construction, 80- pair samples (for empirical indices) and 
30- pair samples (for new indices) were used for validation of 
every leaf chlorophyll content, respectively.

2.3 | Hyperspectral indices 
development and validation

In the raw data, the marginal ranges 325–350 nm and 1,000–
1,075 nm from each spectrum were removed due to noise ef-
fects. The aim of spectral indices is to construct a mathematical 
combination of spectral band values for enhancing the informa-
tion content in regard to the parameter under study. Most pub-
lished indices (Stagakis, Markos, Sykioti, & Kyparissis, 2010; Inoue, 
Sakaiya, Zhu, & Takahashi, 2012) are expressed as reflectance (Ri) 
or a first- order derivative (FD) at a given wavelength, wavelength 
difference (Dij), ratio (RR), normalized difference (ND) or inverse 
reflectance differences (ID). Thus, ten common types of indices 
based on both original reflectance and derivative spectra, as fol-
lows, were used in this study:

where R is reflectance, FD is first- order derivative spectra and the 
suffixes (i or j) are wavelength(nm). In the entire wavelength domain 
ranging from 350 to 1,000 nm, these indices were evaluated by cor-
relation analysis with leaf Chll and its composition. The optimum 
wavelength representing Chll, Chla and Chlb content was identified 
based on the highest R2 between the in- situ hyperspectral data and 
leaf Chll contents.

The sensitive bands will be further filtered through stepwise 
multiple linear regression analysis. Stepwise multiple linear regres-
sion analysis can reduce the redundancy collinear spectral variables 
to a few noncorrelated latent variables, thereby avoiding the poten-
tial overfitting problems that are typically suffered with correlation 
analysis (Yu et al., 2013; Luo et al., 2017).

Still, in order to evaluate our developed hyperspectral indices, 
we have derived 43 empirical frequently used indices from the pub-
lished literature. We compared the performance of the empirical in-
dices with newly developed hyperspectral indices by comparing the 
R2 value and its significant level.

The final spectral indices, which were extracted from narrow 
sensitive narrow bands, passed the statistical significant significance 
test, performed better than empirical indices, would and can be re-
garded as a global index which will sufficiently represent leaf Chll 
content.

3  | RESULTS

3.1 | Hyperspectral curves

We first investigated the hyperspectral curves of degraded vegetations 
with various degradation intensities and estimated to what degree the 
spectral response differentiates. It is obviously the reflectances dif-
fered along degradation intensities (Figure 2). We performed a t- test for 
the bands at 350 and 1,000 nm which represent the optical and near- 
infrared zones. For each pair datasets, the p value was less than 0.05, 
indicating that the discrepancies between degradation intensities are 
statistically important. Thereafter, the development of new hyperspec-
tral indices and utilization of empirical spectral indices should be con-
ducted on three degradation intensities. Finally, the indices which have 
the high consistency and high accuracy across three degradation intensi-
ties were selected as the best indices to predict leaf chlorophyll content.

(1)R=Ri

(2)Dij=Rj−Ri

(3)RR=Rj∕Ri

(4)ND= (Rj−Ri)∕(Rj+Ri)

(5)ID=1∕Rj−1∕Ri

(6)FD=FD(Ri)

(7)FD(D)=FD(Dij)=FD(Rj)−FD(Ri)

(8)FD(RR)=FD(Rj)∕FD(Ri)

(9)FD(ND)= (FD(Rj)−FD(Ri))∕(FD(Rj)+FD(Ri))

(10)FD(ID)=1∕FD(Rj)−1∕FD(Ri)
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3.2 | Correlation curves of the combines with Chla, 
Chlb and Chll

Figure 3 presents an indicative subset of the results of the R, Dij, 
RR, ND, ID, and FD, FD(D), FD(RR), FD(ND) and FD(ID) related 
with leaf Chla, Chlb and Chll content, respectively. These graphs 
show the various combinations of reflectance with against plant 
Chll content, and the presence of correlations. According to Inoue 
et al. (2012), such plots can provide a significant source of infor-
mation to correlate the physiological parameters under study. This 
allows us to optimize the selection of effective wavelengths and 
bandwidths. The figures indicate that the correlation curves of Rij 
with Chla, Chlb, and Chll are very similar, which can be attributed 
to the fact that both leaf chlorophyll ingredients are proportion-
ally composed and thus spectroradiometers’ values are propor-
tionally recorded. For correlation curves of FD, its combinations 
were also similar. Both FD curves and its combinations curves 
demonstrate a high variability across wavelengths from violet to 
near- infrared light.

