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Abstract

High-resolution mass spectrometry (HRMS) data has revolutionized the identification of 

environmental contaminants through non-targeted analysis (NTA). However, chemical 

identification remains challenging due to the vast number of unknown molecular features typically 

observed in environmental samples. Advanced data processing techniques are required to improve 

chemical identification workflows. The ideal workflow brings together a variety of data and tools 

to increase the certainty of identification. One such tool is chromatographic retention time (RT) 

prediction, which can be used to reduce the number of possible suspect chemicals within an 

observed RT window. This paper compares the relative predictive ability and applicability to NTA 

workflows of three RT prediction models: (1) a logP (octanol-water partition coefficient)-based 

model using EPI SuiteTM logP predictions; (2) a commercially available ACD/ChromGenius 

model; and, (3) a newly developed Quantitative Structure Retention Relationship model called 

OPERA-RT. Models were developed using the same training set of 78 compounds with 

experimental RT data and evaluated for external predictivity on an identical test set of 19 

compounds. Both the ACD/ChromGenius and OPERA-RT models outperformed the EPI SuiteTM 

logP-based RT model (R2=0.81–0.92, 0.86–0.83, 0.66–0.69 for training-test sets, respectively). 

Further, both OPERA-RT and ACD/ChromGenius predicted 95% of RTs within a ± 15% 

chromatographic time window of experimental RTs. Based on these results, we simulated an NTA 
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workflow with a ten-fold larger list of candidate structures generated for formulae of the known 

test set chemicals using the U.S. EPA’s CompTox Chemistry Dashboard (https://comptox.epa.gov/

dashboard), RTs for all candidates were predicted using both ACD/ChromGenius and OPERA-RT, 

and RT screening windows were assessed for their ability to filter out unlikely candidate chemicals 

and enhance potential identification. Compared to ACD/ChromGenius, OPERA-RT screened out a 

greater percentage of candidate structures within a 3-minute RT window (60% vs. 40%) but 

retained fewer of the known chemicals (42% vs. 83%). By several metrics, the OPERA-RT model, 

generated as a proof-of-concept using a limited set of open source data, performed as well as the 

commercial tool ACD/ChromGenius when constrained to the same small training and test sets. As 

the availability of RT data increases, we expect the OPERA-RT model’s predictive ability will 

increase.
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INTRODUCTION

High-resolution mass spectrometry (HRMS) and its coupling to gas chromatography (GC) 

and liquid chromatography (LC) systems have revolutionized processes used to identify 

environmental contaminants [1–5]. High mass accuracy and sensitivity in HRMS 

instruments routinely allow observation of thousands of chemical features (defined by an 

accurate monoisotopic mass, retention time, abundance, and related isotopes) in 

environmental samples [1–5]. However, data processing and chemical characterization 

remain challenging despite recent developments [6, 7]. Chemical reference standards and 
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their associated spectral data allow structure confirmation of observed features, but reference 

standards rarely are available for thousands of observed features in non-targeted analysis 

(NTA) and suspect screening analysis (SSA). Therefore, research consortia around the world 

have begun to develop workflows to effectively identify unknown chemicals in 

environmental samples with increasing degrees of certainty [5, 8, 9]. Identifying unknowns 

through data source ranking has become a fixture in many workflows [10, 11]. The growth 

and availability of spectral libraries such as MassBank [12], improvements to in silico 
fragmentation resources [13], and the CompTox Chemistry Dashboard [14, 15] have all 

increased probable structure identification from HRMS data [16].

Effective NTA workflows combine multiple tools and types of information for chemical 

identification, including data source ranking, comparison between empirical and reference 

(or theoretical) spectra, and chromatographic retention time (RT) prediction [13, 17]. 

However, many RT prediction tools and models, when integrated into NTA workflows, have 

been used with varying degrees of success [16–22], and it is difficult to determine their 

performance in isolation. Comparing RT prediction tools should improve NTA workflows by 

characterizing their performance in context.

Although RTs can vary considerably between analytical columns, mobile phases, and 

instrumentation, RT information has proven useful in identifying some chemical unknowns 

[13, 18]. Comparing predicted RTs to experimental RTs of unknowns provides data on how 

to focus subsequent investigation efforts on only those features observed within specified RT 

windows and can provide weighted evidence toward tentative chemical identification if RTs 

align. RTs are directly related to chemical structure and have been predicted using a variety 

of physicochemical properties with varying degrees of complexity [19–21]. Simple RT 

prediction models based on octanol-water partition coefficients (logP) have been commonly 

used and can provide a reasonably good prediction (coefficient of determination R2 = 0.60 to 

0.70) [17, 19, 22], although the reliability of the logP data is critical to model performance 

and resulting prediction accuracy. Bade et al [19] reported very little difference between 

using experimental and predicted logP values when estimating RT, but indicated a 

preference for predicted logP data based on broader availability.

