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Texture Analysis as Imaging 
Biomarker for recurrence in 
advanced cervical cancer treated 
with CCRT
Jie Meng1, Shunli Liu1, Lijing Zhu2, Li Zhu1, Huanhuan Wang1, Li Xie2, Yue Guan3, Jian He1, 
Xiaofeng Yang4 & Zhengyang Zhou1

This prospective study explored the application of texture features extracted from T2WI and apparent 
diffusion coefficient (ADC) maps in predicting recurrence of advanced cervical cancer patients treated 
with concurrent chemoradiotherapy (CCRT). We included 34 patients with advanced cervical cancer 
who underwent pelvic MR imaging before, during and after CCRT. Radiomic feature extraction was 
performed by using software at T2WI and ADC maps. The performance of texture parameters in 
predicting recurrence was evaluated. After a median follow-up of 31 months, eleven patients (32.4%) 
had recurrence. At four weeks after CCRT initiated, the most textural parameters (four T2 textural 
parameters and two ADC textural parameters) showed significant difference between the recurrence 
and nonrecurrence group (P values range, 0.002~0.046). Among them, RunLengthNonuniformity 
(RLN) from T2 and energy from ADC maps were the best selected predictors and together yield an AUC 
of 0.885. The support vector machine (SVM) classifier using ADC textural parameters performed best 
in predicting recurrence, while combining T2 textural parameters may add little value in prognosis. T2 
and ADC textural parameters have potential as non-invasive imaging biomarkers in early predicting 
recurrence in advanced cervical cancer treated with CCRT.

Cervical cancer is the fourth leading cause of cancer death in females worldwide. Concurrent chemoradiother-
apy (CCRT) is the standard treatment for locally advanced cervical cancer. However, approximately one third of 
patients would experience recurrence1,2. By using tumor morphology-based response criteria, tumor recurrence 
is frequently not detected until many months after the completion of primary therapy. The heterogeneous ther-
apy responsiveness and the dilemma in reliably predicting the long-term treatment outcome presents a major 
challenge for developing a more precise personalized care3. If there are reliable biomarkers that can early identify 
patients who are at high risk of recurrence, clinicians could adjust treatment regimen (such as dose escalation or 
addition of adjuvant therapies) in time for those patients.

As a noninvasive functional imaging technique, diffusion weighted imaging (DWI) has been widely used in 
the prediction of treatment outcome in cervical cancer research but the accuracy is limited. For example, there 
were conflicting reports about whether pretreatment apparent diffusion coefficient (ADC) related parameters had 
prognostic value4,5. There is emerging evidence that decreases in tumor heterogeneity generally associated with 
improved outcomes6. However, previous imaging prognostic biomarkers were usually derived from mean values 
or simple histogram analysis, which were insufficient for assessing intratumor spatial heterogeneity7,8.

Texture analysis refers to a variety of mathematical methods that can evaluate the gray-level intensity and 
position of the pixels within an image. It generates a range of quantitative imaging features so-called ‘texture 
features’ that provide a measure of intralesional heterogeneity9. Texture analysis has been applied to computed 
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tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) studies. It was 
reported that some pretreatment texture features as well as changes of texture features were associated with treat-
ment outcome in various tumors10–13. To date, there have been a few reports on cervical cancer prognosis using 
texture analysis. Sylvain et al. and Ho et al. found texture features extracted from PET images could predict recur-
rence of cervical cancer better than SUVmax while PET is less clinically used than MRI with radiation exposure14,15. 
Jeffrey et al. reported that texture features based on dynamic contrast-enhanced MRI (DCE-MRI) performed well 
in prediction recurrence but with a very limited sample size of 2316. Most studies on MR texture analysis used 
functional imaging such as DCE and DWI to obtain texture features, attentions have also been paid to the appli-
cation to routine T1- and T2- weighted images (T2WI)17,18.