3.3 | Development of new hyperspectral indices

By Figure 3, it is obvious the significant coefficients lie in the bands 
of violet, blue, most red and near- infrared light. Middle range of red 
bands is relatively low in the number of significant coefficients, as it 
is the chlorophyll absorption region. Cyan, green and yellow bands 
have the relatively few numbers of significant coefficients than 
other bands. By comparing of the number of significant correla-
tion coefficients with each leaf chlorophyll content, the combina-
tions of Dij, FD(D), RR and ND for Chla, RR, ND, FD(R) and FD(D) for 
Chlb, Dij, RR, ND, FD(R) and FD(D) for Chll, have the most number 
of significant correlation coefficients and thus were selected as the 
sensitive combinations to indicate leaf Chla, Chlb and Chll content, 
respectively.

However, the correlation coefficients of the combinations as Dij, 
ND, RR, and FD(D) and FD(R), vary across the wavelengths. For ex-
ample, the correlation coefficient for Dij with leaf Chlb content is 
significant in one band yet insignificant in the neighboring regions 
of the spectrum. Some bands have significant coefficients among 

several combinations, that is, it is not only significant in the Dij curve, 
but also in the ND and FD(D) curves. Thus, the bands with the larg-
est number of significant coefficients among all of the combination 
curves were identified as the most sensitive bands. The identifica-
tion of sensitive bands for each combination is also important as it 
can narrow the wavelength range, and hence may yield a more pow-
erful indicator of plant leaf Chll content. By counting the number 
of significant correlation coefficients, the sensitive bands for each 
selected combination were identified. Using this method, a total of 
28 sensitive bands were identified for leaf Chll content. We used a 
stepwise linear regression analysis to further identify the best bands 
among the 28 sensitive bands selected above. This allowed us to find 
the best combination of bands for each index. Once this step had 
been completed, four regression equations were established for leaf 
Chll, Chla, and Chlb content, respectively (Table 1).

3.4 | Empirical hyperspectral indices assessment

There are 43 frequently used empirical indices cited in the previous 
studies. These have been selected as the reference indices. Table 2 
lists the correlation coefficients of the 43 empirical indices along with 
our in- situ spectral measurements for the three degradation inten-
sities. An obvious fluctuation in correlation coefficients among the 
different degradation intensities is observed. For Viopt, FD525- 570, 
MSS- DVI, RES, SDb and SDr, their values are significantly negative 
when the degradation intensity is light. However, they become sig-
nificantly positive when the degradation intensity is severe. Contrary 
to these indices, NVI and SDy have significantly positive when the 
degradation intensity is light and significantly negative when inten-
sity is severe. A desirable hyperspectral index, which can be widely 
and easily used, should perform steadily and accurately under all of 
the different degradation intensities for the same type of vegetation. 
Based on this criterion, we considered the consistency and the num-
ber of significant correlation coefficients across the three degrada-
tion intensities. Three spectral indices were finally selected for leaf 
Chll estimation ((SDr − SDy)/(SDr + SDy), SDr/SDy, DVI). These indi-
ces have high consistency and good performance (Table 2). Also, the 
comparison of R2 values between the optimized stepwise regression 
indices (which we derived from the complete combinations (Table 1)) 

F IGURE  2 Mean leaf reflectance (left), the first deviation (right) and 95% confidence intervals (in light gray) for the samples collected 
from the light, moderate and severe degradation vegetations in Helin County, Inner Mongolia, China
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and the empirical indices (Table 2), reveals that the R2 values of the 
proposed stepwise regression indices are significantly higher than the 
best performing empirical indices.

In order to conduct an empirical index- based leaf Chll content 
assessment, we must establish a suitable equation for each of the 
three selected indices from Table 2. The linear regression equations 
were established (Table 3) based on field survey leaf parameters (Chll, 
Chla, Chlb), and the corresponding empirical indices ((SDr − SDy)/
(SDr + SDy), SDr/SDy, DVI) for all three degradation intensities. This 
indicates that all three empirical indices can predict leaf Chll content at 
a statistically significant level, except for the DVI for leaf Chlb content.

