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Abstract

At the micron scale, where cell organelles display an amazing complexity in their shape and 

organization, the physical properties of a biological membrane can be better-understood using 

continuum models subject to thermal (stochastic) undulations. Yet, the chief orchestrators of these 

complex and intriguing shapes are a specialized class of membrane associating often peripheral 

proteins called curvature remodeling proteins (CRPs) that operate at the molecular level through 

specific protein-lipid interactions. We review multiscale methodologies to model these systems at 

the molecular as well as at the mesoscopic and cellular scales, and also present a free energy 

perspective of membrane remodeling through the organization and assembly of CRPs. We discuss 

the morphological space of nearly planar to highly curved membranes, methods to include thermal 

fluctuations, and review studies that model such proteins as curvature fields to describe the 

emergent curved morphologies. We also discuss several mesoscale models applied to a variety of 

cellular processes, where the phenomenological parameters (such as curvature field strength) are 

often mapped to models of real systems based on molecular simulations. Much insight can be 

gained from the calculation of free energies of membranes states with protein fields, which enable 

accurate mapping of the state and parameter values at which the membrane undergoes 

morphological transformations such as vesiculation or tubulation. By tuning the strength, 

anisotropy, and spatial organization of the curvature-field, one can generate a rich array of 

membrane morphologies that are highly relevant to shapes of several cellular organelles. We 

review applications of these models to budding of vesicles commonly seen in cellular signaling 

and trafficking processes such as clathrin mediated endocytosis, sorting by the ESCRT protein 

complexes, and cellular exocytosis regulated by the exocyst complex. We discuss future prospects 
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where such models can be combined with other models for cytoskeletal assembly, and discuss 

their role in understanding the effects of cell membrane tension and the mechanics of the 

extracellular microenvironment on cellular processes.
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1. Introduction

For over a century, researchers both in the physical and biological sciences have pondered 

over the question of ‘how a cell gets its shape?’ The initial interests in cell shapes were 

mainly due to its use as a taxonomical classifier. However, research over the past decades 

have uncovered a deeper tie between cell shape and function which makes the question 

highly relevant to our quest to engineer cells [1, 2]. The shape of a cell and its organelles is 

primarily determined by the morphology of the cell membrane, which is constituted of 

lipids, proteins and sugars that are organized as a bilayer [3]. The composition of these 

individual components varies across cells and cell-organelles and has a direct correlation 

with their structure and function.

The shape of a cell membrane is modulated either by changes in its environmental variables, 

such as pressure and temperature, or due to its interactions with other cellular components 

such as individual proteins, the cytoskeleton, extracellular matrix, other cells in the tissue, 

and also due to its interaction with foreign particles such as a virus. The assembly, 

organization and shapes of fluid membranes have been reported in the literature using both 

theoretical [4–13] and computational methods [14–24] and a number of excellent reviews 

[25–35] have been written on this topic. The interactions of vesicular membranes with 

external components such as polymers and nano-sized particles and the resulting changes in 

membrane morphologies have also been reported [36–44].

In the past decade and a half, there has been a significant focus on membrane associated 

proteins and their role in reshaping cell membranes [45–50]. A special class of membrane 

associated proteins that spontaneously deform cell membranes are of importance in a 

number of cellular processes and these proteins are generally called curvature remodeling 

proteins (CRPs). Notable examples of CRPs include dynamin [51–55], cavaeolin [56], 

clathrin [57], reticulon [58], synuclein [59], apolipoprotein [59], endosomal sorting 

complexes required for transport (ESCRT) [60–62], and proteins whose membrane facing 

region is constituted of either a Bin/amphiphysin/Rvs (BAR) domain [63–69], an epsin N-

terminal homology (ENTH) domain [70–72], or an Exo70 domain [73]. Each of these 

proteins associate differently with lipid membranes and induce curvatures of varying degrees 

and directions. Despite these differences in the underlying chemistry, do the curvature 

induction by CRPs follow a minimal set of physical principles? This question will be the 

focus of this review. We will focus on the thermodynamics of membrane deformation 

induced by the organization and assembly of CRPs at the molecular (<100 nm), mesoscopic 

(100 nm–1 μm) and cellular length-scales (>1 μm).
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2. Membrane remodeling at the molecular scale

Treating protein-induced morphological changes in cell membranes in complete detail 

requires both a nanoscale description of a heterogeneous material—the protein interacting 

with individual lipids—as well as a continuum description of membrane shape and 

fluctuations at the mesoscale. Since the problem is inherently a multi-scale one, even the 

simplest mesoscale model for protein-mediated membrane shapes requires an approximation 

of all of the chemical interactions at the protein-membrane interface. Contemporary 

molecular investigations of this interface yield a wide variety of structural and energetic 

information about specific membrane-protein interactions, while a survey of the literature 

suggests several common features of this interface which must be captured in the 

corresponding continuum models so that they remain faithful to the underlying physics and 

chemistry.

Specific CRPs have been identified as early as the 1990s in microscopy images of dynamin 

and ENTH domain, both of which are known to stabilize elongated tubular structures in lipid 

membranes [70, 78]. To set the nomenclature, let us consider a CRP (or a cluster of CRPs) 

attached to the intracellular (i.e. the cytoplasmic) side of a cell membrane. We denote the 

CRP to induce a positive curvature when the induced membrane deformations grow into the 

intracellular side, and induce a negative curvature when the deformations grow into the 

extracellular side. The direction of the induced curvature depends on a number of factors 

including the intrinsic curvature of the CRP, the location of its lipid binding motifs, the 

distribution of lipids in the cell membrane, and the lateral interactions between CRPs.

Molecular models to explicitly study the protein-lipid interactions at lengthscales large 

enough to detect morphological changes have only become tractable in the last decade and 

figure 1 shows representative snapshots from various works, along these lines, published in 

the literature. The first explicit molecular models of CRPs began with the investigation of 

the BAR domain, which is known to facilitate vesicle budding and stabilization of the 

vesicle neck. The first study of this domain to use molecular dynamics (MD) found that 

membrane complied with the banana-shaped surface of the protein to generate curvature 

[75] in agreement with the crystal structure and liposome binding assays [63]. The resulting 

molecular view of this interaction suggested that a BAR domain can induce or comply to a 

range of curvatures depending on its orientation, and that particular positively-charged 

residues in the membrane facing domain were necessary to bend the bilayer. A follow-up 

study tested the influence of the amphipathic helices found in the protein N-BAR, a BAR 

domain containing an N-terminal amphipathic helix [79]. Larger-scale simulations of N-

BAR bolstered the support for the view that the orientation of the N-BAR domain could 

change with curvature, finding that the N-BAR domains achieved a specific twist when 

binding to tubule-like structures [80]. An MD study of another BAR domain member (F-

BAR) identified a similar ‘induced fit’ between the protein and bilayer, noting that the 

flexural rigidity of the protein must oppose the bending rigidity of the membrane, and that 

the balance of these forces is necessary to explain the protein-decorated tubules observed via 

electron microscopy (EM) [81]. MD simulations of I-BAR, whose curvature directionality is 

opposite to that of the N-/F-BAR domains, show that it induces and stabilizes membrane 

curvature through the formation of salt bridges with the lipids [82]. These studies highlight 
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the four properties that bear most heavily on the resulting protein-decorated structures: (1) 

the protein-bilayer interface, (2) the organization of the protein-protein lattice, (3) the 

conformational changes within the protein, and (4) the bending modulus of the bilayer. Each 

of these questions can be addressed by specific molecular models, however no single model 

can reveal the general features of CRPs since they must necessarily choose specific proteins 

to study, at a specific concentration, on a particular membrane structure. In that sense, many 

of these studies contribute a single point on a metaphorphical phase diagram of membrane 

morphologies. Since the measurement of a single value for (mean) curvature often serves as 

a taxonomic classifier for many features, it is useful to review the many ways in which these 

models measure curvature.

There are two general methods for measuring membrane curvature from a molecular 

simulation: either via geometry, by measuring the structure of the bilayer surface, or via 

mechanics, by measuring the forces across it. Curvature typically refers to the mean 

curvature, which is a strictly geometric quantity which can only be defined on a twice-

differentiable surface. Since the bilayer is a rugged object, especially at the scale of 

individual lipids, the choice of this surface requires an abstract representation of the 

coordinates observed in a molecular simulation.

