
Worsening Renal Function in Patients With Acute Heart Failure 
Undergoing Aggressive Diuresis Is Not Associated With Tubular 
Injury

Tariq Ahmad, MD, MPH*, Keyanna Jackson, BA*, Veena S. Rao, PhD, W.H. Wilson Tang, MD, 
Meredith A. Brisco-Bacik, MD, MSCE, Horng H. Chen, MBBCh, G. Michael Felker, MD, MHS, 
Adrian F. Hernandez, MD, MHS, Christopher M. O’Connor, MD, Venkata S. Sabbisetti, PhD, 
Joseph V. Bonventre, MD, PhD, F. Perry Wilson, MD, MHS, Steven G. Coca, DO, MS, and 
Jeffrey M. Testani, MD, MTR
Sections of Cardiovascular Medicine (T.A., K.J., V.S.R., J.M.T.) and Nephrology (F.P.W.), Yale 
University School of Medicine, New Haven, CT. Section of Heart Failure and Cardiac 
Transplantation, The Cleveland Clinic, OH (W.H.W.T.). Cardiology Division, Lewis Katz School of 
Medicine at Temple University, Philadelphia, PA (M.A.B.-B.). Department of Cardiovascular 
Diseases, Mayo Clinic, Rochester, MN (H.H.C.). Duke University Medical Center and Duke Heart 
Center, Durham, NC (G.M.F., A.F.H.). Inova Heart and Vascular Institute, Falls Church, VA 
(C.M.O.). Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA (V.S.S., 
J.V.B.). Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY (S.G.C.)

Abstract

BACKGROUND—Worsening renal function (WRF) in the setting of aggressive diuresis for acute 

heart failure treatment may reflect renal tubular injury or simply indicate a hemodynamic or 

functional change in glomerular filtration. Well-validated tubular injury biomarkers, N-acetyl-β-D-

glucosaminidase, neutrophil gelatinase-associated lipocalin, and kidney injury molecule 1, are now 

available that can quantify the degree of renal tubular injury. The ROSE-AHF trial (Renal 

Optimization Strategies Evaluation–Acute Heart Failure) provides an experimental platform for 

the study of mechanisms of WRF during aggressive diuresis for acute heart failure because the 

ROSE-AHF protocol dictated high-dose loop diuretic therapy in all patients. We sought to 

determine whether tubular injury biomarkers are associated with WRF in the setting of aggressive 

diuresis and its association with prognosis.

METHODS—Patients in the multicenter ROSE-AHF trial with baseline and 72-hour urine tubular 

injury biomarkers were analyzed (n=283). WRF was defined as a ≥ 20% decrease in glomerular 

filtration rate estimated with cystatin C.
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RESULTS—Consistent with protocol-driven aggressive dosing of loop diuretics, participants 

received a median 560 mg IV furosemide equivalents (interquartile range, 300–815 mg), which 

induced a urine output of 8425 mL (interquartile range, 6341–10 528 mL) over the 72-hour 

intervention period. Levels of N-acetyl-β-D-glucosaminidase and kidney injury molecule 1 did not 

change with aggressive diuresis (both P>0.59), whereas levels of neutrophil gelatinase-associated 

lipocalin decreased slightly (−8.7 ng/mg; interquartile range, −169 to 35 ng/mg; P<0.001). WRF 

occurred in 21.2% of the population and was not associated with an increase in any marker of 

renal tubular injury: neutrophil gelatinase-associated lipocalin (P=0.21), N-acetyl-β-D-

glucosaminidase (P=0.46), or kidney injury molecule 1 (P=0.22). Increases in neutrophil 

gelatinase-associated lipocalin, N-acetyl-β-D-glucosaminidase, and kidney injury molecule 1 were 

paradoxically associated with improved survival (adjusted hazard ratio, 0.80 per 10 percentile 

increase; 95% confidence interval, 0.69–0.91; P=0.001).

CONCLUSIONS—Kidney tubular injury does not appear to have an association with WRF in the 

context of aggressive diuresis of patients with acute heart failure. These findings reinforce the 

notion that the small to moderate deteriorations in renal function commonly encountered with 

aggressive diuresis are dissimilar from traditional causes of acute kidney injury.