3.5 | The validation of the selected 
empirical indices and the newly developed 
hyperspectral indices

We used the newly developed (Table 1), and selected empirical 
(Table 3) spectral indices to predict plant Chll content on other test 

samples. Based on both the predicted values for each leaf chloro-
phyll parameter, and those from the field survey, the linear regres-
sion and correlation coefficients were established and calculated. 
In total 21 graphics were created (Figure 4) showing the relation 
between predicted values and those measured in the field. In most 
cases, the R2 of the empirical model predictions was considerably 
lower than that calculated from the newly developed models. Even 
this, the empirical models also statistically satisfy the plant param-
eter assessment, as indicated by significant correlation coefficients. 
It is also interesting that the leaf Chla content can be perfected bet-
ter predicted by both the new and empirical indices, than the other 
two leaf parameters.

4  | DISCUSSION

It is convenient to estimate leaf Chll content by means of spectral in-
dices retrieved from observed reflectances by a handheld spectrom-
eter. The complete combinations of reflectance and its first- order 
derivative value across the entire band acquired by the ASD spec-
trometer were constructed. The sensitive bands were identified, and 
the most suitable models of combined sensitive bands were further 
selected. The results demonstrate that the newly developed models 
perform better than solely empirical spectral indices in estimating 
plant leaf Chla, Chlb, and Chll contents.

Most previous studies developed spectral indices based on vis-
ible bands ranging from 400 to 760 nm, on either original reflec-
tance or derivative value- based indices (Peng et al., 2011). This is 
because chlorophyll strongly absorbs light at blue (400–500 nm) and 
red (600–700 nm) regions, and does not include light in the green, 
orange (500–600 nm), and near- infrared regions (Houborg et al., 
2015b; Beck et al., 2016; Sonobe & Wang, 2017). Wider spectra may 
capture more information of leaf physiological status. Our study 
demonstrated several bands beyond 760 nm are also highly sensitive 
to leaf Chll content. The NIR reflectance, is known to be affected 
by leaf anatomical structure such as leaf thickness, cell walls, and 
intracellular air spaces (Slaton, Hunt, & Smith, 2001), could also indi-
cate leaf Chll content (Pastorguzman, Atkinson, Dash, & Riojanieto, 
2015), more obviously under the condition of high chlorophyll con-
centrations (Gitelson & Merzlyak, 2003). Compare to limited combi-
nation on original reflectance within visible region in previous some 
studies, we conducted a complete combination on either original 
reflectance or its first- order derivative value, through wavelengths 
from 350 to 1,000 nm. It has increased the possibility to find more 
suitable combinations than limited wavelengths used by before.

Many empirical spectral indices are derived from satellite imag-
ery, as 43 indices used in this study, usually encounter the problem 
of confound signals. The compound signals which satellite sensors 

TABLE  1 The stepwise linear regression equations indicate leaf 
chlorophyll parameter, based on sensitive bands selected from 
reflectance and FD combinations

Regression equations R2 Adjusted R2

Chla = 0.090 − 185.914D456 + 89.698
D827 − 39.711D811

0.830 0.808**

Chlb = 0.095 − 32.502D416 + 18.779D

760 − 8.401D907

0.769 0.719**

Chll = 0.202 − 217.788D456 + 121.746
D827 − 115.428D429

0.839 0.804**

Chla = 0.156 − 4.209ND900 − 13.995N
D456 + 33.639ND827

0.790 0.745**

Chlb = 0.06 − 1.285ND416 − 5.95ND630 
− 8.584ND633

0.705 0.641**

Chll = 0.251 − 17.704ND456 − 4.824N
D416 + 36.932ND827

0.795 0.751**

Chla = 0.202 + 325.288FD739 − 130.4
58FD924 − 95.617FD430

0.812 0.771**

Chlb = 0.095 − 94.253FD481 + 62.661
FD484 + 40.558FD679

0.769 0.720**

Chll = 0.31 + 518.714FD739 − 210.946
FD610 + 116.305FD928

0.778 0.730**

Chla = 0.065 − 144.602FDD428 + 216.
371FDD498 + 159.810FDD489

0.874 0.847**

Chlb = 0.046 − 37.145FDD428 − 82.51
4FDD480 − 33.461FDD821

0.876 0.849**

Chll = 0.198 − 155.812FDD428 + 471.0
14FDD739 + 177.699FDD647

0.870 0.842**

Note. D = Dij, FDD = FD(D) = FD(Dij); D123 indicates the D value at 123 
band; significant level is indicated by *(at 0.05 level) or **(at 0.01 level).