The simplest way to infer curvature is to measure the deflection of a tensionless, planar 

bilayer in the normal direction since the peaks and valleys of a curved bilayer create local 

extrema in curvature as well. Several studies have used this method to qualitatively describe 

how bound proteins alter the average height/deflection of a free bilayer [76, 77, 83–85]. 

Using bilayer deflection as a proxy for curvature introduces the first of several challenges for 

understanding protein-mediated membrane sculpting: are proteins sensing or creating 
curvature? That is, proteins which lack the capacity to bend the bilayer may simply prefer 

particular curvature developed by undulations in a naturally fluctuating membrane bilayer. 

The studies which use deflection as a proxy for curvature typically address this question by 

comparing the protein-influenced membrane shapes to the equilibrium structures of a free 

bilayer (i.e. a flat surface in a planar simulation), or by comparing their simulations to 

experiments which provide a negative control or comparison to a membrane which has not 
been remodeled.

It is possible to measure curvature with more precision by approximating the bilayer 

midplane and then computing the curvature of the resulting surface. This can even be done 

in one dimension for proteins which induce anisotropic curvature by simply fitting the 

bilayer shape to a cylinder in one direction and then computing its radius. For instance, the 

intrinsic curvature of light harvesting proteins has been computed by measuring protein tilt 

and spacing angles [86] or by fitting a smooth surface with uniform principal radii of 

curvature [74]. The first solved BAR domain structure led many researchers to intuit the 

preferred curvature from its most likely membrane-contacting face, with some researchers 

even performing docking to a vesicle to demonstrate this feature [87]. Other models of BAR 

domains, ENTH domains, α-synuclein, and Exo70 have led to measurements of the mean 

curvature induced by a protein by fitting bilayer structures to higher resolution surfaces, with 

locally varying radii of curvature, yielding curvature estimates in the range of 0.006–0.074 

nm−1 [73, 74, 75, 79–81, 84, 86, 88]. These studies implicitly smooth the nanoscale 
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ruggedness of the bilayer when fitting their structures, however it is also posssible to use 

spectral filters to accomplish this [89, 90].

The ambiguity in representing a bilayer as a 2D surface raises the second major challenge to 

quantifying protein-induced membrane curvature: we expect the deformations induced by 

proteins and other inclusions to be heterogeneous. Treating the curvature with the typical 

‘dimple shape’ — that is, a maximum curvature induced near the protein which decays away 

from it—is a necessary consequence of measuring curvature on a small planar bilayer which 

satisfies periodic boundary conditions and hence forbids a non-uniform curvature unless it is 

identically zero. The planar topology of the simulation may constrain the observable 

deformations, but the protein may also induce a heterogeneous deformation. It is likely that 

CRPs with various remodeling capacities can create a heterogeneous field on highly curved 

surfaces as well, particularly since these proteins have structures that suggest that particular 

residues account for disproportionate amounts of the protein adhesion energy, and that 

multiple mechanisms, including electrostatics and amphipathic wedging, may contribute to 

the binding.

The third challenge concerns the question of dynamics. The geometric methods for 

measuring curvature described above sometimes rely on an average ‘snapshot’ of the bilayer 

structure to compute curvature. Even those that characterize the instantaneous bilayer shapes 

do not usually formally account for the variation in bilayer shapes. Some studies which use 

the deflection measurement [85] or geometry method [79] compare their observed 

geometries to that of a protein-free bilayer in order to attribute an enhanced structure to the 

membrane-protein complex. However comparatively few studies directly study the 

undulations as such. Simulations of the protein α-synuclein show qualitatively that bilayer 

fluctuations are enhanced in the presence of the protein [91]. Mesoscale models described in 

the following section 3, including work by Tourdot et al [92], propose a method for 

measuring the degree to which curvature couples to the underlying thermal undulations. This 

theory has been recently applied to simulations of ENTH domain to identify a cooperative 

curvature-undulation coupling effect whereby increased surface coverage of the protein 

leads to stronger curvatures [77]. Nevertheless, explicit connections between dynamic 
membrane remodeling typically study the rearrangement of proteins on curved surfaces 

without explicitly accounting for their membrane remodeling propensities.

Finite-size effects pose the fourth challenge for using computer simulations to measure 

CRP-induced membrane curvature; these effects are important even if we study CRPs whose 

interactions are strong enough to significantly reshape the bilayer surface. It should be noted 

that the curvature measured from simulations of small 20–50 nm bilayers has a slightly 

different meaning compared to that measured from membrane structures viewed in 

microscopy images, notwithstanding the accuracy of the underlying model. The enforced 

periodicity or the so-called the finite-size effect of the simulation can influence the measured 

curvature in three distinct ways:

i. Finite-sized membranes do not support long-wavelength undulations: It is well-

known that enforcing periodic boundary conditions only allows for membrane 

undulations that can ‘fit’ inside the box while those that are larger than the box 
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size are ignored [93]. Therefore, any curvature contribution from these longer 

modes are effectively suppressed. The omission of long modes is not unique to 

molecular simulations, since continuum models also lack undulations beyond the 

size of their simulation box or frame.

ii. Finite-size effect alters diffusion: The boundary conditions applied to a 

simulation box can influence density fluctuations in the fluid, leading to altered 

diffusion of the fluid implicitly confined between periodic images of the bilayer 

[94]. The altered hydrodynamics of the fluid also affects diffusion of objects 

embedded within the bilayer, resulting in either an under- or over-estimation of 

the lateral diffusion rate, depending on the amount of fluid between the bilayer 

images [95, 96].

iii. Finite-size influences lateral organization of CRPs: Simulations with small 

membrane dimensions may prevent the self-association of many proteins into 

enriched or depleted domains. Insofar as a large bilayer offers opportunities for 

more large-scale rearrangements and morphology changes, then smaller 

simulations may provide conflicting results. For example, the curvature of BAR 

domains on large but broken tubule shapes is smaller (30 nm radius) [80, 87] 

than an earlier estimate of curvature on a small, planar bilayer (6.7 nm radius) 

[75]. The broken tubule has the benefit of size and high density but lacks tension 

in the direction along which it is broken. Simulations of CRPs have likewise 

observed that membrane undulations can mediate long-ranged interactions 

between proteins [77].

The most obvious way to overcome the finite size problem is to make bigger simulations 

which nevertheless contain the relevant physics. Larger, typically coarse-grained 

investigations of proteins generate the obvious problem of controlling membrane shape, 

since these proteins either sense or generate their own curvature. As a result, larger models, 

many of which reach the mesoscale, include complex topologies including buds, vesicles, 

and tubules. We should note that there are opportunities for pursuing finite-size scaling 

theories to describe the asymptotic behavior of finite-size effects versus system size.

The fifth challenge as in any molecular dynamics simulation is that the results of a MD 

calculation strongly depend on the force-field used to parameterize the interactions between 

the various molecular entities. For example, electrostatic interactions have been shown to 

play a major role in governing the dynamics and organization at the bilayer-protein-solvent 

interface. It was recently shown that the coarse-grained dielectric constant used in early 

investigations of BAR domains (e.g. [80, 113]) may overestimate the electrostatic 

interactions between the protein and the lipids, and that these interactions may be more 

effectively screened by water molecules at the interface [114]. Parameterizing electrostatic 

interactions is particularly difficult in coarse-grained models which necessarily reduce the 

interaction strengths between coarser particles and cannot model the effects of a single water 

molecule. The challenge in generating accurate atomistic and coarse-grained force fields is 

common to all molecular simulations, however the question of accurately recapitulating the 

electrostatic environment and the hydrophobic interactions between the proteins and lipids is 

particularly important to predicting curvature.
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The largest simulations of membrane-protein systems either target a particular CRP or 

attempt to include generic features of all CRPs. Simulations of large tubules and vesicles 

show that ENTH domains are more disordered on spherical structures and suggest that the 

formation of tubules in vitro depend on reaching a sufficient concentration of locally-

ordered domains [97]. Large simulations of α-synuclein have generated budding tubules in 

massive coarse-grained simulations [90]. Large simulations of vesicles coated with N-BAR 

domains have been compared to atomic force microscopy images of these proteins on 

supported lipid membranes [98]. These examples are constructed to directly match 

simulations with microscopy experiments. However, more general models of curved caps 

and capsids have yielded models of vesicle budding which show that curvature-mediated 

protein attractions can be driven by non-specific actions [39] and that general features of 

transmembrane proteins, particularly the shape and hydrophobic mismatch of the inserted 

domains, may determine the nature of protein association in simulations of vesicles [99]. 