Keywords

acute kidney injury; biomarkers; heart failure; renal insufficiency

Worsening renal function (WRF) commonly complicates decongestion of patients 

hospitalized with acute heart failure (AHF) and affects key therapeutic decisions such as 

continued attempts at aggressive diuresis and neurohormonal blockade.1 Furthermore, WRF 

has been associated with adverse long-term outcomes; several recent clinical trials have even 

used it as a primary end point.2–4 Whereas acute tubular injury/necrosis is a prominent 

mechanism in settings of insults such as exposure to iodinated contrast, severe sepsis, and 

nephrotoxic medications, the mechanistic underpinnings of WRF in the setting of aggressive 

diuresis remain incompletely understood.5–7

There is growing consensus that understanding the pathogenesis and mechanisms driving 

increases in creatinine, which practice guidelines have lumped into a syndrome called acute 

kidney injury, is critically important in defining its clinical significance and treatment 

approach.8,9 Paradoxically, despite having “injury” in its name, true renal injury is not a 

requisite mechanism for a change in creatinine to be called acute kidney injury. This 

distinction may be of practical importance because changes in creatinine induced by 

aggressive decongestion may be largely functional or hemodynamic and thus, by inference, 

clinically benign. Well-validated kidney tubular injury biomarkers such as neutrophil 

gelatinase-associated lipocalin (NGAL), N-acetyl-β-D-glucosaminidase (NAG), and kidney 

injury molecule 1 (KIM-1) that can both detect and quantify the degree of tubular damage 

are now available.10–12 In animal models, NGAL, KIM-1, and NAG provide exquisite 

discrimination for histopathological severity of kidney tubular injury, whether induced by 

nephrotoxins or ischemia/reperfusion injury.11–15 Furthermore, compelling data exist in 

support of their ability to quantify the degree of tubular injury in patients with traditional 

stimuli for acute kidney injury such as contrast exposure or cardiopulmonary bypass.11,16,17

Ahmad et al. Page 2

Circulation. Author manuscript; available in PMC 2019 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thus far, several single-center studies have examined the role of kidney tubular injury 

biomarkers in AHF; however, because of their small size, lack of serial measurements, and 

absence of protocol-driven aggressive diuresis, a consistent signal has not emerged.18–20 The 

recently published multicenter ROSE-AHF clinical trial (Renal Optimization Strategies 

Evaluation–Acute Heart Failure), however, provides an ideal experimental platform for the 

study of the determinants of WRF during aggressive diuresis.4 First, the ROSE-AHF trial 

was unique in its use of very high diuretic doses to cause brisk decongestion: per protocol, 

all patients received 2.5 times their home dose of loop diuretics as background therapy, 

regardless of randomization. This resulted in 8.4 L urine during the 72-hour study period in 

the placebo arm. Of note, this dose of diuretics was in accordance with the “high-dose” 

intervention tested in the DOSE trial (Diuretic Optimization Strategies Evaluation), in which 

it was shown to induce a significantly greater incidence of WRF without worsening clinical 

outcomes.2,21,22 Second, the coprimary end points of the ROSE-AHF trial focused entirely 

on key cardiorenal parameters of interest, cumulative urine volume and change in serum 

cystatin C, making the trial uniquely suited to address our hypothesis. Third, the trial 

enrolled only patients with an estimated glomerular filtration rate (eGFR) <60 mL · min−1 · 

1.73 m−2, a population that is at a high risk for kidney injury. Last, determination of urine 

levels of kidney injury biomarkers was an a priori ancillary study of the ROSE-AHF trial.

Therefore, using the ROSE-AHF trial as our experimental platform, we aimed in this 

investigation to determine whether kidney tubular injury is a predominant cause of WRF in 

the setting of aggressive diuresis and to examine whether the degree of injury can risk-

stratify patients experiencing WRF.

METHODS

Data Availability Statement

The data, analytical methods, and study materials are available to other researchers for 

purposes of reproducing the results via the Biological Specimen and Data Repository 

Information Coordinating Center (BioLINCC).23

Patient Population

The rationale and design of the ROSE-AHF trial have been previously described.4 The 

overall study comprised 360 patients who were hospitalized for the treatment of AHF who 

had renal dysfunction, defined as an eGFR of 15 to 60 mL · min−1 · 1.73 m−2. The diagnosis 

of AHF was based on at least 1 symptom (dyspnea, orthopnea, or edema) and 1 sign of heart 

failure (HF) (rales, edema, ascites, or pulmonary vascular congestion on chest radiography), 

regardless of ejection fraction. All patients received open-label, intravenous loop diuretic 

treatment with a recommended total daily dose equal to 2.5 times the total daily oral 

outpatient furosemide (or equivalent) dose at 7 days before admission. Patients naive to 

outpatient loop diuretics received furosemide at 80 mg/d IV. Half the total daily diuretic dose 

was administered as a bolus twice daily for at least 24 hours. The 2 coprimary end points 

were the 72-hour cumulative urine volume as an index of diuresis and the change in cystatin 