Multivariate Quantitative Structure-Retention Relationship (QSRR) methods for RT 

prediction are more complex than logP-based RT models and have been increasingly used in 

recent years [20, 21, 23, 24]. Descriptors such as logP, the pH-dependent partition 

coefficient logD, molecular mass, polarity, and Linear Solvation Energy Relationship 

(LSER) [25] have been incorporated into workflows to complement identification strategies. 

QSRR methods have predicted 95% of RTs within a 2-minute RT window of an 18-minute 

chromatographic run (or ±11% of the total run time) for ~600 chemicals [18] and have 

yielded R2 values for predicted versus experimental RTs consistently exceeding 0.80 [21, 

24]. Artificial neural networks (ANN) [18, 20, 24], k-nearest neighbor clustering [21], 

partial least squares regression (PLS) [26–28], and support vector machine learning (SVM) 

approaches have recently been used to develop descriptor-based models for RT prediction 

[21]. Finally, commercial chromatography-specific software solutions providing RT 

prediction are available (such as http://www.acdlabs.com/products/com_iden/meth_dev/

lc_sim/ and http://molnar-institute.com/drylab/) and can be used to support NTA. ACD/
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ChromGenius (Advanced Chemistry Development, Inc., Toronto, Canada) is one such 

commercial software tool. ACD/ChromGenius has been minimally described in the literature 

but is a comprehensive tool capable of providing analysts with RT prediction information for 

use in structure identification.

The focus of some recent environmental non-targeted analytical chemistry efforts has shifted 

towards more polar emerging contaminants due to their ubiquity in the environment [17, 24, 

29], leading to the development of LC-based targeted and NTA methods and related data 

processing tools. GC-based systems have established retention indices and RT databases 

(such as the National Institute of Standards and Technology [NIST] database [30]) to 

improve identification in NTA, but LC systems are lacking. Therefore, LC-based RT 

prediction models require development and validation for ultimate inclusion in structural 

identification workflows. The purpose of this research was to compare performance across 

three RT prediction tools, including a new in-house QSRR model, and to evaluate impact of 

these models on overall NTA workflow performance. Three RT prediction models were 

compared for relative predictive ability and applicability to NTA workflows using 97 

chemicals observed using high-performance liquid chromatography (HPLC)-time of flight 

(TOF)/MS instrumentation: (1) a logP-based RT model using EPI SuiteTM property 

predictions; (2) an ACD/ChromGenius model; and (3) an in-house QSRR model called 

OPERA-RT. OPERA-RT was structured similarly to physical and chemical property 

prediction models [31] and in this work was applied to RT as a proof-of-concept. To our 

knowledge, this research represents the first time that three RT models such as these have 

been explicitly compared using data from the same sets of chemicals.

METHODS

HPLC Retention Time Data Acquisition

Retention time data for 97 unique chemicals were used for this investigation. The data were 

acquired via analysis of 10 individual standards and three mixtures of the remaining 87 

standards. The full results set for the 97 chemicals was separated into a training set of 78 

chemicals (~80%) and a test set of 19 chemicals (~20%). The ten chemicals analyzed as 

individual standards were split proportionally between the test and training sets and 

comprised ~10% of each list. Supplemental Table S1 lists all 97 chemicals, with annotations 

indicating if each chemical was analyzed individually or in a mixture and included in the 

training or test set (Supplemental File S1 provides structures in SDF format).

RTs were acquired using an Agilent 1100 series HPLC interfaced with a 6210 series 

accurate-mass LC-TOF/MS system (Agilent Technologies, Palo Alto, CA) fitted with an 

electrospray ionization source. Chromatographic separation was accomplished using an 

Eclipse Plus C8 column (2.1 × 50 mm, 3.5 μm; Agilent Technologies) following previously 

published methods [1]. The flow rate was set to 0.2 mL/min and the column was kept at 

30 °C. Mobile phase A consisted of ammonium formate buffer (0.4 mM) and DI 

water:methanol (95:5 v/v), and B consisted of ammonium formate (0.4 mM) and 

methanol:DI water (95:5 v/v). Separation occurred using a gradient method as follows: 0–25 

min linear gradient from 75:25 A:B to 15:85 A:B; 25–40 min linear gradient from 15:85 
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A:B to 100% B; 40–50 hold at 100% B. Molecular features were acquired between 0 and 45 

min.