It is known that the ADC values are affected by perfusion, diffusion factors and artifacts. Furthermore, DCE 
MR imaging uses contrast media containing gadolinium which could induce nephrogenic systemic fibrosis in 
patients. Thus, recently, texture analysis based on T2WI have been investigated in oncologic imaging by sev-
eral groups. Vignati et al. found that some texture features calculated on T2WI outperform ADC parameters in 
predicting prostate cancer aggressiveness19. A recent study reported that texture features were associated with 
pathologic complete response only at T2WI but not at DCE in breast cancer treated with neoadjuvant chemother-
apy20. Carlo et al. demonstrated the efficacy of using texture analysis based on T2WI to predict tumor response 
to neoadjuvant chemoradiotherapy in rectal cancer21. To the best of our knowledge, there have been no previous 
reports examining texture analysis based on routine T2WI or DWI sequences for the prognosis of cervical cancer.

In the present study, we aimed to explore more promising texture features extracted from pre- and 
post-treatment T2WI and ADC maps to non-invasively predict recurrence of advanced cervical cancer patients 
treated with CCRT.

Results
Follow-up outcome.  Among the 34 patients, 23 patients (23/34, 67.6%; mean age, 47.2 years) showed non-
recurrence and the remaining 11 patients (11/34, 32.4%; mean age, 54.7 years) were classified as recurrence group 
(4 deaths, 5 local recurrence, and 2 disease progression). Two representative cases of cervical cancer with different 
long-term prognosis illustrate the difficulty of predicting recurrence for clinicians (Fig. 1).

Texture parameters between different prognosis groups.  At timepoint 1, Only several T2 textual 
parameters including 5 Percentile, range and RLN showed significant difference between the recurrence and 
nonrecurrence groups. (P values: 0.004, 0.008, 0.015).

At timepoint 2, T2 textual parameter RLN and ADC textural parameter correlation-GLCM25 were significant 
different between groups. (P values: 0.023; 0.011).

Figure 1.  T2-weighted MR images of two representative patients with cervical cancer during the course of 
concurrent chemoradiotherapy (CCRT). (A–D) a 46-year-old woman with cervical cancer (the international 
federation of gynecology and obstetrics FIGO stage, IIB) who had recurrence 8 months after CCRT completed. 
(E-H) a 59-year-old woman with cervical cancer (FIGO stage, IIIB) who maintained complete response during 
follow-up. (A,E) before CCRT, tumor of the recurrence case is smaller than tumor of the nonrecurrence case; 
(B,F) 2 weeks after CCRT initiated, tumor shows a significant decrease in size in both cases; (C,G) 4 weeks 
after CCRT initiated, tumor continues to shrink in both cases; (D,H) one month after CCRT completion, no 
obvious residual lesions could be seen on T2w images of both cases. Those two representative cases illustrate the 
difficulty of predicting cervical cancer recurrence for clinicians.
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At timepoint 3, T2 textual parameters 5 Percentile, RLN, GaussAmplitude, contrast-NIDM and ADC textural 
parameters correlation-GLCM25, energy showed significant difference between groups. (P values: 0.039, 0.002, 
0.044, 0.003; 0.034, 0.002).

At timepoint 4, only two ADC textural parameters LRHGE and GaussAmplitude were significant different 
between groups. (P values: 0.034, 0.046).

The variety trends of textural parameters that can differentiate the recurrence and nonrecurrence groups are 
shown in Fig. 2.

Logistic regression models for predicting recurrence.  At timepoint 2, with the best selected predictor 
as RLN from T2WI, the AUC for predicting recurrence was 0.739.

At timepoint 3, for T2 texture analysis, RLN was the best selected predictor and yield an AUC as 0.787. For 
ADC texture analysis, energy was the best selected predictor and yield an AUC as 0.775. After combining all 
parameters from T2WI and ADC maps, with the best selected predictors as RLN from T2WI and energy from 
ADC maps, the AUC could be improved to 0.885, though there were no significant differences between any two 
AUCs of the features (all P values > 0.05). The ROC curves of each regression model in predicting recurrence are 
displayed in Fig. 3. The detailed performances of each regression model are shown in Table 1.