C from randomization to 72 hours as a measure of renal function preservation. The study 

found no differences in the above end points among study drug groups (placebo, low-dose 
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dopamine, low-dose nesiritide), and there were no differences in the change in NGAL, NAG, 

or KIM-1 between study groups (P>0.23 for all). Thus, the present study analyzed the cohort 

collectively. All patients had a telephone assessment of vital status and rehospitalization at 

60 and 180 days from randomization. Figure 1 shows a consort diagram of the present study. 

We excluded patients without baseline or 72-hour cystatin C or urine kidney injury markers 

and those who did not receive intravenous diuretics. This left 283 patients whose data were 

used for the present analysis. The ROSE-AHF study was conducted within the National 

Heart, Lung, and Blood Institute–sponsored Heart Failure Clinical Trials Network. The 

protocol for the study was approved by the institutional review boards at each participating 

site, and written informed consent was obtained from all patients before randomization. This 

article was prepared with ROSE-AHF research materials obtained directly from the National 

Heart, Lung, and Blood Institute BioLINCC.

Measurement of Biomarkers

As previously described, patients had plasma creatinine, cystatin C, and NT-proBNP (N-

terminal pro-B-type natriuretic peptide) levels determined at a core laboratory (Heart Failure 

Clinical Research Network Core Biomarker Laboratory, University of Vermont).4 Twenty-

four–hour urine collections for volume and sodium, and spot urine samples for kidney 

tubular injury biomarkers, were performed daily for the 72-hour study intervention period. 

Urinary KIM-1 and NGAL were measured with microbead-based assays at the Brigham and 

Women’s Hospital, as previously described.12,21,24 Specifically, urine samples were 

incubated with microbeads that were coupled with NGAL (Enzo Lifesciences) and KIM-1 

(R&D Systems) antibodies and quantified with the Bio-Plex 200 system (Bio-Rad). Urinary 

NAG was measured with the NAG kit per the manufacturer’s (Roche Diagnostics) 

instructions. Because patients were receiving high doses of diuretics and urine dilution could 

be substantial, all urine biomarker levels were indexed to urine creatinine to address 

variability in urinary dilution.

Statistical Analysis and End Points

Baseline characteristics are presented as median (quartile 1–3) or percentiles. eGFR was 

calculated with the cystatin-based and creatinine-based Chronic Kidney Disease 

Epidemiology formulas.25 To maintain consistency with prior publications, WRF was 

defined as a ≥ 20% reduction in eGFR from baseline to 72 hours.26 Relationships between 

the absolute change in cystatin C/creatinine and change in biomarker levels are presented 

graphically. The changes in tubular injury biomarkers (KIM-1, NGAL, NAG) were not 

normally distributed, had many extreme outliers, and frequently had negative values. We 

therefore performed a rank-based correlation between the change (Δ) in eGFR and in renal 

tubular injury biomarkers and report them as the Spearman ρ. For survival analysis, we took 

a similar rank-based approach and generated a percentile rank for the change in each 

biomarker for which the patient with the largest improvement in biomarker levels had a rank 

of 0, and the largest worsening had a rank of 100. Linearity of the relationship between 

mortality and change in biomarker was confirmed by examining trends across deciles of the 

change in biomarkers. A composite biomarker score was generated that took the average of 

the percentile rank for each of the 3 biomarkers. Using Cox proportional hazards modeling, 

we evaluated the risk of death through 180 days in patients with combinations of WRF and 
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change in kidney tubular injury biomarkers using the above percentile rank variables. 