Both general and specific models of such large, protein-mediated structures have the benefit 

of validating molecular models with microscopy images, however these models are typically 

used to reveal the mechanism of protein organization on a highly curved surface, not 

necessarily to measure the degree to which these proteins actively sculpt the bilayer.

The construction of larger simulations with alternate topologies is born of the necessity to 

more accurately scale the protein-membrane interaction to larger systems with biologically 

relevant topologies, however they have added benefit of demonstrating curvature sensing in 
silico. Several CRPs including BAR and ENTH domains are sensitive to the curvature of 

membranes adhered to wavy substrates [100]. The large-scale ENTH domain simulations 

show that they adjust their local order to match the anisotropy of their substrates [97] while 

simulations performed on buckled bilayers demonstrate that amphipathic helices can sense 

curvature and lipid packing defects [101, 102].

Rather than measuring the shape of the bilayer, it is also possible to measure local, 3D 

stresses from a molecular simulation in order to measure the spontaneous curvature induced 

by the action of CRPs. The local pressure tensor P(r) can be used to compute the lateral 

pressure profile as ∑(z) = 1
2(Pxx + Pyy) − Pzz and the integral of its first moment along the 

bilayer normal z between z1 and z2, relative to the bilayer midplane z0, gives the intrinsic or 

spontaneous curvature C0 via κC0 = ∫ z1

z2(z − z0)∑(z)dz [103]. This method has been used to 

study voltage-gated channels in molecular dynamics simulations [104] but is equally 

relevant to CRPs and the question of bilayer curvature in general. However, calculations of 

pressure tensors in a MD or CGMD simulation remains a challenge due to the large 

fluctuations in its components over the course of a 100 ns run [88]. To minimize noise and 

increase signal, this method is most effective when measuring the curvature of lipids or any 

uniformly-distributed species which modulates curvature. Calculation of the stress profile 

from atomistic simulations yields a spontaneous curvature which is in good agreement with 

experiments that measure the intrinsic curvature lipids from the geometry of inverted lipid 

tubules in the inverse hexagonal phase [105]. Differences in lipid density across monolayers 

and the addition of adsorbing particles also induce curvature in a uniform way and hence 

produce measurable changes in the spontaneous curvature according to the lateral pressure 
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profile measured from dissipative particle dynamics (DPD) simulations [106]. Simulations 

of α-synuclein on vesicles show that it qualitatively alters the lateral pressure profile 

compared to a free vesicle [91].

The hypothesis that some proteins sense lipid packing defects and consequently the intrinsic 

curvature of a buckled bilayer point towards the importance of understanding the precise 

boundary conditions imposed by a protein on the surrounding lipids. Features of this 

boundary have been addressed in both theory [107, 108] and tentatively in some MD 

simulations [99]. Model membranes with rich, asymmetric compositions suggest that 

curvature correlates with the clustering of particular lipids [109]. This effect highlights the 

possible feedback between curvature-sensitive proteins and lipids, in which altered 

distributions of either can stabilize and enhance stronger folds in the membrane.

The uniform curvature fields which can be resolved from the lateral pressure profile are 

unlikely to be biologically representative given the fairly uneven binding energy imparted by 

the rugged face of membrane-bound proteins and plaques. Their specific chemical moieties 

may help to create the rich set of protein-membrane binding strengths in biological context, 

but pose a problem for quantifying the protein-induced deformation field, because they 

ensure that this field is highly heterogeneous. Even if it were not heterogeneous, the induced 

deformation field is nevertheless likely to be concentration-and composition-dependent. 

Preliminary evidence suggests that even a single protein domain can induce curvature 

cooperatively [77], while most of the molecular studies cited above provide evidence that 

both specific and non-specific protein-protein interactions are relevant to the mechanisms of 

curvature sensing. Therefore, molecular crowding may affect the function of CRPs. Recent 

experiments have shown that green fluorescent protein (GFP), which has no role in 

membrane sculpting processes, can bend the bilayer at sufficiently large surface coverage 

[110]. This has bolstered support for the hypothesis that so-called ‘protein crowding’ can 

induce shape change. Recent methods for measuring curvature via GUV shape stability 

show that CRPs such as the endophilin BAR domain generate curvature at lower densities 

than GFP [111], confirming that not all proteins are equally capable of remodeling the 

bilayer. Nevertheless, crowding between CRPs and many other proteins in vivo is a 

necessary feature of any model for protein-mediated shape changes.

Even though it is difficult to directly estimate the curvature field strength of a CRP 

experimentally, in some cases, one can impose some bounds on the values. If we assume that 

the curvature induced in the membrane is fully derived by CRP interaction with the 

membrane, the enthalpy of binding of the protein with the membrane can be the upper-

bound for the curvature energy. The latter can be measured using isothermal titration 

calorimetry or similar methods. Alternatively, experimental estimates of off-rates of CRPs 

from single molecule experimental measurements can be used to derive a free energy of 

binding by assuming that the on-rate is diffusion limited, and a procedure similar to above 

can be used to constrain the curvature parameters. Also, the radius of curvature of the 

membrane under high concentration of the CRPs can be determined using electron 

microscopy and this measurement can also be used to constrain the curvature parameters. 

These approaches have been described in [88, 112].
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3. Membrane remodeling at the mesoscale

In vitro experiments of protein-membrane systems along with crystallographic analysis of 

protein structures have clearly established that curvature inducing proteins preferentially 

localize to regions on the cell membrane that match their intrinsic (natural) curvatures. For 

instance, dynamin, BAR, N-BAR, and F-BAR domains whose membrane facing interfaces 

have a pronounced positive curvature, are preferentially recruited to tubular membranes, 

endocytic vesicles. Similarly, I-BAR (inverted-BAR) and Exo70 domains, whose membrane 

facing interfaces have a negative curvature, preferentially localize to caveolae pits and 

invaginations. A curvature remodeling protein is both a curvature inducer, in that it deforms 

the membrane in its vicinity, and a curvature sensor, in that it diffuses to a pre-deformed 

region on the membrane that matches its intrinsic curvature. As a result, the assembly of 

proteins on a membrane surface is driven jointly by both the curvature-inducing and 

curvature-sensing properties of the protein.

The assembly of CRPs at physiologically relevant concentrations and the resulting 

membrane morphologies at the length scale of cytoskeletal assembly (~50–500 nm) is 

extremely important for cell functions such as signaling and motility. This mesoscopic scale 

is not directly accessible to experiments and hence the sensitivity of indirect methods used to 

access this scale is low especially at low protein concentrations. However, mesoscopic 

protein-membrane systems are well suited for investigations through computer simulations 

which yield deeper insights into the function. As discussed in section 2, this approach has 

been previously used by a number of groups to understand the interplay between the lateral 

organization of proteins and the mesoscale morphologies of lipid bilayer membranes. 