At timepoint 1 and timepoint 4, no parameter was selected in the regression model.

Results of supervised classification.  Since at timepoint 3, the number of parameters that could differ-
entiate different groups were the most, and the regression models at timepoint 3 show relatively high AUCs for 
predicting recurrence, we considered timepoint 3 as the best timepoint for early predicting recurrence. The SVM 
classification results obtained by cross-validation on T2, ADC and T2 + ADC textural parameters at timepoint 
3 are shown in Table 2. Textural parameters extracted from ADC maps had higher accuracy, sensitivity and 
specificity than those extracted from T2WI. T2 + ADC textural parameters also performed well in predicting 
recurrence, but did not show obviously better results than the sole ADC textual parameters.

Discussion
The results of our study demonstrate the potential use of texture analysis based on T2WI and ADC maps to 
predict recurrence of advanced cervical cancer treated with CCRT. We also found that four weeks after CCRT 
initiated was the optimal timepoint for early predicting cervical cancer recurrence. ADC textural parameters at 
four weeks after CCRT initiated performed best in predicting recurrence, while combining T2 textural parame-
ters may add little value in prognosis.

Preliminary reports have hinted at the potential use of texture analysis in cervical cancer imaging. Becker et 
al. reported that ADC textural parameter LRHGE correlated with the differentiation of cervical cancer22. Ho et al. 
applied PET texture analysis to cervical cancer prognosis and found RLN as one of good predictors of post-CCRT 
complete metabolic response with an AUC of 0.7515. Our study had several important differences compared with 
the existing literature. Most previous studies applying texture analysis to tumor prognosis only focused on one 
or two timepoints15,21,23. In the current work, intratumoral heterogeneity depicted by texture parameters was 
evaluated at four different timepoints including baseline, 2nd week and 4th week during therapy and after the 
completion of treatment. Hence, we can not only explore the temporal behaviors of tumor heterogeneity, but also 

Figure 2.  The variety trends of T2 and ADC textural parameters that can differentiate the recurrence and 
nonrecurrence groups in cervical cancers underwent concurrent chemoradiotherapy (CCRT). (A–D) T2 
textural parameters 5 Percentile (at timepoint 1 and 3), range (at timepoint 1), RLN (at timepoint 1, 2 and 
3) and contrast-NIDM (at timepoint 3) in the recurrence group was significantly lower than those in the 
nonrecurrence group. (B–H) ADC textural parameters correlation-CLCM25 (at timepoint 2 and 3), LRHGE 
(at timepoint 4), energy (at timepoint 3) and GaussAmplitude (at timepoint 4) showed significant difference 
between groups. Timepoint 1: before CCRT; timepoint 2: 2 weeks after CCRT initiated; timepoint 3: 4 weeks 
after CCRT initiated; timepoint 4: one month after CCRT completion. *P < 0.05; **P < 0.01.
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find which timepoint was optimal for predicting recurrence in advanced cervical cancer treated with CCRT. Our 
study found timepoint 3 was the best timepoint for two main reasons: firstly, at timepoint 3, the number of texture 
parameters that could differentiate different groups were the most, and the regression models at timepoint 3 show 
relatively high AUCs for predicting recurrence. Secondly, pre-treatment texture parameters at timepoint 1 can 
only represent the inherent heterogeneity characteristics of the tumor, while mid-treatment texture parameters 
also reflect tumor microenvironment change information caused by anti-cancer treatment. At timepoint 3, the 
tumor microenvironment changes are greater than that at timepoint 2, thus may better predict tumor response to 
the treatment and long-term prognosis.

Figure 3.  The Receiver operating characteristic (ROC) curves of logistic regression models for predicting 
recurrence in advanced cervical cancer treated with concurrent chemoradiotherapy (CCRT). At timepoint 2, 
T2 textural parameter RLN yield an area under the curve (AUC) of 0.739. At timepoint 3, T2 textural parameter 
RLN yield an AUC of 0.787, while ADC textural parameter energy yield an AUC of 0.775, and their combination 
improved the AUC to 0.885. Timepoint 2: 2 weeks after CCRT initiated; timepoint 3: 4 weeks after CCRT initiated.