Comprehensive analyses adjusted for the following risk factors: age, sex, race, heart rate, 

systolic blood pressure, atrial arrhythmias, diabetes mellitus, ischemic HF pathogenesis, left 

ventricular ejection fraction, angiotensin-converting enzyme/angiotensin receptor blocker 

use, β-blocker use, aldosterone antagonist use, baseline chloride, sodium, blood urea 

nitrogen, eGFR, NT-proBNP, ΔNT-proBNP, 72-hour urine output, weight change, 

cumulative diuretic dose, and baseline kidney tubular injury biomarker levels. Statistical 

analysis was performed with IBM SPSS Statistics version 23 (IBM Corp, Armonk, NY), and 

statistical significance was defined as 2-tailed value of P<0.05 for all analyses except tests 

for interaction, for which P<0.01 was considered significant.

RESULTS

Baseline characteristics of the analyzed study population with complete data on renal tubular 

injury biomarkers (n=283) are described in Table 1. This subgroup mirrored the overall 

ROSE-AHF trial in terms of key HF characteristics: the patients tended to be white men with 

ischemic cardiomyopathy, multiple comorbid conditions, and a high prevalence of physical 

examination findings consistent with volume overload.

Worsening Renal Function

Baseline characteristics of patients with (n=60, 21.2%) and without (n=223, 78.8%) WRF 

from randomization to 72 hours are presented in Table 1. The distribution of change in renal 

function is depicted in Figure 2, which demonstrates that severe deterioration in renal 

function was uncommon, and most WRF events represented small to moderate-sized 

changes in renal function. Similar to the overall ROSE-AHF trial, there were no differences 

in the change in cystatin C (P=0.22) or incidence of WRF (P=0.42) between randomized 

interventions (dopamine, nesiritide, placebo) in the present subset. Overall, baseline 

characteristics of those with and without WRF were similar aside from a tendency for 

somewhat better kidney function in patients who would ultimately experience WRF. 

Consistent with protocol-driven aggressive dosing of loop diuretics in the trial, patients 

received a median 560 mg furosemide equivalents (interquartile range, 300–815 mg), which 

induced a median urine output of 8425 mL (interquartile range, 6341–10 528 mL) over the 

72-hour intervention period. Both diuretic dose and fluid output were similar between 

patients with and without WRF (P>0.18 for both).

Changes in Kidney Tubular Injury Biomarkers

Baseline levels of KIM-1, NGAL, and NAG were similar among patients with and without 

WRF (Table 1). Furthermore, in-hospital and treatment-related parameters were largely 

similar between patients with and without increases in tubular injury biomarkers (Table 2). 

Similarly, from randomization to 72 hours, levels of KIM-1 and NAG did not change in the 

overall population (P>0.59 for both), but levels of NGAL tended to decrease (−8.7 ng/mg; 

interquartile range, −169 to 35 ng/mg; P<0.001). NGAL demonstrated a statistically 

significant but very small-magnitude correlation with the change in cystatin C (r=0.14, 

P=0.02; Figure 3A). There was no correlation between the change in NAG (r=−0.04, 

P=0.49; Figure 3A) or KIM-1 (r=0.05, P=0.42; Figure 3A) with the change in cystatin C. 
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Similar results were found for the change in creatinine (rather than cystatin C) with the 

above biomarkers (Figure 3B). There were no correlations between the change in tubular 

injury biomarkers and metrics of diuresis and decongestion (Table 3).

To capture any correlations that may have gone undetected because of differences in timing 

of peak levels of the different tubular injury and glomerular filtration markers queried (as is 

well described in biomarkers of myocardial injury), we performed a sensitivity analysis 

examining all combinations of tubular injury and glomerular filtration biomarkers at 24, 48, 

and 72 hours. We did not identify any meaningful correlations with any combination of 

biomarker and time point examined (Table 4). To determine whether there were any 

threshold or nonlinear effects that were masking a relationship between tubular injury 

markers and change in renal function, we assessed the change in biomarkers across deciles 

of absolute change in renal function. As shown in Figure 4A, there was no clear threshold or 

nonlinear relationship with any of the biomarkers at the range of change in cystatin C 

observed in this cohort. Similar findings were present with the change in creatinine (Figure 

4B). Finally, the change in tubular injury biomarker levels did not differ between patients 

with and without WRF defined by cystatin C (Figure 5A). Similarly, changes in NGAL and 

KIM-1 levels did not differ on the basis of WRF when defined by creatinine (Figures 5B, top 

and middle). However, there was a statistically significant improvement in NAG among 

patients with creatinine-based WRF compared with those without WRF (P=0.006; Figure 

5B, middle).