Snapshots of protein-remodeled membrane structures from some of these works are 

displayed in figure 2. Methods based on all-atom (AA) and coarse grained (CG) molecular 

dynamics simulations explicitly account for the proteins and their interactions with the lipid 

membrane as is shown in panels (A)–(E) in figure 2. Here, it may be seen that a planar 

bilayer membrane spontaneously deforms to a curved morphology due to its interactions 

with CRPs, and here the average deformed shape of the membrane is shown as solid lines. A 

major requirement for generation of membrane curvature in the AA and CG models shown 

in panels (A), (B) and (D) in figure 2 is that the proteins were required to be arranged in an 

oriented configuration. In the ultra CG models shown in figures 2(C) and (E) the membrane-

mediated interactions drive the proteins to aggregate into such oriented configurations and 

induce membrane curvature in a cooperative manner. Detailed reports on this topic may be 

found in [31, 68, 118–121], as well as the discussion in section 2. As noted earlier, 

membrane interactions with mesoscale objects can also induce spontaneous deformation 

which are important in a number of biophysical processes. For example, membrane 

curvature induced by viral capsid proteins and glycoproteins govern the assembly and 

budding of viruses [122–124], specific receptor-ligand interactions of functionalized 

particles determine binding avidity [125], and non-specific interaction of nanoparticles drive 

membrane tubulation [13, 40, 126].

In the following, we will therefore focus on a complementary strategy to study membrane-

protein systems at larger length (and time) scales. The most popular and explored is an 

elasticity-based approach, in which the membrane is modeled as a thin elastic sheet of nearly 
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constant area and its morphology is governed by the Canham–Helfrich energy functional for 

lipid membranes [127, 128]:

ℋel = κ
2∫ (2H − H0)2 dA + σ∫ dA . (1)

κ and σ are the bending rigidity and surface tension of the bilayer membrane, H the mean 

curvature, and the integral is carried over the surface of the membrane. The effect of the 

curvature-inducing proteins is accounted for in the model through the spontaneous curvature 

field H0, which stabilizes positive curvature in the membrane for H0 > 0 and vice versa. 

Equation (1) can be studied analytically and numerically using a variety of techniques (see 

[33] for a review) including a popular method termed the Dynamically Triangulated Monte 

Carlo (DTMC) [5, 6, 129] technique which provides an excellent framework to simulate 

membranes in the presence of thermal fluctuations and fluidity. The simulations methods are 

described in [92, 117] in which the spontaneous curvature of the protein is represented as a 

Gaussian function. In this representation, the curvature induced at location x′ due to a 

protein at location x is given by H0(x, x′) = C0 exp(−|x − x′|2/(2ε2)). Here C0 is the 

maximum curvature induced by the protein, whose measurement was the topic of our 

discussions in section 2, and ε is the root mean square distance over which the protein 

induces non-zero curvature in the cell membrane. A snapshot of the continuum membrane 

simulated using the DTMC technique is shown in figure 2(F); here the bright spots represent 

the protein-induced curvature field. It can also be seen from figure 2(F) that multiple 

curvature fields aggregate to generate a tubular protrusion in the cell membrane. The 

curvature field associated with a protein is parameterized either from experimental data [88] 

or through molecular simulations [77, 88], as described in section 2.

In figure 3(A) are depicted representative morphologies of a membrane patch for three 

different values of nP (the number of protein curvature fields on the membrane surface) 

taken to be nP = 4, 12 and 18; these configurations were obtained using the DTMC approach 

for a membrane with κ = 10 kBT and σ = 0, and protein fields with C0 = 0.8 a0
−1 and 

ε2 = 2.3 a0
2. Here a0 ≈ 10 nm is a characteristic length scale that denotes the size of the mesh 

in the triangulated surface, for more details see [33]. The morphology of the membrane 

surface and the degree of curvature are determined collectively by nP, C0, κ, σ, and T. 

Specifically, with respect to the effect of nP, at low values of nP, the membrane remains 

nearly planar, while at higher values of nP, the model supports tubulation.

P(H), the distribution of the membrane mean curvature H, shown in figure 3(B), can also be 

used to identify morphological transitions in membranes, such as the planar to tubular 

transition shown in panel (A). P(H) for nP = 0, 4, 12, and 18 are shown in panel (B), in 

which the distribution for nP = 0 follows a Boltzmann distribution P(H) ∝ exp(−βℋelas), as 

expected. As nP increases the average distribution starts to deviate from that for nP = 0 and 

the presence of tubular protrusions, due to curvature induction by the proteins, is marked by 

a pronounced peak at H ≈ C0. This bimodal distribution indicative of a tubulation transition 

is readily seen in figure 3(B) for nP = 12 and 18. The analysis of the membrane 
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morphologies and the associated measures have clearly shown how proteins act in a 

cooperative fashion and drive local shape changes in cell membranes. As a result, we expect 

that a threshold density of proteins (or minimum nP per unit membrane area) is required to 

elicit a tubulation transition.

The effect of protein density on membrane conformations was previously studied by Leibler 

[130] using a mean-field model for elastic energy of the membrane where the presence of 

the CRPs was included by introducing a density field ϕ. By including a coupling between 

the field ϕ and the curvature, the total free energy of the membrane in terms of the height 

fluctuation h(x, y), measured with respect to the x-y plane, was written as:

ℋhϕ = 1
2∫ dxdy {κ [(∇2h)2 − C0ϕ∇2h] + σ(∇h)2 + aϕ2 + b(∇ϕ)2} . (2)

Here, a and b are constants controlling the density field fluctuations of the CRP and C0 is its 

intrinsic curvature. By performing a linear stability analysis of the Hessian of ℋhϕ, the onset 

of instability in a sinusoidally modulated height fluctuation (i.e. a Fourier mode) relates the 

spontaneous curvature C0 to κ and σ as: aκ + bσ = ∣ κC0 ∣. This theory is an instability 

theory rather than a thermodynamic one and also ignores the role of membrane thermal 

fluctuations, whose effects are quite significant. Only a free energy landscape can ascertain 

the precise thresholds and the nature of these morphological transitions, which we discuss 

next.

3.1. Methods to delineate thermodynamic free energy landscapes for protein-induced 
remodeling of membranes

The deformation energy landscape for protein induced remodeling of cell membranes can be 

computed using a variety of techniques such as Widom Insertion [131], Thermodynamic 

Integration [132] and Bennett acceptance ratio scheme [133], all of which yield similar 

results [117]. The statistical mechanics underlying these methods may be found in [132, 

134]. Umbrella sampling combined with Weighted Histogram Analysis method [135] have 

also been used to study morphological transitions in cell membranes [136–138] using both 

MD and DTMC techniques.

It is instructive to summarize the Widom ghost particle insertion technique [131, 132] 

adapted for the insertion of curvature fields on a triangulated membrane to systematically 

compute the excess chemical potential as a function of nP. As we discuss below, this 

exercise provides mechanistic insight linking the recruitment of CRPs to the state of the 

membrane, namely the tension it is under, or the amount of its excess area.

The total chemical potential μ is defined as the free energy cost to add the nP + 1th protein 

onto a membrane surface containing nP proteins. It is constituted of an ideal part μid(ρ), that 

only depends on the protein density ρ, and a configurational or excess part μex, that only 

depends on the interactions, and in our case, those between the protein and the membrane. 

Thus, the total chemical potential is μ = μid + μex. The configurational part of μ, also called 

the excess chemical potential, is an excellent thermodynamic measure to quantify the 
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curvature contribution of CRPs to the free energy. μex is calculated in the DTMC simulations 

using the standard procedures prescribed for molecular simulations [132]:

μex(nP) = − kBT ln ∫ 〈 exp ( − βΔℋelas)〉nP
Puniform(xnP + 1)dxnP + 1, (3)

were Δℋelas = ℋelas(nP + 1)−ℋelas(nP) is the change in the elastic energy (equation (1)) 

upon addition of the ghost nP + 1th curvature field onto a membrane surface containing nP 

curvature fields. The average is computed by sampling the nP + 1th field at position xnP+1 

over random configurations drawn from a uniform distribution on the membrane. The 

membrane itself is evolved through ℋelas(nP); therefore, the 〈·〉nP denotes an ensemble 

average defined with respect to the nP fields. A similar approach can be used to compute the 

spatially inhomogeneous excess chemical potentials at defined regions on the cell 

membrane. For instance, one can compute the excess chemical potential μP
ex(nP) and μT

ex(nP)

to distinguish the affinity of the protein field for planar regions P on the membrane, where H 
< H*, compared to that for tubular protrusions T, where H ≥ H*. The value of H* can be 

defined based on the P(H) distribution in figure 3; for example H* = 0.5 separates unimodal 

distributions for nP < 12 from bimodal distributions (showing protrusions) for nP > 12. 