AUC P Sensitivity Specificity Accuracy

Timepoint 2:

   T2-RLN 0.739 0.026 54.55 95.65 82.35

Timepoint 3:

   T2-RLN 0.787 0.008 63.64 91.30 82.35

   ADC-energy 0.775 0.011 72.73 82.61 79.43

   T2-RLN + ADC-energy 0.885 <0.001 90.91 82.61 85.30

Table 1.  The performance of each regression model for predicting recurrence in cervical cancer treated with 
chemoradiotherapy (CCRT). Note: T2-RLN represents RunLengthNonuniformity (RLN) from T2WI; ADC-
energy represents energy from apparent diffusion coefficient (ADC) maps Timepoint 2: two weeks after CCRT 
initiated; Timepoint 3: four weeks after CCRT initiated.

Imaging Dataset Sensitivity Specificity Accuracy PPV NPV AUC

T2WI
Training 0.80 0.85 0.83 0.71 0.91 0.83

Testing 0.46 0.76 0.65 0.60 0.71 0.61

ADC
Training 1.00 1.00 1.00 1.00 1.00 0.98

Testing 0.47 0.87 0.71 0.63 0.74 0.74

T2WI + ADC
Training 0.90 0.91 0.91 0.84 0.96 0.94

Testing 0.47 0.80 0.68 0.61 0.73 0.73

Table 2.  The performance of the support vector machine (SVM) classification obtained by cross-validation for 
predicting cervical cancer recurrence at four weeks after chemoradiotherapy initiated. Note: PPV = positive 
predictive value; NPV = negative predictive value; AUC = area under the curve; ADC = apparent diffusion 
coefficient.
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During CCRT, textural parameters 5 Percentile, RLN, contrast-NIDM and LRHGE showed ascending temporal 
trends while range, correlation-GLCM25 and energy showed descending temporal trends. These changing trends indi-
cated that tumor heterogeneity reduced after treatment. However, no obvious difference between the general variety 
trends of the recurrence and nonrecurrence groups was observed in this study. Logistic regression analysis selected the 
most discriminatory two features textural parameters, namely RLN derived from T2WI and energy derived from ADC 
maps at timepoint 3. The SVM classification results also indicated timepoint 3 as a good timepoint for early predicting 
recurrence. However, some previous studies demonstrated that baseline MR textual parameters could have potential in 
predicting treatment response in breast cancer20, rectal cancer21 and glioblastoma24. Although we found several baseline 
T2 textural parameters including 5 Percentile, range and RLN in the recurrence group were significantly lower than 
those in the nonrecurrence group, none of  baseline textural parameters was selected in the regression model. The pos-
sible explanation may be that pre-treatment MRI data can only reflect inherent intratumoral heterogeneity information, 
while post-treatment MRI data represent the current status of the tumor after chemoradiotherapy.

The prognostic model in our study combined both T2WI and DWI data of patients with advanced cervical 
cancer. This combination method has been used in the diagnosis and grading of prostate cancer19,25 as well as the 
prognosis of rectal cancer26, but so far it has not been reported for assessing cervical cancer. We found combi-
nation of T2 textural parameter RLN and ADC textural parameter energy yield a little higher AUC (0.885) than 
either of them alone (AUC = 0.787, 0.775, respectively). And the SVM classification showed that combining T2 
textural parameters may add little value in prognosis. We speculated that morphological features from T2WI 
reflect only limited information about residual tumor posttreatment, DWI may provide more valuable details 
regarding the response to CCRT in advanced cervical cancer. A recent study by Liu et al. also confirmed this. They 
constructed a radiomics signature for pCR assessment after chemoradiotherapy in rectal cancer, and found that 
only 1 T2WI feature was selected in the model while the others were all ADC features26.

Another advantage of our study was that our measurement for heterogeneity on T2WI and ADC maps was 
done at all slices covering the whole tumor. The whole-tumor texture analysis is more representative of tumor 
heterogeneity than some previous studies using the single largest cross-sectional area analysis23. What’s more, 
to strengthen our study, the MR imaging technique was standardized and uniform across the study population.