Model Descriptions

LogP-based model—The logP-based RT prediction model was developed following 

previously published methods [17, 19]. Predicted logP values were used to develop the RT 

prediction model. To select the better logP-based RT model for comparison with the ACD/

ChromGenius and OPERA-RT models, three sources of predicted logP were used: EPI 

SuiteTM (KOWWIN) [32], ACD/Labs, and OPERA (OPEn saR App) [33]. EPI SuiteTM 

KOWWIN uses a fragment contribution method, and ACD/Labs primarily uses the principle 

of isolating carbons [34]. OPERA is a suite of QSAR models used to predict 

physicochemical and environmental fate properties [31]. OPERA model predictions of logP, 

referred to as OPERA logP, are based on k-nearest neighbors (kNN) classification of 

molecular descriptors. OPERA logP is distinct from OPERA-RT, the model used to predict 

RT.

Experimental RT values were regressed on logP estimates from all three sources for the 

training set chemicals (n = 78). The resulting linear regression equations were then used to 

predict RTs for chemicals in the training and test sets. Results of the logP-based prediction 

models were evaluated, and the best model was chosen for further comparison to the ACD/

ChromGenius and OPERA-RT models.

ACD/ChromGenius—ACD/ChromGenius was developed by ACD/Labs to predict RTs 

and inform chromatographic method development based on structural information for 

chemical compounds of interest [35]. The software bases RT prediction on a proprietary 

algorithm using a number of physicochemical parameters, including logP, logD, molecular 

weight, molecular volume, polar surface area, and other molecular properties. Algorithm 

criteria were selected to maximize model performance (see Supplementary Figures S1 

through S6), and structure similarity searching based on structure fingerprints was 

performed to narrow the prediction database. Supplementary Figure S3 illustrates the 

parameter options selected during model generation [36]. The software incorporates a 

knowledgebase of chemical structures and RTs used to develop RT prediction models and 

can simulate different separation methods available in the knowledgebase. Different 

chromatographic methods can be ranked according to suitability (optimal separation of 

chemicals, gradient parameters, length of chromatographic run, etc.) and displayed with a 

simulated chromatogram and a table of predicted RTs. The software also has a training mode 

where a user can input a data set of chemical structures, experimental RTs, and 

chromatographic method parameters, which then are used to build an RT prediction model. 

Applications of the ACD/ChromGenius model for GC methods are reported in the literature 

[36].

For the current application, chromatographic method parameters (see “Retention Time Data 

Acquisition” above), the training set of structures (n = 78), and experimental RTs were 

loaded into the software. The software’s prediction algorithms then used chemical structures 

and their associated ACD-predicted physicochemical properties to build unique prediction 
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equations. Algorithm criteria and model parameters were selected to minimize prediction 

error (see Supplementary Figures S1 through S6). Predicted RTs were ultimately exported 

from the results screen within the software.

OPERA-RT model—The OPERA-RT model was generated using methods similar to the 

generation of property prediction model [31]. First, molecular descriptors of the chemicals 

were calculated. PaDEL, a free and open-source software for molecular descriptor 

calculation [37] was used to calculate constitutional indices, ring descriptors, topological 

indices, functional group counts, atom-centered fragments, atom-type E-state indices, and 

two-dimensional (2D) atom pair descriptors based on the molecular topology of the 

chemicals. After removing variables (descriptors) with constant, near-constant, and missing 

values, descriptor pairwise correlation was checked with a fixed threshold of 95% to avoid 

multicollinearity [38, 39].

Seven-hundred sixty descriptors remained for variable selection to identify the most 

predictive descriptors. This identification was performed using genetic algorithms (GA) [40, 

41]. These nature-inspired machine-learning algorithms start from an initial random 

population of chromosomes. Each chromosome is a binary string (genes) that represents the 

presence or absence of the initial variables (descriptors) in a model. Afterwards, an evolution 

process is simulated and new chromosomes are obtained by coupling the chromosomes of 

the initial population with genetic-like operations (crossover and mutation). The evolution 

process is driven by maximizing a defined fitness function for 100 generations, and the 

whole process is repeated for 100 runs using the following parameters: cross-over rate=0.5, 

mutation rate=0.01, population size=30. The ultimate output is an optimal number of the 

most relevant descriptors and the appropriate model parameters.

The predictive squared correlation coefficient Q2, representing the predictive ability 

calculated in five-fold cross-validation, was used to evaluate fitness (Equation 1). This 

parameter has been calculated using various formulas in the literature [42–44]. In this work, 

the following formula was used:

Q2 = 1 −
∑i = 1

nEXT yi − yi
2/nEXT

∑i = 1
nTR yi − y 2/nTR

(1)

where nEXT is number of test compounds and nTR is the number of training compounds, ŷi 

and yi are the estimated and observed responses, respectively, and ȳ is the mean. GAs were 

coupled to partial least squares (PLS) to calibrate the models. PLS is a fitting technique that 

finds fundamental relationships between the matrix of descriptors (X) and the response (Y) 

using latent variables (LV), which are orthogonal and explain the maximum variance in the 

Y space [45].