Excess chemical potentials computed by choosing the location of insertion xnP+1 in regions 

where H < H* yields μP
ex(nP) and xnP+1 in regions where H > H* yields μT

ex(nP).

3.2. Membrane tubulation is marked by a sharp transition in the chemical potential

Tubular protrusions start to spontaneously emerge from the planar membrane surface when 

nP is greater than a critical value, and a representative configuration of a fully grown tubular 

protrusion is shown in the top panel of figure 4(A) for a membrane with κ = 20 kBT, σ = 0, 

C0 = 0.8 a0
−1 and ε2 = 2.3 a0

2. Such tubular transitions have previously been reported in 

experiments of model membrane systems interacting with CRPs. In the lower panel of figure 

4(A) we display a micrograph from the work of Shi and Baumgart [139], where the circular 

region denotes a giant unilamellar vesicle (GUV) laden with proteins and the arrow denotes 

a tubular protrusion, similar to that seen in our model. The corresponding values of the the 

bulk chemical potential μex as a function of the protein number nP is shown in figure 4(B).

At small values of nP, μex increases linearly with increasing nP. This regime can be 

rationalized by noting that each added nP + 1th curvature field experiences a membrane 

environment under the average influence of the previous nP fields. Following Tourdot [117], 

we can write in the meanfield limit the chemical potential when nP proteins are on the 

membrane as:

μP
ex(nP) = − kBT ln exp − κ

2kBT ∫ dA [ − 4HH0 + H0
2] . (4)
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Here, H0 is the spontaneous curvature of one (i.e. the nP + 1th) CRP field and 

2H = 2H − 〈∑i = 1
nP H0(i)〉 is the difference between mean curvature and average spontaneous 

curvature due to nP CRP fields. Using the cumulant expansion [117], the above expression 

can be expressed as:

exp
μP

ex(N)
kBT = exp κ

2kBT ∫ H0
2dA

× 1 + 2κ
kBT ∫ HH0dA + 1

2!
2κ

kBT
2 ∫ HH0dA

2
+ ⋯

−1
.

(5)

The increase in chemical potential with increasing nP in figure 4 indicates that the finite 

temperature corrections due to the thermal undulations of the membrane has a significant 

contribution. In the mean-field approximation, the increase in nP has an effect of increasing 

〈H〉, as evident from the P(H) distributions in figure 3; consequently this results in a 

decrease in 〈H̄〉. Hence, the increase in μex with increasing nP is a reflection the second term 

of the cumulant expansion, which actually decreases with increasing 〈H̄〉; however, it should 

be noted that the cumulant expansion is a slowly converging series, wherein up to 15 terms 

need to be considered [117]. We note that while equation (5) describes a mean-field 

treatment, figure 4 does not invoke the mean-field approximation and in that sense is an 

exact (albeit numerically evaluated) result for μex(nP). Still, the mean-field picture of the 

membrane protein interactions described above is a good description of the curvature 
sensing behavior of the CRP, which is demonstrated experimentally by measuring protein 

localization to predeformed regions on the cell membrane [69, 102, 140–144].

We note that both the mean-field theory and the exact calculations highlight the importance 

of thermal fluctuations in defining the chemical potentials of CRPs. In this curvature-sensing 

regime, one can describe the coupling between induced curvature and undulations which 

also depends on the state of the membrane. Rewriting equation (1) for a planar membrane 

(i.e. when H0 = 0, and assuming small slopes in height deflections, h(x, y), where the height 

of the midplane of the membrane is represented as a function on the reference x-y plane), it 

is straightforward to show that the magnitude of an undulation mode with wavenumber q is |

hq|2 = kBT [Ap(κq4 + σq2)]−1 [25]. Here, hq is the 2D Fourier transform of h(x, y) and Ap is 

the projected area that represents the area of the reference plane. Similarly, for non-zero H0, 

we can write [117],

〈ℋel〉 = kBT = Ap {κ [q4〈hq
2〉 + q2〈hqh0, q〉 + q2〈h0, qhq〉 + 〈h0, q

2 〉] + σq2〈hq
2〉}, (6)

where h0,q is the Fourier transform of the protein curvature field H0. The curvature-

undulation coupling represented by equation (6) formally describes how the curvature field 

influences the undulation spectrum, and also establishes an entropic coupling between 

curvature and tension that is long ranged, i.e. in the range of the undulation wave-length, in 
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contrast to that of the curvature field itself, which may be short-ranged. In fact, as discussed 

in section 2, this relationship was utilized by Bradley and Radhakrishnan [77] to infer a 

curvature-field from the undulation spectra of the CGMD simulation data. Together, the 

discussion above provides a comprehensive picture of how the recruitment of CRPs can be 

influenced by thermal undulations, membrane excess area, and membrane tension.

For nP > nP
∗, μex deviates from the linear scaling regime and shows a sharp transition to a 

negative value, as is displayed in figure 4(B). Membrane configurations in this regime show 

pronounced tubular protrusions, with a large number of protein curvature fields localized to 

these highly curved regions, as is seen in figure 4(A). This is indicative of the cooperative 

and curvature inducing behavior of the protein curvature field. In figure 4(B), we have also 

shown μP
ex and μT

ex, the excess chemical potentials for a protein curvature field to migrate to 

planar and tubular regions on the membrane, respectively. It may be seen that in the absence 

of any morphological transitions (i.e. for nP < nP
∗) the bulk chemical potential closely 

follows that for the planar region ( μex μP
ex) while for nP > nP

∗ it is slaved to that for the 

tubular region ( μex μT
ex). The fact that μex < 0 for nP > nP

∗ implies that a protein in the bulk 

solution would preferentially migrate to regions on the membrane surface that already 

contain an assembly of proteins with nP > nP
∗. The nature of the transition from planar to 

tubular states is akin to a micellar transition as described in detail by Tourdot et al [117]. In 

this regard, nP
∗ can be considered analogous to a critical micelle concentration, which in 

general is a function of the state of the membrane, namely its value of σ and Aex. This trend 

is illustrated in figure 4.

3.3. Critical tension at tubulation and comparison to experiments

The importance of membrane tension on the tubulation transition in membranes has been 

demonstrated in a number of experiments [139, 145, 146]. The thermodynamic free energy 

landscape for protein remodeling have direct correlation with such experiments. In the 

micrograph shown in figure 4(A) σ, the surface tension of the membrane, is controlled by 

applying a suction pressure using a micropipette, which is shown as a cylinder on the top 

right. Shi and Baumgart have recently reported a phase diagram for membrane tubulation by 

N-BAR domain and have shown its dependence on the surface tension and surface 

concentration of the N-BAR domains [139]. A computational analogue of this experiment is 

shown in figure 4(C) where we display the bulk excess chemical potential μex as a function 

of nP for membranes with five different surface tensions; the model explores varying surface 

tension σ by controlling the excess area in the membrane as described in [117]. The value of 

nP
∗ (the critical number for tubulation) increases with increasing surface tension as is shown 

by the positions of the vertical arrows in figure 4(C). A comparison of the experimentally 

measured values of σ* [139] to that estimated using the model is shown in figure 5 and 

found to be in excellent agreement.
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4. Membrane remodeling at the cellular scale

Protein-induced curvature remodeling of whole vesicles have been investigated by a number 

of groups. Interactions between curvature inducing domains4 on a whole-cell membrane has 

been extensively studied using mesoscopic particle methods such as the EM [15–17], EM2 

[68, 147–151] and the MesM-P model [152] of Voth et al, DPD models of Laradji et al [14, 

153, 154] the meshless membrane model of Noguchi [116, 155], and the two-component 

CGMD model of Lykotrafitis et al [156–158]. Alternatively, continuum isotropic elasticity 

models have also been used to computationally examine the interactions between curvature 

inducing domains on cell membranes [159–163]. These studies cover a large number of 

protein domains that include the BAR family, ENTH, and Shiga toxins. Ramakrishnan et al 
[164–168] have explored the anisotropic elasticity based nematic membrane model to study 

protein-induced shape changes in vesicular membranes. In the anisotropic elasticity model, 

the protein is represented as an in-plane nematic field whose local orientation is denoted n̂. 
The presence of such in-plane fields have been previously considered in the study of 

orientational order in lipid membranes that arise due to the presence of anisotropic 

phospholipids [169–171], and lipid tilt and chirality [172–174]. Orientational order in the in-

plane nematic field endows the membrane with interesting properties and morphologies 