Our study also had some limitations. Firstly, the number of patients in this preliminary study was still limited. 
As a result, when performing SVM classification, the training and testing were performed on the same set of patient 
data. To minimize the bias, the patient data were stratified sampled with 70% of them used for training while the 
remaining 30% of them used for testing purpose. All the tests were run 100 times with the average value reported 
as the cross-validated performance. Study with larger sample size as well as an external validation are required to 
confirm the prognostic performance of these textural parameters. Secondly, we visually showed changing trends 
of some representative textural parameters, but did not investigate their change rates, which may also be related to 
prognosis. Studies on correlation between textural parameters change rates and tumor recurrence is needful in the 
future. Thirdly, the follow-up was not long enough to assess the predictive value on patient survival. A longitudinal 
study is needed to further understand the long-term prognostic value of MR texture analysis in cervical cancer.

Conclusion
Our study suggests the potential of T2 and ADC textural parameters as non-invasive imaging biomarkers in early 
predicting recurrence in advanced cervical cancer treated with CCRT, which may provide an opportunity for 
clinicians to adjust therapeutic strategies in time to develop a more individualized anti-cancer treatment.

Materials and Methods
Patient cohort.  This study was approved by the ethics committee of the Institutional Review Board of 
Nanjing Drum Tower Hospital, and written informed consent was obtained from all patients. The methods were 
carried out in accordance with the relevant guidelines and regulations. We prospectively enrolled 34 consecutive 
patients between October, 2013 and August, 2016. The inclusion criteria were as follows: (i) histologically con-
firmed cervical cancer, (ii) locally advanced tumor stages IB2 to IVA according to the International Federation 
of Gynecology and Obstetrics (FIGO) classification, (iii) undergoing CCRT in our institution and no treatment 
performed before, (iv) complete acquisition of MR examination for 4 times in the same 3.0-T MR scanner, (v) 
minimum follow-up period of 15 months after CCRT in patients without recurrence. Patients who quit or sus-
pended therapy (n = 3) or insufficient image quality (n = 2) were considered not eligible for the study. Flowchart 
of the study population was shown in Fig. 4. Patient characteristics are detailed in Table 3.

All the patients were scheduled to undergo 5-weeks external beam radiation therapy (EBRT) followed by 
3-weeks intracavitary brachytherapy (ICBT). EBRT was delivered to the whole pelvis at 1.8–2.0 Gy daily, 5 days a 
week, with a total dose of 45–50 Gy. From the last week of EBRT, ICBT was given to point A (2 cm above the distal 
end of the lowest cervix and 2 cm lateral to the midline) at a fraction dose of 5 Gy, twice a week, with a total dose of 
30–40 Gy. The total radiation time was within 8 weeks. Six cycles of weekly nedaplatin or four cycles of bi-weekly 
nedaplatin plus paclitaxel/docetaxel was given concomitantly. Adjustment of the therapeutic regimens was varied 
according to the health condition of individual patient.

Clinical follow-up.  Patients were evaluated posttherapy 1 month, 3 months and afterwards every 6 months 
until recurrence or last contact. Recurrence was defined as presence of histologically proven recurrence or pro-
gression of the primary tumor in the cervix, uterus or pelvis. Death from cervical cancer was also classified as 
recurrence group. Median follow-up of nonrecurrence patients were 31 months (range, 16–43 months).