The GAs provided a set of optimal models that were compared to minimize the number of 

used descriptors and the number of LVs for PLS models. The model with the best 

compromise between these criteria was selected. The applicability domain (AD) of the best 
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model was investigated using the leverage approach, with a threshold of three times the 

average of leverages from the matrix of the used descriptor values of the training set [46]. 

All calculations were performed in MATLAB 8.2 [47].

Criteria Used to Evaluate RT Models

A variety of metrics have been used in the literature to compare and evaluate RT prediction 

model performance [18, 19, 21, 48]. For this application, the relative predictive ability and 

performance of all three models (log P, OPERA-RT, and ACD/ChromGenius) were 

evaluated using criteria and statistics common to QSAR modelling [21, 42–44, 49] as well 

as more specific criteria relevant to the analytical chemistry and chromatography community 

[18, 19]. All of the following statistics were calculated using R Computing Software 

(Version 3.3.2) [50].

• The coefficient of determination (R2) between predicted and experimental RTs, 

was calculated as follows (Equation 2):

R2 = 1 − RSS
TSS = 1 −

∑i = 1
nTR yi − yi

2

∑i = 1
nTR yi − y 2

(2)

where ŷi and yi are the estimated and observed responses, respectively, ȳ is the 

mean, RSS is the residual sum of squares, TSS is the total sum of squares, and 

nTR is the number of training compounds.

• The root mean squared error (RMSE) between predicted and experimental RTs 

for the training and test sets, calculated as (Equation 3):

RMSE =
∑i = 1

n yi − yi
2

n (3)

where ŷi and yi are the estimated and observed responses, respectively.

• Absolute mean error of experimental versus predicted RT for both sets, in 

minutes.

• The number of chemicals whose predicted RT fell within specific RT windows 

of accuracy, relative to the total chromatographic run time.

RT Prediction for Structure Identification

To explore the capabilities of the two best-performing models discussed in this paper, ACD/

ChromGenius and OPERA-RT, further analysis was conducted on the test set chemicals. 

Mimicking an NTA-type workflow, molecular formulae of the test set chemicals were 

searched in the CompTox Chemistry Dashboard [12], and the top 10 candidate chemical 

results for each formula, as determined by data source ranking [13], were compiled. RTs of 

all the chemicals in the resulting list of candidate structures were predicted using the ACD/
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ChromGenius and OPERA-RT models. Predicted RTs were then evaluated relative to the 

experimental RT of the known test set chemicals by calculating RT error as the difference 

between the experimental RT of the known test set chemical and the predicted RT of the 

candidate chemicals from the search results list (see Supplemental Table S5). Then, three RT 

screening windows were applied to evaluate the efficacy of each prediction model: ±5, ±3, 

and ±2 minutes. Results were reported as the percentage of known test set chemicals 

retained within each screening window (i.e. true positives) and the percentage of total results 

screened out per formula search, indicating selectivity.

RESULTS AND DISCUSSION

Chemical Sets

Experimental RTs of the training set compounds ranged from 1.1 to 40.8 min, and logP 

values ranged from −0.4 to 9.5. RTs of the test set compounds ranged from 1.7 to 29.4 min 

and covered a logP range of −0.04 to 9.6 (see Supplemental Tables S1 through S3).

Evaluation of logP-Based Models

To select the best logP-based RT model for comparison, three sources of predicted logP 

were used: EPI SuiteTM, ACD/Labs, and OPERA. The three sources of predicted logP were 

evaluated separately and a single model was chosen on the basis of predictive performance 

of the corresponding RT models on the training and test sets (see Supplemental Table S3). 

Based on R2 and RMSE statistics, the EPI SuiteTM logP-based model performed similarly to 

OPERA logP on the training set and outperformed OPERA logP on the test set. As a result, 

the EPI SuiteTM logP-based model was selected for further comparison and evaluation.

Model Performance

A number of models resulted from the GA-PLS machine learning run on PaDEL descriptors. 

Among these, the optimal OPERA-RT model offered a compromise between model 

complexity and predictivity. The selected OPERA-RT model included seven descriptors that 

were projected orthogonally into three latent variables corresponding to the first three 

significant principal components (see Supplemental Table S2). Most of the best performing 

models included the seven selected descriptors. Other models were generated that present 

higher predictive ability but for a higher number of descriptors.