F IGURE  3 The correlation coefficient curves of combinations of Ri, Rj with leaf Chla, Chlb and Chll content, respectively. The x- axes 
indicate the wavelength ranges from violet, blue, cyan, green, yellow, orange, red to near- infrared light (350–1000 nm). The y- axes indicate 
the correlation coefficient. The curves in light dark indicate nonsignificant coefficients, in deep dark indicate significant coefficients with 
p < 0.05
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TABLE  2 The correlation matrix of empirical spectral indices with leaf Chll contents along degradation gradient

Indices

Light degradation Moderate degradation Severe degradation

Chla Chlb Chll Chla Chlb Chll Chla Chlb Chll

NDVI705 −0.065 0.098 −0.016 −0.250* −0.190 −0.232* 0.122 0.084 0.114

mNDVI705 0.113 0.253* 0.174 −0.210* −0.156 −0.194* 0.077 0.081 0.079

mSR705 0.032 0.219* 0.100 −0.340** −0.258** −0.315** 0.074 0.046 0.068

REP 0.171 0.298** 0.234* 0.042 0.029 0.038 −0.118 −0.129 −0.122

VOG1 −0.010 0.181 0.055 −0.342** −0.255** −0.315** 0.086 0.055 0.079

VOG2 −0.035 −0.215 −0.101 0.270** 0.174 0.237* −0.066 0.001 −0.049

VOG3 −0.026 −0.211 −0.093 0.287** 0.191 0.254** −0.071 −0.004 −0.054

PRI 0.106 0.247* 0.167 −0.317** −0.224* −0.286** 0.264* 0.235* 0.259*

OSAVI −0.152 −0.061 −0.137 −0.108 −0.086 −0.102 0.173 0.122 0.162

NVI 0.228* 0.283** 0.272* −0.235* −0.157 −0.208* −0.320** −0.329** −0.326**

NDCI −0.166 0.007 −0.125 −0.215* −0.164 −0.200* 0.051 0.000 0.038

RI1 dB −0.020 0.170 0.043 −0.358** −0.269** −0.331** 0.083 0.064 0.078

MCARI1 −0.344** −0.108 −0.301** −0.244* −0.266** −0.263** 0.217 0.156 0.203

DVI −0.350** −0.108 −0.305** −0.181 −0.206* −0.199* −0.083 −0.026 −0.069

TVIBL −0.388** −0.215 −0.372** −0.226* −0.260** −0.250* 0.223* 0.159 0.209

GREEN- NDVI −0.157 0.039 −0.107 −0.224* −0.176 −0.211* 0.044 −0.002 0.032

Viopt −0.321** −0.109 −0.284** −0.257** −0.256** −0.266** 0.250* 0.174 0.233*

RVI(810,560) −0.144 0.071 −0.085 −0.283** −0.226* −0.268** 0.061 0.006 0.047

RVI(950,660) −0.200 −0.069 −0.177 −0.190 −0.148 −0.178 0.184 0.136 0.173

RVI(810,660) −0.195 −0.084 −0.178 −0.217* −0.188 −0.212* 0.220* 0.150 0.204

NDVI(573,440) −0.443** −0.441** −0.491** 0.129 0.078 0.111 0.099 0.049 0.087

FD730- 525 −0.159 0.003 −0.121 −0.413** −0.295** −0.375** 0.110 0.068 0.100

FD730/525 −0.075 0.004 −0.056 −0.249* −0.145 −0.210* 0.021 −0.069 −0.002

FD(730- 525)/
(730 + 525)

−0.110 −0.006 −0.087 −0.059 −0.027 −0.047 −0.005 0.039 0.007

FD730- 570 −0.235* −0.084 −0.209 −0.389** −0.268** −0.349** 0.182 0.127 0.169

FD730/570 0.121 −0.123 0.046 0.517** 0.403** 0.481** −0.052 0.001 −0.039

FD(730- 570)/
(730 + 570)

0.156 0.094 0.152 0.280** 0.287** 0.294** 0.044 0.031 0.041

FD525- 570 −0.250* −0.244* −0.276* −0.121 −0.059 −0.097 0.220* 0.163 0.207

FD525/570 0.105 0.104 0.127 0.068 0.008 0.042 −0.104 −0.104 −0.105

FD(525- 570)/
(525 + 570)