Associations With Survival

Over a median follow-up of 178 days, 55 patients (19.4%) died. Univariate trends were 

noted between the baseline and 72-hour change in NGAL (P=0.06), NAG (P=0.06), and 

KIM-1 (P=0.16), with increases in kidney tubular injury biomarker levels associated with 

improved survival. Notably, after extensive adjustment for 22 covariates (age, sex, race, 

heart rate, systolic blood pressure, atrial arrhythmias, diabetes mellitus, ischemic HF 

pathogenesis, left ventricular ejection fraction, angiotensin-converting enzyme/angiotensin 

receptor blocker use, β-blocker use, aldosterone antagonist use, baseline chloride, sodium, 

blood urea nitrogen, eGFR, NT-proB-NP, 72-hour urine output, weight change, change in 

NT-proBNP, cumulative diuretic dose, and baseline tubular injury biomarker levels), this 

association became statistically significant for all 3 biomarkers (NGAL: adjusted hazard 

ratio [HR], 0.88 per 10 percentile increase; 95% confidence interval [CI], 0.80–0.98; 

P=0.014; NAG: adjusted HR, 0.90 per 10 percentile increase; 95% CI, 0.81–0.98; P=0.017; 

and KIM-1: adjusted HR, 0.88 per 10 percentile increase; 95% CI, 0.80–0.98; P=0.014). 

Evaluating a composite score of all 3 biomarkers revealed a highly significant effect 

whereby the larger the temporal increase was in the 3 biomarkers, the lower the risk of death 

at 180 days was (adjusted HR, 0.80 per 10 percentile increase; 95% CI, 0.69–0.91; 

P=0.001). Baseline levels of NGAL and KIM-1 were not associated with 180-day survival 

(adjusted P>0.42 for both). Higher baseline levels of NAG were associated with reduced 

survival (adjusted HR, 1.12 per 10 percentile increase; 95% CI, 1.0–1.2; P=0.026).

Although limited in power by the small number of events, WRF in this aggressively diuresed 

population was not associated with worsened 180-day survival (adjusted P=0.84), and the 
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co-occurrence of an increase in tubular injury biomarkers could not differentiate low- from 

high-risk WRF (adjusted Pinteraction=0.17). In a sensitivity analysis to increase the number of 

patients in each subgroup, we further examined possible effect modification by looking at 

any increase in cystatin C (rather than requiring a 20% change in eGFR) and an increase in 

combined biomarker percentile above the median. Once again, we found no effect 

modification (adjusted Pinteraction=0.82); however, there was a linear trend (adjusted 

P=0.045) whereby patients with a decline in kidney function and increase in tubular injury 

markers had the best outcomes and patients with no change or improvement in kidney 

function/tubular injury biomarkers had the worst outcomes (Figure 6).

DISCUSSION

In a multicenter population of AHF patients, we found that changes in renal filtration 

markers with aggressive diuresis were not associated with changes in markers of renal 

tubular injury. Specifically, we found no support for serial changes in urine levels of 3 renal 

tubular injury biomarkers—NAG, NGAL, or KIM-1—being meaningfully related to changes 

in either cystatin C or creatinine. We also found no significant differences in levels of these 

tubular injury biomarker levels in patients with or without WRF. Furthermore, in this 

aggressively diuresed population, both WRF and increases in tubular injury biomarkers over 

the intervention period were not associated with adverse outcomes; rather, there was a 

paradoxical trend toward improved outcomes. Our data suggest that the small to moderate 

declines in GFR that commonly occur during aggressive diuresis, colloquially referred to as 

bumps in creatinine, may not primarily be a manifestation of tubular injury to the kidney; 

rather, they are likely to represent clinically benign changes in filtration.

Whereas WRF is common among patients hospitalized for AHF, its underlying mechanisms 

and clinical implications remain unclear.26 WRF in the setting of aggressive diuresis is often 

considered acute kidney injury, and thus, further diuresis or renin-angiotensin-aldosterone 

system blockade is suspended.27 This belief has been widely incorporated into clinical 

practice, and WRF is a commonly used outcome for multiple AHF clinical trials, both 

completed and planned.2,3,15 However, several lines of recent evidence challenge this 

paradigm, suggesting that it is the context by which WRF develops, rather than simply its 

presence, that is the principal determinant of adverse outcomes.21,28–32 For example, WRF 

in the setting of successful decongestion or titration of angiotensin-converting enzyme 

inhibitors may not have any negative prognostic implications.1,33,34 Furthermore, this notion 