Table 1 shows the prediction summary statistics of the EPI SuiteTM logP-based, ACD/

ChromGenius, and OPERA-RT models. For the training set compounds, R2, RMSE, and 

absolute-mean-error values between the predicted and experimental RTs indicate that the 

OPERA-RT model performed better than the ACD/ChromGenius model, which performed 

better than the logP-based model. For the test set compounds, the ACD/ChromGenius model 

performed better than the OPERA-RT model, which performed better than the EPI SuiteTM 

logP-based model. On the combined sets (n=97), based on RMSE, R2, and absolute mean 

error, the OPERA-RT and ACD/ChromGenius models performed similarly and 

outperformed the EPI SuiteTM logP-based model.
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Figure 1 shows predicted versus experimental RTs and RT error versus experimental RT for 

the three models. Training and test sets are combined. Prediction errors throughout the 

chromatographic run time were lowest for the ACD/ChromGenius and OPERA-RT models 

and greatest for the EPI SuiteTM logP-based model (Figure 1). Additionally, the OPERA-RT 

model performed more consistently across the full range of RTs than the ACD/ChromGenius 

model, despite similar R2 values (see Figure 1). The EPI SuiteTM logP-based model used for 

this research performed similarly to previous logP-based RT prediction models. Bade et al 
[20] reported an R2 of 0.67 and an RMSE of 2.19 min (or 12.2% of total run time) based on 

a training set of ~600 compounds, and others have reported similar R2 values ranging from 

0.6 to 0.7 [17] on ~90 compounds. The EPI SuiteTM logP-based RT model did not perform 

as well as the QSRR models but it performed as well as other previously reported RT 

prediction models built on logP values. Accessibility to predicted logP data and consistent 

performance across laboratory groups based on literature data indicates that logP can be 

used to predict LC RTs across research groups with some reliability.

Both the ACD/ChromGenius and OPERA-RT models performed similarly to other models 

using QSRR methods. ANN modelling of RT has yielded R2 values of 0.86 to 0.90 [18] and 

absolute RT errors of approximately 5% of the total chromatographic run time [20]. The 

ACD/ChromGenius and OPERA-RT models performed within the ranges of previous ANN 

models based on model performance statistics (see Table 1; 5% of the total run time in this 

research is 2.25 min). Additionally, previously reported ANN models had substantially 

larger training sets (~1000 compounds), which likely improved model performance relative 

to smaller training sets [24]. The ACD/ChromGenius and OPERA-RT models were 

outperformed only by the best models described in Aalizadeh et. al. [21], where several 

linear and non-linear models were developed. R2 values between the predicted and 

experimental RTs reported in Aalizadeh et al ranged from 0.82 to 0.98 for the training set 

and 0.78 to 0.85 for the test set [21].

Finally, some similarly structured PLS models for RT prediction outperformed the models 

described herein, but these PLS models were built on specific training sets (less than 15 

chemicals) of structurally similar chemicals within the same class (steroids [26] and 

chalcones [27]). Another recent kernel-based PLS model for RT prediction ( R2 = 0.86) 

performed similar to the OPERA-RT model but was generated on a training set of ~1000 

compounds [28]. Therefore, with respect to standard model performance statistics, both the 

ACD/ChromGenius and OPERA-RT models perform similarly to many other QSRR models, 

and logP-based models are outperformed by the more complex QSRR models.

Chromatographic Windows

There are multiple approaches for using RT predictions as part of NTA workflows. One 

approach uses prediction windows to determine if estimated RTs for candidate compounds 

fall within a predetermined range of the experimental RTs of unknowns. Researchers have 

applied this approach using time windows around experimental RTs based on minutes 

throughout the chromatographic run [18, 19]. However, use of fractional windows (such as 

1/10th or 10% of the total run time) allows the use of a common rule across multiple 
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methods, whereas a straight time window is specific to a particular method (for example, 

± 10% of a 20-min run yields a window of ± 2 min).

Table 2 shows the number of predicted RTs in both the training and test sets that fell within 

± 5, 10, 15, and 20% time windows (as percentage of the total chromatographic run time) of 

the experimental RTs (or ± 2.25, 4.5, 6.75, and 9 min, respectively) calculated for each 

model. For the EPI SuiteTM logP-based model, 90% of the predicted RTs fell within a 

± 20% time window of the experimental RTs, and both the ACD/ChromGenius and OPERA-

RT models predicted 97% of the RTs within the same window. The OPERA-RT model 

predicted 81% (63 out of 78) of the training set to be within the ±10% window, while the 

ACD/ChromGenius model predicted 72% (56 out of 78) of the training set to be within the 

same window. For the test set, the ACD/ChromGenius and OPERA-RT models predicted 

nearly 100% of RTs to be within the ± 15% window, while the logP-based model predicted 

89% of the test set to be within the ±15% window. At smaller RT windows, the ACD/

ChromGenius and OPERA-RT models performed similarly across both sets and 

outperformed the EPI SuiteTM logP-based model.