MR acquisitions.  MR examinations were performed before CCRT, at early stage of CCRT (2 and 4 weeks 
after CCRT initiated) and one month after CCRT was completed. All the examinations were performed with the 
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same 3.0 T MR scanner (Ingenia 3.0 T, Philips Healthcare, Best, The Netherlands) with a 16-channel torso phased 
array body coil. The imaging sequences included: (i) axial high-resolution T2-weighted turbo spin-echo sequence 
(TR = 4,500 ms, TE = 90 ms, matrix size = 308 × 402, FOV = 20 cm × 24 cm, slice thickness = 4 mm, intersection 
gap = 0.5 mm, NSA = 1), (ii) sagittal T2W TSE sequence (TR = 4500 ms, TE = 90 ms, matrix size = 480 × 354, 
FOV = 20 × 24 cm, slice thickness = 4 mm, intersection gap = 0.5 mm, NSA = 1), (iii) axial DW imaging with 
a free breathing spin-echo echo-planner-imaging sequence (TR = 3523–6000 ms, TE = shortest ms, matrix 
size = 132 × 157, FOV = 24 cm × 24 cm, slice thickness = 4 mm, intersection gap = 1 mm, NSA = 2, b value = 0 and 
800 s/mm2). The MRI protocol was kept identical each time. No intravenous contrast medium was administered.

Radiomic pipeline.  The entire radiomic feature extraction was performed using the Imaging Biomarker 
Explorer (IBEX) software27. Pre-, mid- and post-treatment MRIs were analyzed by 2 radiologists (J.H. and Z.Z.), 
with 7 and 9 years’ experience in gynecological imaging, respectively), both were blinded to the results of patients’ 
outcomes. The regions of interest (ROIs) were drawn manually using the T2WI and DWI images on each slice 
covering the whole tumor. ROIs were placed on the slightly high signal intensity region on T2WI images and the 
high signal intensity region on DWI (b-value of 800 s/mm2) images and then copied to ADC maps. If no tumor 
signals were noted on post-CCRT images, then the ROIs were placed on the latest former tumor region. Next, 7 
categories of different texture feature sets were extracted from the pre-, mid- and post-treatment T2WI and ADC 
data with manually delineated ROIs: (i) Gradient Orient Histogram (GOH) (ii) Gray-Level Co-occurrence Matrix 
(GLCM) from image inside the binary mask in 2.5D in 4 directions, GLCM × 25 (iii) GLCM from image inside 
the binary mask in 3D in 13 unique directions, GLCM × 3 (iv) Gray-Level Run Length Matrix (GLRLM) from 
image inside the binary mask in 2.5D in 0 and 90 degree, GLRLM × 25 (v) Intensity Direct (ID) (vi) Intensity 
Histogram Gauss Fit (IHGF) (vii) Neighbor Intensity Difference Matrix (NIDM) from image inside the binary 

Figure 4.  Flowchart of the study population. FIGO = International Federation of Gynecology and Obstetrics, 
CCRT = concurrent chemo-radiotherapy.

Characteristics No. of patients (Percentages)

Age (years)

   Mean, range 52, 27 to 76

FIGO stage

   II 24 (70.6%)

   III 8 (23.5%)

   IV 2 (5.9%)

Pathology

   Squamous cell carcinoma 34 (100%)

   Adenocarcinoma 0

MR Lymph node status

   Postive 18 (52.9%)

   Negative 16 (47.1%)

Table 3.  Patient characteristics (n = 34). Note: FIGO = the International Federation of Gynecology and 
Obstetrics; MR = magnetic resonance.
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mask and the neighborhood is in 2D, NIDM × 2. 713 textural parameters were extracted including 46 from GOH, 
264 from GLCM × 25, 312 from GLCM × 3, 33 from GLRLM, 50 from ID, 3 from IHGF, 5 from NIDM × 2. The 
detailed texture features are briefly outlined in Table 4. Some of the higher order features’ names such as “RLN” 
or “LRHGE” sound hard to understand, the mathematical definition of those features can be found in the works 
of Haralick et al., Tang et al., Soh et al. and Amadasun et al.28–31.