of the importance of mechanism of WRF has been demonstrated in murine models of the 

disease in which the subtypes of kidney injury are biologically unrelated, and it is believed 

that molecular analysis rather than changes in markers of glomerular filtration such as 

creatinine or cystatin C should clarify our current definitions of acute changes in kidney 

excretory function.35 In clinical practice, however, it remains unclear whether treatment-

induced WRF episodes are truly innocuous or whether there is meaningful renal damage that 

is offset by the overall gain from the therapeutic intervention. Our finding of no significant 

change in 3 well-established markers of tubular injury with treatment-induced WRF 

provides substantial reassurance that small to moderate treatment-induced bumps in 

creatinine that inevitably occur in the setting of aggressive diuresis should not carry negative 

connotations and trigger withdrawal of potentially beneficial therapy.27
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Our a priori primary hypothesis was that renal tubular injury would be noted in a substantial 

subset of patients who underwent aggressive diuresis and experienced WRF. Second, we felt 

that injury would be much more common in patients with a larger magnitude of WRF and, 

when present, would identify a subset of patients who were at high risk for adverse 

outcomes. The findings presented here are especially intriguing because they entirely 

rebutted our hypotheses: not only was WRF of any degree unrelated to kidney injury, but 

there was a paradoxical trend toward improved outcomes in patients with WRF and 

increases in tubular injury biomarker levels. Although paradoxical, we suspect that our 

findings concerning WRF may parallel recent data showing the decreases in renal filtration 

occurring with treatments that benefit patients with HF might represent clinically benign 

changes rather than be a mediator of adverse outcomes. Although occurring via distinct 

molecular pathways, mild increases in renal tubular injury biomarkers might reflect 

intrarenal physiological changes that might be clinically benign as well. That said, whether 

WRF, as defined by increases in serum levels of filtration markers, or increases in renal 

tubular injury biomarkers are surrogates for clinically positive or negative outcomes in the 

setting of aggressive diuresis requires further study. Unfortunately, we cannot confirm the 

degree of decongestion via direct measures of hemoconcentration in the current data set, and 

this should be a focus of future studies. That said, the findings here support the contention 

that the clinical implications of WRF and increases in kidney tubular injury biomarkers in 

the setting of aggressive diuresis may not be detrimental; however, the current observations 

should serve primarily to motivate investigation of the above hypothesis and thus need to be 

confirmed with future study.

Before clinical application of this provocative concept, we must take into consideration a 

few caveats. First, ROSE-AHF was a clinical trial in which patients were selected for their 

stability and probability of successfully tolerating aggressive diuresis. Second, the 

participating clinical centers were largely HF centers of excellence with board-certified 

physicians experienced in advanced HF guiding care. Third, these observations were 

obtained in the context of physicians likely trying hard to avoid significant increases in 

creatinine. Thus, in the setting of less stable patients, with less highly trained caregivers 

driving therapy, and less deliberate avoidance of WRF, we are liable to see much larger 

bumps in creatinine, significant renal injury, and worse outcomes. Therefore, a prospective 

randomized trial is required to definitively understand how to incorporate changes in renal 

function directly into our clinical approach to patients with HF.

In addition, our results should be considered in light of several limitations. First and 

foremost, as previously mentioned, our results are primarily hypothesis generating and 

important preliminary data for a randomized clinical trial. Second, investigators adjusted HF 

therapies during the study, introducing unmeasured confounding into our analyses. Third, 

the results are most generalizable to patients with AHF and chronic renal dysfunction who 

would mirror the ROSE-AHF population. Fourth, given the low number of events, our study 

is underpowered to make any definitive statements about null mortality associations. To that 

end, although WRF has not universally been associated with worsened mortality in the 

recent literature, many larger studies have described this association, and thus, this null 

association should be viewed with appropriate skepticism. Fifth, given the small number of 

events and substantial number of covariates in the multivariable models, these models are 

Ahmad et al. Page 8

Circulation. Author manuscript; available in PMC 2019 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



likely overfit. As a result, although these results provide information on the qualitative 

independence of the observations within the ROSE-AHF data set, the quantitative strength of 

the association and the generalizability of this model to other data sets are likely limited. 

Finally, there is a paucity of data on expected levels of kidney injury biomarkers in HF; 

although the biomarkers of tubular injury have been proved sensitive and specific for acute 

tubular injury/necrosis in other clinical settings, they have been less rigorously studied in 

AHF. This may have contributed to the rarity of their clinical use.