−0.370** −0.221 −0.370** 0.176 0.118 0.172 0.170 0.184 0.175

MSS- DVI −0.378** −0.256* −0.378** −0.416** −0.348** −0.400** 0.265* 0.199 0.251*

MSS- PVI −0.343** −0.102 −0.298** −0.087 −0.113 −0.102 −0.023 −0.066 −0.035

MSS- SARVI −0.258* −0.126 −0.241* −0.196* −0.163 −0.188 0.200 0.130 0.184

AVHRR- GVI −0.219* −0.199 −0.236* −0.116 −0.103 −0.114 0.095 0.106 0.099

SDr- SDb −0.240* −0.148 −0.235* −0.380** −0.273** −0.346** 0.227* 0.175 0.215

RES −0.293** −0.162 −0.281* −0.415** −0.312** −0.384** 0.234* 0.184 0.223*

SDb −0.321** −0.372** −0.374** 0.083 0.065 0.078 0.222* 0.165 0.209

SDy 0.313** 0.240* 0.323** −0.068 −0.108 −0.089 −0.225* −0.196 −0.219*

SDr −0.272* −0.195 −0.275* −0.354** −0.254** −0.322** 0.231* 0.177 0.219*

SDr/SDb 0.078 0.189 0.125 −0.422** −0.301** −0.383** −0.136 −0.019 −0.107

SDr/SDy −0.261* −0.208 −0.273* −0.031 −0.102 −0.065 −0.213 −0.254* −0.225

(Continues)
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received are confounded by the influence of atmospheric effects, 
vegetation characteristics and background reflectance (Daughtry, 
Walthall, Kim, & de Colstoun, 2000). The first- order derivative spec-
tra, which may be calculated approximately by dividing the differ-
ence in reflectance between successive wavebands, can eliminate 
background noise and resolve overlapping spectral features (Aneece, 
Epstein, & Lerdau, 2017). FD was widely used in various indices for 
estimation vegetation parameters with a considerable higher accu-
rate (Chen et al., 2011; Cao et al., 2015) than other indices. In the 
present study, the FD- based indices were great success in estimat-
ing plant leaf Chll and its composition, even we conducted mea-
surements at leaf level which has not background noise and resolve 
overlapping spectral matters. Thus we strongly suggest FD should be 
used as an independent variable to estimate plant leaf Chll content.

A high consistence in estimating plant parameters across various 
degraded vegetations should also be a criterion for desirable spec-
tral indices (Lu & Lu, 2015). We used three intensities of degraded 
vegetations to test the consistence and credibility of proposed 
spectral indices. Discrepancies in reflectance and its FD tend to be 
more pronounced with degradation intensity increase, may partly be 
explained by the increase in vertical Chll distribution in light deg-
radation vegetation (Gitelson, Peng, Arkebauer, & Schepers, 2014) 
than severe degraded vegetation. In the severe degraded vegeta-
tion, with decreases in canopy Chll content, the absorption capacity 
also decreases, reflected by lower reflectance values in visible and 
red edge spectrum than those in the light degraded vegetation (Peng 
et al., 2014). A desirable hyperspectral index, which can be widely 
and easily used, should perform steadily and accurately under all of 
the different degradation intensities for the same type of vegeta-
tion. Using degraded vegetations with various degradation intensi-
ties, can therefore assess the consistence and accuracy of empirical 
indices, as significant differences were observed in either reflec-
tance or leaf Chll contents among degradation intensities.

The identification of narrow- specific bands is also contributed to 
the perfect results. By correlation curves comparison and stepwise 
linear regression analysis, the sensitive bands to leaf Chll content 
have been identified in the present study. For Chla, the sensitive 
bands are concentrated on 450, 820 and 910 nm. For Chlb, they are 
416, 480, 630 nm, for Chll, they are 450, 739 and 827 nm. These sen-
sitive bands are located in the characterized domain of each leaf Chll 
parameter (Schlemmer et al., 2013; Sanches, Filho, & Kokaly, 2014). 
It is argued that the narrow bands can capture the Chl- a reflectance 
red minimum and near- infrared peak, estimate Chl- a concentrations 
well (Beck et al., 2016). Our study confirmed this deduction. It is 
valuable to notice that the selection of sensitive bands by stepwise 
linear regression can greatly improve the predictive performance. As 
a “full spectrum” method, stepwise linear regression can not only 
efficiently deal with the strong multi- collinearity problem, but also 
considers the covariance problem in the model response/dependent 
variable(s) (Yu et al., 2013; Luo et al., 2017). Therefore, it is better to 
deal with potential confounding factors rather than employ a simple 
index- based approach.