[175–181] since the presence of such an order implicitly couples the membrane curvature to 

the nematic orientation. The nematic ordering interaction, to the lowest order, is described 

by the well known Frank’s free energy for nematics [182]:

ℋnem = ∫ dA {
K1
2 (𝒟in

i)2 +
K3
2 (𝒟in⊥

i )2}, (7)

where  denotes the covariant derivative that contains information about the membrane 

curvature, which leads to the implicit coupling mentioned above. K1 and K3 are the elastic 

constants that govern the splay and bend modes of the nematic field. In practice, we use the 

Lebwohl–Lasher model [183] which is the one constant approximation of equation (7). The 

explicit interactions of the nematic field (i.e. the protein) with the membrane is modeled as 

an anisotropic elastic energy given by Frank and Kardar [184]:

ℋanis(C‖
0, C⊥

0 ) = ∫ dA
κ‖
2 C‖ − C‖

0 2 +
κ⊥
2 (C⊥ − C⊥

0 )2 . (8)

Here, κ|| and κ⊥ are the energy costs for the membrane to bend locally, C‖
0 and C⊥

0  are the 

spontaneous curvatures induced by the protein field, and C|| and C⊥ are the membrane 

curvatures along directions parallel and perpendicular to n̂. The equilibrium conformations 

of the vesicular membrane is determined by a number of parameters that include: (i) the 

bending rigidity, (ii) the directional spontaneous curvatures C‖
0 and C⊥

0 , (iii) composition of 

4Here, a domain refers either to a lipid domain formed by lipid phase-segregation in a multi-component membrane or to a membrane 
region enriched in CRPs. Both of these domains induce a spontaneous curvature and, hence to first order, can be treated using the 
same theoretical framework.

Ramakrishnan et al. Page 15

J Phys Condens Matter. Author manuscript; available in PMC 2018 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the nematic field ϕ, (iv) directional rigidities κ|| and κ⊥, and (v) the strength of orientational 

interactions between the in-plane field. These configurations are obtained through the 

DTMC technique, details of which may be found in [33, 164].

Membrane conformations in the continuum-based and particle- based models
—The anisotropic nature of protein-membrane interactions yields a rich conformational 

space for the membrane, compared to that obtained using isotropic elasticity models. For 

example, it was previously shown that physiologically relevant shapes, such as spheres, 

disks, rims, tubes, and caveolae can be stabilized solely by changing the value of the 

directional spontaneous curvature C‖
0 [166, 167]. The membrane shapes obtained using the 

nematic membrane model are consistent with those obtained using molecular dynamics of 

particle based models for protein-membrane interactions refered to at the start of this 

section. This comparison is displayed in figure 6, where membrane configurations obtained 

from the particle-based models are shown in the top panels and those obtained from Monte 

Carlo simulations of the nematic membrane model are shown in the lower panels. The 

caveolae and rim like organization in the top panels of figures 6(A) and (B), respectively, are 

results from the meshless membrane model of Noguchi [116, 155], and the tubular 

membrane shown in figure 6(C) is from the EM2 model of Voth et al [148].

4.1. Method of thermodynamic integration to compute free energy landscapes

There are striking similarities both in the shape of the membrane and in the organization of 

the proteins (or protein curvature fields in the case of the nematic membrane model), as is 

evident from figure 6. While the importance of protein assembly and organization on 

membrane remodeling are both readily observed, the thermodynamic stabilities of the 

ensuing states have not been investigated in detail.

In the following, we will describe a thermodynamic free energy perspective of protein-

induced remodeling of cell membrane using the nematic membrane model. We construct the 

free energy landscape for the nematic-membrane using the method of thermodynamic 

integration, in which we couple the anisotropic energy in equation (8) to a Kirkwood 

coupling parameter 0 ≤ λ ≤ 1 as:

ℋanis(λ) = (1 − λ)ℋanis(C‖, ref
0 ) + λℋanis(C‖

0), (9)

where C‖
0 and C‖, ref

0  are the target and reference values of the directional spontaneous 

curvature. Here, for simplicity, we have ignored contributions from n̂ along its perpendicular 

direction by setting κ⊥ = 0. The free energy of the nematic membrane in a state with 

directional spontaneous curvature C‖
0, relative to its corresponding state with curvature 

C‖, ref
0 , is then given by:
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Δℱ(C‖, ref
0 , C‖

0) = ∫ dℋanis(λ)
dλ dλ . (10)

4.2. Free energy landscape as a function of directional spontaneous curvature

The relative free energy Δℱ as a function of C‖
0 for a nematic membrane with ϕ = 0.25, κ|| = 

5 kBT and κ = 10 kBT is displayed in figure 7; here the reference curvature is taken to be 

C‖, ref
0 = 0.0. This corresponds to five distinct classes of membrane morphologies for C‖

0 in 

the range −0.9 to 0.9; representative snapshot of these morphologies for C‖
0 = − 0.9, −0.6, 

0.0, 0.6 and 0.9 are also shown alongside in figure 7(A). At large negative curvatures (e.g. 

C‖
0 = − 0.9) the region of the cell membrane containing the protein field invaginates into the 

cytoplasmic side of the vesicular membrane, consistent with our discussions in figure 6. 

However, the invaginated region in figures 7(A(i)) has a rim like structure compared to the 

tubular invaginations shown in figure 6(A). With increasing C‖
0 the equilibrium shape of the 

membrane is remodeled to accommodate the assembly of the protein field into a saddle-ring 

( −0.6 < C‖
0 < − 0.3), a circular domain ( −0.3 < C‖

0 < 0.3), a ridge ( 0.3 < C‖
0 < 0.7) and a disc 

( C‖
0 > 0.7), as shown in figures 7(A(i)–(v)). It should be noted that these membrane 

morphologies are highly sensitive to the concentration of the protein assemblies and their 

interactions with the cell membrane, and this is shown later.

The transition between the five distinct morphological states of the nematic membrane for ϕ 
= 0.25 is continuous, as is evidenced by the smooth harmonic profile of the relative free 

energy Δℱ shown in figure 7(A). Despite the symmetry of equation (8) with respect to C‖
0, 

the calculations show that there is a pronounced asymmetry in the values of Δℱ. We find 

Δℱ(C‖
0) < Δℱ( − C‖

0) for all values of C‖
0 > 0, and this asymmetry is primarily attributed to 

the finite positive curvature of a spherical vesicle even in its undeformed equilibrium state, 

thereby pointing to the importance of background membrane curvature in the recruitment 

and assembly of CRPs.

In figure 7(B) is depicted Δℱ for the nematic membrane alongside its three relative internal 

energies, namely elastic, nematic, and anisotropic. As for Δℱ, we compute the relative 

internal energies with respect to the membrane state with C‖
0 = 0. All internal energies 

increase with an increase in both | C‖
0| and also as a function of the coupling parameter λ; the 

latter has been shown explicitly in [185]. The dominant contribution is from equation (8), 

the anisotropic elastic energy, which is explicitly coupled to C‖
0. In contrast, equations (1) 

and (7), the elastic and nematic energies, respectively, which are only implicitly related to 

C‖
0, also start to increase at large values of | C‖

0| and this is a signature of membrane 

morphological transition into highly curved shapes.
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The sum of the three internal energy contributions, denoted by Δℋ, is also shown in figure 

7(B). It is related to the relative free energy as Δℱ = Δℋ − TΔS, where ΔS denotes the 

change in the entropy with respect to the reference state. For small values of | C‖
0|, the 

relative free energy of the nematic membrane is indistinguishable from its internal energy 

(i.e. Δℱ = Δℋ) as is shown in figure 7(B) for directional curvatures in the range 

−0.4 < C‖
0 < 0.4. However, at large values of | C‖

0|, the relative free energy deviates 

significantly from its internal energy such that Δℱ > Δℋ pointing to the importance of 

entropic contributions in this regime. This contribution is quantified in the inset to figure 

7(B) where we have displayed the energy TΔS as a function of C‖
0. The calculations show 

that the entropy of highly deformed nematic membrane (for larger values of | C‖
0|) is lower 

compared to that with quasi-spherical shapes (for lower values of | C‖
0|). This is 

counterintuitive since highly deformed membrane shapes are known to have a higher 

entropy.