CONCLUSIONS

We found that WRF in the setting of aggressive diuresis was not related to renal tubular 

injury as measured by validated urinary biomarkers. Furthermore, the clinical factors and 

therapeutic interventions driving these small to moderate decreases in renal function and 

increases in tubular injury markers appear to offset the risk of adverse outcomes associated 

with the WRF. In light of prior studies, our findings support the hypothesis that bumps in 

creatinine in the setting of aggressive diuresis may simply be the result of hemodynamic or 

functional alterations that need not trigger a withdrawal of potentially beneficial HF 

therapies.
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Clinical Perspective

What Is New?

• There is pervasive concern that decreases in glomerular filtration rate (as 

measured by serum creatinine or cystatin C) in the setting of aggressive 

diuresis of heart failure patients reflect renal tubular injury.

• We show, using validated biomarkers of tubular injury, that the small to 

moderate worsening of creatinine or cystatin C in the setting of aggressive 

dosing of loop diuretics was not associated with elevations in these markers of 

tubular injury.

• We also show that worsening creatinine or cystatin C with aggressive diuresis 

is not associated with adverse clinical outcomes and that patients with mild 

elevations in markers of both glomerular filtration rate and tubular injury 

surprisingly tended to have the best outcomes.

What Are the Clinical Implications?

• The small to moderate increases in creatinine that commonly complicate 

decongestion of patients hospitalized with acute heart failure may not be 

driven by renal tubular injury and thus may not indicate that continued 

attempts at adequate decongestion and uptitration of neurohormonal blockade 

are no longer indicated.

• There is a need to further evaluate how to interpret changes in serum 

creatinine in the management of patients with heart failure and as an outcome 

measure in clinical trials.
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Figure 1. CONSORT (Consolidated Standards of Reporting Trials) diagram of patient selection 
into the study cohort
GFR indicates glomerular filtration rate; KIM-1, kidney injury molecule 1; NAG, N-acetyl-

β-D-glucosaminidase; NGAL, neutrophil gelatinase-associated lipocalin; and ROSE-AHF, 

Renal Optimization Strategies Evaluation.
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Figure 2. Absolute or relative changes in kidney function
Change in kidney function assessed from baseline to 72 hours. A, Absolute change in renal 

function with units of milligrams per deciliter (creatinine) and milligrams per liter (cystatin 

C). B, Relative change in estimated glomerular filtration rate (eGFR) calculated with either 

cystatin C or creatinine. Dotted line represents those patients with 20% increase in eGFR.
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Figure 3. Scatterplots of changes in kidney tubular injury biomarkers
A, Scatterplots of changes in kidney tubular injury biomarkers by change in cystatin C. Left, 
The 72-hour changes in cystatin C vs log changes in neutrophil gelatinase-associated 

lipocalin (NGAL) and N-acetyl-β-D-glucosaminidase (NAG). The 72-hour changes in 

cystatin C vs absolute changes in kidney injury molecule 1 (KIM-1) (Bottom). B, 

Scatterplots of changes in kidney tubular injury biomarkers by change in creatinine. Right, 
the 72-hour changes in creatinine vs log changes in NGAL and NAG. The 72-hour changes 

in creatinine vs absolute changes in KIM-1 (Bottom).
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Figure 4. Changes in kidney tubular injury biomarkers by decile change
A, Changes in kidney tubular injury biomarkers by decile change in cystatin C. B, Changes 

in kidney tubular injury biomarkers by decile change in creatinine. (Left to right): Tukey 

box plots of 72-hour changes in neutrophil gelatinase-associated lipocalin (NGAL), N-

acetyl-β-D-glucosaminidase (NAG), and kidney injury molecule 1 (KIM-1) across each 

decile change in cystatin C (top) and creatinine (bottom).
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Figure 5. Baseline and 72-hour biomarkers of kidney tubular injury according to cystatin C–
based worsening renal function (WRF) status
A (Top to bottom), Box plots (whiskers represent 10th and 90th percentiles) of 72-hour 

changes in neutrophil gelatinase-associated lipocalin (NGAL), N-acetyl-β-D-

glucosaminidase (NAG), and kidney injury molecule 1 (KIM-1) between patients with and 

without WRF. B, Baseline and 72-hour biomarkers of kidney tubular injury according to 