The logP-based model in this research performed similarly to other logP-based models in 

studies where chromatographic RT prediction windows were considered as a decision 

criterion [19]. At approximately the same percentage of the total run time (± 20%), Bade et 
al [19] reported that 92% of the compounds in the study set were within the defined range, 

versus 89% of the training set and 95% of the test set reported here. For ANN-based models 

predicting RTs on the same chemical set, Bade et al [18] reported that 95% of predicted RTs 

were within a window set at 16% of the total run time. In this research, the OPERA-RT 

model predicted more than 95% of both the training and test sets within 15% of the run time, 

while the ACD/ChromGenius model predicted more than 95% of the test set only within the 

same error range. These results indicate that the OPERA-RT and ACD/ChromGenius 

models outperformed logP-based models (this research and [20]) and performed as well as 

another QSRR model built on a larger training set [18].

Applying defined windows to evaluate RT predictions enables the analyst to view the 

likelihood that prediction models can aid more comprehensive NTA workflows. Accurate RT 

prediction within a selective time window (the smallest window in which the prediction RT 

falls) could allow the screening out of unlikely chemicals based on RT. Both the ACD/

ChromGenius and OPERA-RT models performed similarly to other previously reported 

QSRR models, indicating that both models may enhance processes for assigning candidate 

structures to unknown features as a part of larger workflows.

RT Prediction for Structure Identification

Identifying observed chemical features in NTA and SSA applications requires cohesive 

workflows that bring together a variety of data sources, in silico tools, and software 

applications. Applying RT prediction models to identification workflows can improve 

chemical identification by reducing potential candidates or ranking potential candidates by 

RT feasibility [5, 13].
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The two best models in this research, ACD/ChromGenius and OPERA-RT, were further 

evaluated in a mimicked NTA workflow. As expected and shown in Table 3, in both models, 

tighter RT windows increased the number of search results screened out. However, as tighter 

RT windows were applied, known chemicals were more likely to fall outside the RT 

screening windows, especially at the smallest windows that approached the prediction error 

of the models. At a conservative RT window of ± 5 min (or 11% of the total run time), the 

ACD/ChromGenius model screened out about 20% of the search results while keeping 18 of 

the 19 chemicals in the test set (Table 3 shows selected chemicals only). The OPERA-RT 

model also screened out about 20% of the search results and kept 17 of the 19 chemicals at 

RT window of ± 5 min.

The search results summarized in Table 3 were pre-screened by the number of data sources, 

therefore the number of screened chemicals reported should not be considered 

comprehensive. When a full search results list is used, it is probable that a greater number of 

candidate chemicals would be screened out. It is imperative to find a balance between 

screening out potential false positives from search results while not eliminating true 

positives. To exclude no true positives (i.e. the known test set chemical), the RT window for 

screening results in the ACD/ChromGenius model would need to be 5.06 min and in the 

OPERA-RT model 6.5 minutes. The ACD/ChromGenius model achieved slightly greater 

specificity than the OPERA-RT model in this NTA scenario, but both models performed 

similarly.

RT prediction has value in identification workflows but must be applied with caution. 

Further, RT prediction alone is not sufficient for identification in NTA scenarios, and, as 

previous research shows [5, 17–18], should be combined with other metrics and metadata to 

improve identification. For future applications, it is recommended that the RT prediction 

models used in this research be conservatively applied (with RT windows at or exceeding 

± 5 min) to tentative chemical lists after initial identification methods in order to preserve 

true positives.

Several tools incorporate RT prediction into structural identification workflows. Recent 

additions to MetFrag [51] and FOR-IDENT [9] enable users to incorporate or predict RTs 

and to use RT likelihood as part of weighting-based identification schemes. Other simulators 

(both open and software-based) achieve predictions based on pre-built training sets and 

chromatography conditions. Incorporating RT prediction into identification workflows will 

improve processes, but difficulties arise when RT prediction models cover small 

applicability domains or apply only to one LC setup as is the case in most prediction models. 

Large multi-laboratory collaborations and trials can assist in the development of global RT 

prediction models for use as cross-laboratory workflows [5, 52, 53].

Challenges

Understanding the challenges and limitations within each RT prediction model and 

identifying solutions can improve overall model performance. One potential cause of errors 

in RT prediction may occur when tautomers have not been correctly identified and 

differentiated using mass spectrometry. Tautomers for a particular chemical of interest may 

have different RTs or may be predicted to have different RTs if their physicochemical 

McEachran et al. Page 11

Talanta. Author manuscript; available in PMC 2019 May 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



properties differ sufficiently. RTs of five chemical compounds within the combined chemical 

set that could display tautomerization were observed further. Predicted RTs of tautomers 

generally varied by 3 min or less than the original, but predicted RTs of one pair of 

tautomers were substantially further apart as shown in Table 4.