The loss in entropy may be understood by noting that the total entropy of a nematic 

membrane is given by S = S1 + S2 + S3, where the three additive contributions are due to (i) 

the morphology of the membrane, (ii) the orientation of the nematic field, and, (iii) the 

lateral organization of the nematic field, respectively. At smaller values of | C‖
0| the S2 and S3 

terms are higher since the director of the oriented nematic field can be along any direction 

on the membrane surface, and similarly the nematic field can assemble at any spatial 

location on the membrane thereby maximizing the diffusion of the nematic cluster. However, 

at large values of | C‖
0| the nematic field deforms the membrane surface leading to reduced 

diffusion of the nematic cluster (this reduction has been previously noted for scalar fields 

[186, 187]), and preferentially orients either along the direction of maximum curvature (for 

C‖
0 > 0) or minimum curvature (for C‖

0 < 0) [166] thereby reducing the degrees of freedom 

for the director. As a result, we observe an overall reduction in the total entropy of the 

nematic membrane, despite an increase in the S1 term, as is shown in figure 7(B). Here, we 

find TΔS ~ −600 kBT for C‖
0 = − 0.9 and TΔS ~ −150 kBT for C‖

0 = 0.9 and this is significant 

since it is 10%–30% of the total internal energy required for membrane deformation.

4.3. Free energy as a function of the membrane bending rigidity κ

Variation in the physical and chemical microenvironment of a cell membrane, by modulation 

in factors such as the lipid composition and asymmetry, the aqueous environment, the 

surface charge density, and the local curvature of the cell membrane, not only affects its 

chemical interaction with a curvature remodeling protein but also modulates its bending 

rigidity κ [188–193]. The implicit change in membrane bending rigidity alters the curvature 

remodeling properties of an assembly of proteins. Field theoretic models are well suited to 

investigate the effect of κ on the free energy landscape for membrane deformation. In figure 

8 we compare the relative free energies and representative morphologies, computed using 

the anisotropic model, for cell membranes with κ = 10, 20, and 40 kBT, protein 

concentration ϕ = 0.25, and directional rigidities κ|| = 5 kBT and κ⊥ = 0.
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The effect of κ on the equilibrium membrane morphologies is readily visible in figure 8(A), 

where we show snapshots of the membrane for protein assemblies with C‖
0 = − 0.9 (left 

panel) and C‖
0 = 0.9 (right panel). As expected, a given protein assembly deforms membranes 

with lower bending rigidities into highly complex shapes, such as the caveolae and disc seen 

in figure 8(A) for κ = 10 kBT, while it prefers to stabilize quasispherical shapes for 

membranes high bending rigidities. This feature is also seen in the relative free energy for 

deformation shown in the main panel of figure 8(B), where we find Δℱ(C‖
0) to increase with 

increasing κ for all values of ∣ C‖
0 ∣ > 0.25. The entropic contributions shown in the inset to 

figure 8(B) primarily depends on the morphology of the cell membrane, and the lateral 

organization and orientation of the nematic field, as noted in our earlier discussions. 

Consistent with this fact, we only observe a significant deviation in the energy TΔS for κ = 

10 kBT and C‖
0 = − 0.9, the only parameter for which the membrane deforms into a highly-

curved caveolae like structure.

4.4. Effect of protein concentration on remodeling of cell membranes

Membrane associated proteins are constantly subject to changes in their expression levels, 

which together with the chemical potential for protein association dictate the number of 

proteins recruited to the membrane. In this section, we will discuss the role of protein 

concentration ϕ on the assembly and organization of proteins and the ensuing morphological 

changes in the cell membrane.

The equilibrium conformations of a cell membrane as a function of its protein concentration 

is displayed in figure 9(A) for five different values of ϕ = 0.1, 0.25, 0.5, 0.75, and, 1.0. The 

left and right panels correspond to proteins with spontaneous curvatures C‖
0 = − 0.9 and 

C‖
0 = 0.9, respectively, and these correspond to the limit of maximum negative and positive 

curvatures used in our model. The negatively curving protein assembly ( C‖
0 = − 0.9) drives 

the membrane into caveolae like structures, even at very low concentrations as is shown for 

ϕ = 0.1 in figure 9(A), and the number of such invaginations increases with increasing ϕ. 

The positively curving protein assembly ( C‖
0 = 0.9) drives a series of morphological 

transitions as a function of ϕ, which in figure 9(A) corresponds to quasi-spherical (ϕ = 0.0) 

→ rims (0.0 < ϕ < 0.4) → discs (0.4 < ϕ < 0.6) → tube with disc caps (0.6 < ϕ < 0.9) → 
tube with spherical caps ϕ ≥ 0.9).

The relative free energy of the nematic membrane as a function of C‖
0 for the five different 

protein concentrations is shown in figure 9(B). As before, Δℱ for all values of ϕ follows an 

asymmetric harmonic profile and increases with increasing ϕ, for all values of C‖
0. The 

entropic contribution to the free energy TΔS, shown in the inset to figure 9(B), also 

decreases with ϕ for all values of C‖
0.
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5. Applications and future outlook

Formation of membrane signalosomes (i.e. signaling complexes that are central to 

intracellular trafficking) are often followed by recruitment and reorganization of actin 

filaments providing the force required for multiple biological processes [2]. Most of these 

processes are coupled with the deformation of the cell membrane. Examples of such 

membrane-cytoskeleton- coupled processes include: the formation of filopodia, lamellipodia 

and podosomes for cell movement or cancer-cell invasion; endocytosis, phagocytosis, 

exocytosis and various membrane-trafficking and recycling events on the plasma membrane 

and the endosome. While the driving forces for the assembly of these functional signaling 

complexes are not precisely understood, it is appreciated that the assembly itself requires an 

elaborate and delicate orchestration of multiple proteins and lipids in precise spatial patterns 

and temporal sequence. Can the models discussed in this review provide insight into the 

regulation of such signaling and trafficking at the cellular scale? Although the treatment of 

larger length-scale processes in models at a sub-cellular scale necessitates additional 

approximations and gross reductionism, such models provide a unique opportunity to 

connect with cellular experiments. We discuss below, specific applications and future 

outlook of models presented in this review, as they pertain to invaginations of plasma 

membranes in the nucleation of invadopodia during cell migration, budding of vesicles in the 

plasma membrane during clathrin-mediated endocytosis (CME), and budding of vesicles in 

the endosomes due to membrane constriction by ESCRT proteins.

5.1. Invaginations of lipid membranes due to Exo70 of the exocyst complex

Zhao et al [73] have described the application of the anisotropic curvature model to the 

specific cellular process of exocytosis. Their model included a vesicular membrane 

decorated with different concentrations (surface coverages) of curvature fields (denoting 

Exo70 protein dimers), with coverage ranging from 20% to 100%. The bending rigidity κ 
was set to 20 kBT (typical value for cell membranes), where T = 300 K is the ambient 

temperature. In the simulations, they explored a range of εLL values 1 to 5 kBT to account 

for the interaction of Exo70 with the membrane, and chose κ|| = 5 kBT and vary C0
‖ in the 

range −0.5 a0
−1 to −1.0 a0

−1. The values of κ⊥ and C0
⊥ were both set to zero. Using the model 

parameters, it was shown that the simulations studies reproduced the experimentally 

observed spontaneous tubulation into the interior side of a giant unilamellar vesicle. To 

establish consistency with the chosen parameters, the study also reported the curvature field 

induced by an Exo70 dimer using the CGMD framework showing Exo70 dimers inducing 

negative curvature on a bilayer membrane, whose radius of curvature matched the curvature 

strength needed for tubulation in the mesoscale model [73]. Interestingly, the study also 

reported that overexpressing Exo70 in cells led to an increase in cell protrusions and causing 

the cell migration program to activate.