creatinine-based WRF status. (Top to bottom), Box plots (whiskers represent 10th and 90th 

percentiles) of 72-hour changes in NGAL, NAG, and KIM-1 between patients with and 

without WRF, as gauged by creatinine changes.
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Figure 6. Associations between kidney tubular injury biomarkers and renal dysfunction with 
survival
↑ Cys C indicates increase in cystatin C; ↔↓ Cys C, no change or decrease in cystatin C; ↑ 
Injury biomarkers, change in composite biomarker score >50th percentile; and ↓ Injury 

biomarkers, change in composite biomarker score <50th percentile. As shown, patients with 

a decline in kidney function and increase in tubular injury markers had the best outcomes 

and patients with no change or improvement in kidney function/tubular injury biomarkers 

had the worst outcomes; Ptrend indicates adjusted linear trend increasing from ↔↓ Cys C/↓ 
Injury biomarkers (high risk) to ↑ Cys C/↑ Injury biomarkers (low risk).
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Table 1

Baseline Characteristics of the Study Population

Characteristics Study Cohort (n=283) WRF (n=60) No WRF (n=223) P Value

Demographics

 Age, y 70 (62, 79) 73 (63, 82) 69 (62, 79) 0.14

 Male sex, % 75 73 75 0.81

 White, % 76 83 74 0.13

Clinical variables

 SBP, mmHg 114 (103, 126) 119 (109, 134) 113 (102, 125) 0.02*

 Edema ≥ 2+, % 71 77 69 0.26

 Orthopnea, % 89 95 88 0.13

 JVP ≥ 8 cm H2O, % 96 97 95 0.68

 Rales, % 55 60 54 0.38

 HF hospitalization, % 67 61 69 0.25

 LVEF, % 33 (20, 51) 34 (25, 53) 30 (20, 51) 0.40

 LVEF <50%, % 71 75 70 0.43

 IHD, % 58 65 57 0.24

 DM type 2, % 55 58 54 0.57

 AF/AFL, % 58 63 57 0.34

 ICD, % 45 37 47 0.15

Baseline medications

 ACE-I/ARB, % 50 57 48 0.26

 β-Blocker, % 85 83 85 0.79

 Hydralazine, % 20 28 18 0.08

 Nitrates, % 25 38 22 0.01*

 Aldosterone antagonist, % 28 18 30 0.07

 Digoxin, % 26 22 27 0.41

 Loop diuretic, % 95 88 96 0.02*

 Diuretic dose, mg 100 (60, 160) 120 (80, 190) 100 (60, 160) 0.70

Laboratory values

 Cystatin C, mg/L 1.70 (1.41, 2.15) 1.59 (1.41, 2.03) 1.73 (1.41, 2.17) 0.15

 Creatinine, mg/dL 1.63 (1.32,1.97) 1.48 (1.26, 1.85) 1.67 (1.38, 1.98) 0.05*

 eGFR, mL · min−1 · 1.73 m−2 44 (33, 56) 47 (37, 58) 44 (33, 54) 0.18

 BUN, mg/dL 37 (28, 50) 33 (25, 44) 38 (28, 54) 0.02*

 NT-proBNP, pg/mL 5268 (230, 10 348) 5918 (1800, 9855) 5249 (2371, 10 422) 0.57

 NGAL, ng/mg · uCR 68 (16, 443) 64 (20, 252) 73 (15, 555) 0.69

 NAG, mU/mg · uCR 8.9 (5.2, 17.4) 8.1 (4.7, 12.3) 9.0 (5.5, 18.1) 0.31

 KIM-1, pg/mg · uCR 960 (334, 3181) 1118 (324, 2721) 872 (368, 3220) 0.54
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Values are median (interquartile range) or n (%). ACE-I indicates angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; AFL, atrial 
flutter; ARB, angiotensin receptor blocker; BUN, blood urea nitrogen; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; HF, heart 
failure; ICD, implantable cardioverter-defibrillator; IHD, ischemic heart disease; JVP, jugular venous pressure; KIM-1, kidney injury molecule 1; 
LVEF, left ventricular ejection fraction; NAG, N-acetyl-β-D-glucosaminidase; NGAL, neutrophil gelatinase-associated lipocalin; NT-proBNP, N-
terminal pro-B-type natriuretic peptide; SBP, systolic blood pressure; and WRF, worsening renal function.

*
Significant.
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