For these two chemicals, the original structural representation included in the training set 

was predicted with greater accuracy by the ACD/ChromGenius model (Table 4, top structure 

in each section). However, RT predictions across tautomers showed substantial changes in 

RT. For a tautomer of the chemical meloxicam (DTXSID1020803, Table 4, bottom), the 

ACD/ChromGenius model predicted an RT ~7 min different than the original structure of 

meloxicam and OPERA-RT predicted an RT ~3 min different. This indicates the effect 

structural representation can have on RT predictions. In this instance, the OPERA-RT 

predicted RT of the meloxicam tautomer was closer to the experimental RT than the 

predicted RT of meloxicam. RT changes of this magnitude could negatively impact structure 

elucidation in NTA as well as model performance.

Charged species, specific classes of chemical compounds and method parameters, also may 

result in greater errors in RT prediction. For example, two of the five worst predictions of the 

OPERA-RT model were for parabens (heptylparaben and propylparaben). However, both the 

EPI Suite logP-based and ACD/ChromGenius models accurately predicted the RTs of these 

compounds. The ACD/ChromGenius model performed poorly on several late-eluting 

compounds (8:2/10:2 diPAP, 1-dodecanamine, etc.; experimental RT exceeding 23 min), 

whereas the OPERA-RT model performed well on these compounds (absolute RT errors of 

less than 3.5 min). Three of the worst predictions made by the logP-based model were for 

chemical compounds whose logP values ranged from approximately 4 to 7, indicating that 

overestimation is likely as logP values increase. Further deviations occur where errors to 

repeating structural units are present, such as increasing chain length perfluorinated 

substances. Charged species and ionizable chemicals can present problems when performing 

HPLC due to interactions with both the stationary and mobile phases, especially as pH 

changes within the mobile phase. All charged species within the combined training and test 

sets were observed for differences in RTs based on neutralization, if possible. The 

neutralized structures differed in predicted RT by less than 0.75 min from the original, 

charged structure, indicating that charge had little effect on RT prediction for the tested sets 

and models. Finally, expanding the chemical set used in this research could increase the 

chemical space, reduce RT error, and increase applicability.

Future Work

The U.S. EPA and many others are conducting collaborative work to address challenges in 

NTA, develop open workflows, and provide open data for the analytical chemistry 

community. Open tools that offer performance comparable to commercial tools would 

greatly benefit the analytical chemistry community as open tools are free, easily accessible, 

shareable, and customizable. The descriptors used to generate the OPERA-RT model are 

available for public use through the OPERA standalone app (https://github.com/kmansouri/

OPERA.git), and RT data is available from the National Center for Computational 

Toxicology (NCCT) Figshare account (https://figshare.com/projects/NCCT_Presentations/
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22852). We note that the OPERA-RT algorithm in its present application is very constrained 

(with one chromatographic method and a constrained dataset of only 97 chemicals). 

OPERA-RT does not offer some of the benefits of the commercial tool ACD/ChromGenius, 

which has an intuitive user interface, an underpinning of multiple physicochemical 

prediction algorithms, and a knowledgebase containing training sets aggregated across 

multiple methods. However, OPERA-RT is easily accessible, free, and customizable and 

additional resources will improve the OPERA-RT model through the inclusion of more 

experimental data across different chromatographic methods to improve the model’s 

predictivity and widen the applicability domain for subsequent applications on large sets of 

heterogeneous chemicals.

Additional work will further incorporate data from a collaborative NTA trial to work towards 

a global RT prediction system [53]. Future implementation of the OPERA-RT model [54] 

and associated data through the U.S. EPA’s CompTox Chemistry Dashboard [15] will allow 

analysts to incorporate the OPERA-RT model in chemical identification workflows in NTA.

CONCLUSIONS

Incorporating RT prediction into NTA and SSA workflows has been shown to improve the 

identification of unknowns for environmental and exposure analysis [4,5,15,18,22]. This 

paper compared three RT prediction models on the same set of 97 chemicals to assess the 

viability of a new, in-house QSRR-based RT prediction model (OPERA-RT) relative to a 

well-documented logP-based model and the ACD/ChromGenius model. For all statistics 

reported in this research, both the ACD/ChromGenius and OPERA-RT models 

outperformed the simple EPI Suite logP-RT prediction model. The ACD/ChromGenius and 

OPERA-RT models performed similarly, and depending on the metric of interest, one model 

may perform better than the other. However, the OPERA-RT has benefits that the ACD/

ChromGenius model cannot provide (such as open access and availability), while the latter 

may be more accessible to users with commercial or vendor solutions.

All the models described in this paper were developed based on a small dataset and can only 

be expected to cover a narrow applicability domain. Greater coverage of RT data and the 

chemical space may increase predictive ability and widen the applicability domain. The 

OPERA-RT model still is in development and was created here as a proof-of-concept, with 

goals to expand and improve it. Based on its performance relative to a commercial software 

solution and its open accessibility, the OPERA-RT model is worth improving and exploring 

for future applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Predicted versus experimental RTs (left column) and RT error versus RT (right column) for 

EPI SuiteTM logP-based (top), ACD/ChromGenius (middle), and OPERA-RT (bottom) 

models. Training and test sets are combined.
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Table 1.