Feature selection methods.  Before establishing a prognostic model, feature filter is required mainly for 
three reasons: reducing the model’s training time, improving the robustness of the model and enhancing the 
model’s reliability and behavior. The chosen parameters should be reproducible, show high degree of differentia-
tion and low redundancy. To analyze the reproducibility, the parameters were repeatedly measured at an interval 
of 6 weeks using pretreatment T2WI images. The concordance correlation coefficient (CCC) were used to evalu-
ate the consistency of texture parameters extracted from two different measurements. We found the vast majority 
of features can meet high enough reproducibility with CCC value not lower than 0.9. A metric named dynamic 
range (DR) not lower than 0.9 implied that the feature had a large dynamic range32. Texture parameters with a 
CCC value ≥ 0.9 and a DR value ≥ 0.9 were extracted. Redundancy was assessed by computing interfeature cor-
relation coefficient using R package corrgram. The features were grouped on the basis of the Pearson correlation 
coefficient between them, we chose 0.8 as cutoff value for the Pearson correlation coefficient. In this subset, one 
representative that had the highest DR was picked. Using the above methods, 20 texture parameters were selected 
for further processing of the study (see details in Table 4).

Statistical analyses.  All statistical analyses were performed using R software version 3.4.3 and SPSS 22.0 
software (SPSS Inc., Chicago, IL). Multivariate analysis of variance (MANOVA) was used to test the difference 
between the two groups of each feature at different time points along the course of disease. Feature variety trend 
was investigated with the 4-factor repeated measures ANOVA test. Binary logistic regression analysis (forward 
LR stepwise method) was used to construct multi-indicator models for prediction of recurrence. Receiver oper-
ating characteristic (ROC) analysis was performed to assess the predictive value of those models by calculating 
the areas under the ROC curve (AUCs) and the corresponding P values. P values of less than 0.05 were consid-
ered statistically significant. Comparisons between AUCs were performed by using MedCalc Statistical Software 
version 15.2.2 (MedCalc Software bvba, Ostend, Belgium; http://www.medcalc.org; 2015). The support vector 
machine (SVM) classifier was used for supervised learning on T2, ADC and T2 + ADC textural parameters, 
respectively. The stratified k-fold cross-validation (CV) was then used as the internal validation to evaluate the 
accuracy, sensitivity and specificity of the classification. The stratified approach was chosen in order to ensure that 
both the recurrence and nonrecurrence types were represented in the validation folds. This process was repeated 
100 times to include all the possible ways of obtaining such a partition in our dataset, and the results were then 
averaged.

Data availability.  The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

GOH GLCM (×25; ×3) GLRLM ID IHGF NIDM

InterQuartileRange AutoCorrelation GrayLevelNonuniformity (GLN) Energy GaussAmplitude Busyness

Kurtosis ClusterProminence HighGrayLevelRunEmpha (HGLRE) EnergyNorm HistArea Coarseness

MeanAbsoluteDeviation ClusterShade LongRunEmphasis (LRE) GlobalEntropy NumberOfGauss Complexity

MedianAbsoluteDeviation ClusterTendendcy LongRunHighGrayLevelEmpha (LRHGE) GlobalMax/Mean/Median/Std Contrast

Percentile (5th, 65th) Contrast (×3) LongRunLowGrayLevelEmpha (LRLGE) GlobalUniformity TextureStrength

PercentileArea (40th) Correlation (×25; ×3) LowGrayLevelRunEmpha (LGLRE) InterOuartileRange

Quantile DifferenceEntropy RunLengthNonuniformity (RLN) Kurtosis

Range Dissimilarity RunPercentage (RP) LocalEntropyMax/Mean/Median/Std

Skewness Energy ShortRunEmphasis (SRE) LocalRangeMax/Mean/Median/Std

Entropy ShortRunHighGrayLevelEmpha (SRHGE) LocalStdMax/Mean/Median/Std

Homogeneity ShortRunLowGrayLevelEmpha (SRLGE) MeanAbsoluteDeviation

InformationMeasureCorr MedianAbsoluteDeviation

InverseDiffMomentNorm Percentile

InverseDiffNorm Quantile

InverseVariance Range

MaxProbability RootMeanSquare

SumAverage Skewness

SumEntropy (×3) Variance

SumVariance

Variance

Table 4.  Texture features and abbreviations. Note: features in bold are the selected 20 textural parameters for 
further processing.

http://www.medcalc.org
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