The present study has considerable applicable potential for 
practice. Compared with multiple- spectral imagery, the hyperspec-
tral data gained by handheld portable device has the advantages of 
high spectral resolution, low labor cost, and less affected by atmo-
sphere layer and background environment. It is more suitable when 
carrying out repeat measuring on fine- habitat vegetations over large 
areas, especially for croplands, grasslands and desert vegetation. 
With the appearance of more and more satellite- based hyperspec-
tral data, that is, Hyperion onboard Earth Observing- 1 (EO- 1), with 
10- nm spectral information from 350 to 2,500 nm, and several other 
satellite- based hyperspectral sensors, a robustness index for quanti-
fying chlorophyll concentration would have wide application. In ad-
dition, the combination of hyperspectral data and satellite/airborne 
imagery can greatly improve the interpretation precision. This will 

Indices

Light degradation Moderate degradation Severe degradation

Chla Chlb Chll Chla Chlb Chll Chla Chlb Chll

(SDr−SDb)/
(SDr+SDb)

0.126 0.209 0.169 −0.357** −0.249* −0.321** 0.117 0.145 0.126

(SDr- SDy)/
(SDr+SDy)

0.080 0.070 0.085 0.234* 0.218* 0.235* 0.227* 0.199 0.222*

Notes. The bold indices indicate the indices which have consistence and significant correlation coefficients across all gradients.
Significant level is indicated by *(at 0.05 level) or **(at 0.01 level).

TABLE  2  (Continued)

TABLE  3 The predictions for leaf chlorophyll contents from the empirical spectral indices selected in Table 2

Indices Chla R2 Chlb R2 Chll R2

(SDr- SDy)/(SDr+SDy) y = 0.4585x − 0.3008 0.0546** y = 0.3312x − 0.2756 0.0475* y = 0.7897x − 0.5765 0.0553*

SDr/SDy y = −0.0008x + 0.1393 0.0681* y = −0.0003x + 0.0497 0.0431* y = −0.0011x + 0.189 0.0744*

DVI y = −2E- 05x + 0.2453 0.1222** y = −4E − 06x + 0.0804 0.0333 y = −2E − 05x + 0.3133 0.093**

Note. Significant level is indicated by *(at 0.05 level) or **(at 0.01 level).



7076  |     PENG Et al.



     |  7077PENG Et al.

extend the usage of hyperspectral data to a wider scope, as eco- 
restoration, eco- condition assessment, and precise agriculture.

5  | CONCLUSION

Complete combinations (value at a given wavelength, wavelength dif-
ference, value ratios, normalized differences, and inverse differences) 
based on either original reflectance or first- order derivative spectra 
have been developed to quantify leaf chlorophyll and its composition 
content using three datasets collected in- situ from light, moderate and 
severe degraded vegetations in temperate Inner Mongolia, China. The 
best combinations identified have further been optimized by sensi-
tive bands selection and stepwise linear regression analysis, and were 
compared with the 43 empirical indices frequently used in the litera-
ture. By validating, the proposed indices proved to be the most effec-
tive indices for quantifying chlorophyll contents (R2>0.7 and p < 0.01), 
demonstrating great potential for using hyperspectral data in vegeta-
tion physiological monitoring at a fine scale. While these, hyperspec-
tral indices are spectrally very narrow and can be applied only when 
the spectrometer has a very high spectral resolution of 1–3 nm. The 
new understandings obtained in this study may help to improve the 
potential of hyperspectral data for world degraded vegetation moni-
toring. Using these proposals, hyperspectral indices can improve the 
data quality of satellite/airborne imageries through scale conversion. 
Future work will encompass more sensors other than hyperspectral 
devices from satellite, airborne, and LiDAR, to make an application 
and comparison on plant physiological assessment of desert, grass-
land, and cropland vegetations. Such research will help us to better 
understand the dependability of hyperspectral models and to extend 
the scope of its application.
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