Summary model performance statistics of all three models

EPI Suite™ logP ACD/ChromGenius OPERA-RT

Training Set (n = 78)

  R2 0.66 0.81 0.86

  RMSE (min) 5.58 4.18 3.56

  Absolute Mean Error (min) 4.71 3.25 2.88

Test Set (n = 19)

  R2 0.69 0.92 0.83

  RMSE (min) 5.14 2.66 3.86

  Absolute Mean Error (min) 4.41 2.36 3.28

Combined Set (n = 97)

  R2 0.66 0.83 0.86

  RMSE (min) 5.50 3.93 3.60

  Absolute Mean Error (min) 4.65 3.03 2.93

R2 = coefficient of determination, RMSE = root mean squared error
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Table 2.

Number of predicted RTs from each model reported within a RT window, as a % of the total chromatographic 

run time. Total run time is 45 min.

 Number of predicted RTs found within window of experimental
     RTs

RT window
(± % of total 45-min run,
± min)

EPI SuiteTM logP ACD/ChromGenius OPERA-RT

Training Set (n = 78)

  ± 5%  (2.25 min) 19 36 36

  ± 10% (4.50 min) 39 56 63

  ± 15% (6.75 min) 59 70 74

  ± 20% (9.00 min) 70 76 76

Test Set (n = 19)

  ± 5%  (2.25 min) 3 9 7

  ± 10% (4.50 min) 10 17 15

  ± 15% (6.75 min) 17 19 18

  ± 20% (9.00 min) 18 19 19
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Table 3.

Selected chemicals and screening results based on RT windows applied to RT predictions for the OPERA-RT 

and ACD/ChromGenius models. The percentage of search results screened out based on each formula search 

are presented along with whether or not the known chemical was kept within the RT window (Y/N). Only 

those chemicals with 10 candidate chemical results (see RT Prediction for Structure Identification) are 

included below for accurate representation of percentages (n=12). Total chromatographic run time was 45 

minutes.

% of Search Results Screened Out and Whether the
Known Chemical was Kept

Test Set Chemical ±5 min ±3 min ±2 min

OPERA-RT

Carbofuran 10% - Y 20% - Y 40% - Y

Tetradecanoic acid, 2,3-
  dihydroxypropyl ester 60% - Y 90% - N 90% - N

Piperine 90% - Y 100% - N 100% - N

Corticosterone 10% - Y 40% - Y 50% - Y

Rofecoxib 10% - Y 70% - N 80% - N

1,2-Benzisothiazolin-3-one 0% - Y 40% - Y 60% - Y

N-Dodecanoyl-N-methylglycine 0% - Y 60% - N 80% - N

Nootkatone 80% - N 90% - N 90% - N

6-Propyl-2-thiouracil 0% - Y 60% - N 80% - N

Bisphenol F 0% - Y 10% - Y 20% - N

6-Hydroxychlorzoxazone 70% - Y 100% - N 100% - N

4'-Hydroxydiclofenac 40% - Y 60% - Y 90% - Y

Median percentage screened -total
knowns kept 10% - 11 60% - 5 80% - 4

ACD/ChromGenius

Carbofuran 10% - Y 20% - Y 40% - N

Tetradecanoic acid, 2,3-
  dihydroxypropyl ester 50% - Y 70% - Y 100% - N

Piperine 70% - Y 80% - N 80% - N

Corticosterone 40% - Y 40% - Y 90% - Y

Rofecoxib 60% - Y 90% - N 90% - N

1,2-Benzisothiazolin-3-one 20% - Y 20% - Y 30% - Y

N-Dodecanoyl-N-methylglycine 10% - Y 40% - Y 70% - N

Nootkatone 0% -Y 30% -Y 40% -N

6-Propyl-2-thiouracil 0% - Y 3% - Y 60% - Y

Bisphenol F 20% - Y 20% - Y 70% - N

6-Hydroxychlorzoxazone 0% - Y 90% - Y 100% - N

4'-Hydroxydiclofenac 40% - Y 50% - Y 80% - N

Median percentage screened -total
knowns kept 20% - 12 40% - 10 75% - 3
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Table 4.

Experimental and predicted RTs of two training set chemicals and their respective tautomeric forms. DTXSID 

is the unique chemical identifier of the DSSTox Database underlying the CompTox Chemistry Dashboard 

(https://comptox.epa.gov/dashboard/).

Experimental
RT

ACD/ChromGenius
RT

OPERA-RT
RT

EPISuite
logP
RT

4.9 9.3 7.8 9.6

DTXSID1021116 

8.0 9.3 9.6

7.5 5.5 9.7 14.9

DTXSID1020803 

12.9 6.6 11.9
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