5.2. Budding of vesicles in CME

Several studies have explored the role of cooperative proteinprotein and protein-membrane 

interactions in the ubiquitous endocytic pathway in mammalian cells, namely the CME, 

isotropic curvature field model. In the model for CME, the epsins bind to the lattice of a 
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growing clathrin coat through the interaction of the CLAP domain of epsin with the clathrin 

triskelion. This way, multiple epsins localized spatially and orientationally templated on the 

clathrin coat collectively play the role of a curvature inducing capsid. In addition, epsin 

serves as an adapter in binding the clathrin coat to the membrane through the interaction of 

its ENTH domain with the phosphotidylinositol (4,5) bisphosphate (PI(4,5)P2 or PIP2) 

molecules on the membrane. By employing the Helfrich methodology outlined above, Liu et 
al [194], Agrawal et al [114], Ramanan et al [195], and Hassinger et al [196] have addressed 

how the shapes and energetics of vesicular-bud formation in a planar membrane is stabilized 

by presence of the epsin/clathrin assembly. Tourdot et al [88, 160] used a free energy 

approach to evaluate the free energy of bud formation for different areas of the clathrin coat 

and discussed how the critical coat area needed for vesiculation depends on the state of the 

membrane, (namely the bending modulus and the membrane excess area). This study also 

highlighted the need for computing free energies (and including thermal undulations) to 

which the neck formation is quite sensitive. These studies have also collectively helped link 

the model predictions with specific perturbation experiments involving endocytosis in yeast 

and mammalian cells.

5.3. Budding of vesicles due to membrane constriction by ESCRT proteins

The ESCRT are a family of cytosolic proteins, which are known be involved in membrane 

budding and also in endosomal sorting. In vitro, it has been shown that ESCRT proteins 

acting on the outer surface can generate membrane buds that grow into the interior side of a 

giant unilamellar vesicle. The mechanism of bud formation and the form of the curvature 

field induced by an ESCRT protein has not been well understood. In experiments, it has 

been observed that the ESCRT proteins are localized to the neck region of the budded 

vesicle; in figure 10(A), green regions represent the ESCRT proteins in the experimental 

data taken from Hurley and Hanson [61]. While the endocytosis models described above 

have shown that bud formation requires the presence of an induced curvature field in the 

budding region, the absence of the ESCRT proteins on the surface of the bud in the 

experiment rules out such a mechanism for ESCRT-induced budding. Using the anisotropic 

curvature model in section 3 and localizing the protein curvature field to an annular region 

we demonstrate a novel phenomenon where a positively curved vesicular bud is formed due 

to the constrictive action of negatively curving proteins, in a region around it, and vice versa. 

The positively curved bud stabilized for C0
‖ = − 0.6a0

−1 and the vesicle budding into the 

membrane seen at C0
‖ = 0.6a0

−1 are shown respectively in panels (A, B) of figure 10. The 

annulus like arrangement of the curvature field does not occur below a lower threshold while 

it prefers to segregate to a single patch when the surface coverage exceeds an upper 

threshold. A detailed quantitative analysis of the thermodynamic stability of the annular 

distribution of the curvature field as described by the free energy methods in section 4.1 can 

then be directly related to experiments and be useful in predicting the concentration of the 

curvature remodeling members of the ESCRT family around the neck of the budding vesicle. 

The problem of ESCRT-mediated budding has been theoretically studied using the tools of 

continuum membrane mechanics (see equations (1) and (2)) [197, 198]. Here, the proteins 

were modeled as a density field and their lateral organization was controlled by their phase 

separation kinetics in the background of the lipid field. These studies also clearly 
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demonstrate the novel phenomenon of neck constricted budding and show features similar to 

that seen in figures 10(A) and (B).

Bahrami et al [137] recently used a multiscale approach combining CGMD simulations with 

DTMC simulations (and free energy calculations) to study the role of Atg1 complexes in the 

formation of the phagocytic cup. They investigated the role of the intrinsic curvature of the 

S-shaped Atg1 subcomplex Atg17-Atg31-Atg29 in remodeling the pearl-on-string shaped 

preautophagosomal membrane into a cup shaped double membrane exhibited by cells 

undergoing autophagy. In their study, they explicitly showed that the interaction of the 

membrane with wild type Atg1 dimers was essential to overcome the large free energy 

barrier between the two structures (see figure 10(C)).

5.4. Future outlook

A definitive understanding of the interplay between protein binding/migration and 

membrane curvature evolution is emerging but remains incomplete. The mechanisms that 

underpin such behavior are hugely important in intracellular assembly and stability of 

organelles (which often sustain extreme curvatures) and in intracellular transport and sorting 

of proteins and cargo. Though aspects of these fundamental processes are well-characterized 

from a molecular biology perspective, especially in the domain of protein-protein 

interactions and increasingly in the area of protein localization, several open questions 

remain which are fundamental to a complete understanding of the underlying mechanisms in 

these fundamental (‘unit’) cellular process from a biophysical and thermodynamic 

perspective, which have been addressed in this review. The two main messages of this 

review are to highlight how molecular interactions between the protein and the lipids at the 

molecular scale directly determine the morphology of cellular membranes at the micron 

scale primarily by setting up curvature fields; and that the determination and characterization 

of these fields and how they interact with a dynamically changing membrane curvature 

morphology is quantified and interpreted based on the free energy landscape.

We would like to comment on the context of the approximations of the methods we have 

discussed. The CGMD models have near molecular resolution, but the model-parameters are 

subject to approximations. At the continuum level, the approximations do not consider 

interlayer-friction and hydro-dynamics (see references within [33]), explicit electrostatics, 

and membrane lipid heterogeneity. Despite such simplifications, following the success of the 

studies discussed, we may dare to explore more complex and more challenging unsolved 

mechanisms in cellular biophysics of trafficking and signaling. For example, the structural 

basis for a variety of membrane binding by PH, PX, FYVE, ENTH, BAR and other domains 

is well studied [199, 200], and provides a rich set context and opportunity for the multiscale 

modeling methodology we have presented to connect to specific pathways these proteins are 

involved in. Moreover, several of the CRPs feedback to the cytoskeletal pathways via direct 

or indirect recruitment of adaptors regulating actin assembly/disassembly [2]. Future work 

can focus on the effect of the cytoskeletal interactions, in particular, the roles of membrane, 

and frame tensions in regulating cellular processes and some promising headway in this 

direction has been reported in recent studies [125, 138, 201]. Another intriguing possibility 

suggested by the results we have discussed is that the recruitment of CRPs can be dependent 
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on the membrane tension, which in turn is influenced by the cytoskeletal or cortical tension. 

This is explicitly shown in figure 4 where the chemical potential of a CRP in a planar 

membrane is tension dependent. It is also inferred from the curvature undulation coupling 

studies discussed in section 3.2, by recognizing that tension and curvature are coupled via 

equation (6). More generally, increase in tension inhibits the ability of the CRPs to effect a 

protrusion transition at a fixed/given density/expression of CRPs. Furthermore, given that 

most CRPs are also part of various signal transduction pathways, the scenario described 

above implies how curvature of cell membranes can control cellular signaling. If the CRPs 

themselves serve as signaling mediators, then such signals are inhibited by an increasing 

tension, thereby providing possible mechanisms for mechanosensitivity in cells as 

speculated by Weiner et al [202].
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Figure 1. 
Molecular models to study and quantify protein-induced curvature in lipid membranes. (A) 

Molecular dynamics flexible fitting simulation of a light harvesting protein. Reprinted from 

[74], Copyright 2009, with permission from Biophysical Society. (B) Atomistic simulation 

of an N-BAR dimer. Reproduced with permission from [75]. (C) Profile view of the protein 

α-synuclein attached to a bilayer. Reprinted from [76], Copyright 2016, with permission 

from Elsevier. (D) Coarse-grained molecular dynamics simulation of 48 α-synuclein 

molecules forming a tubule on a bilayer containing 85 000 lipids. Reprinted from [76], 

Copyright 2016, with permission from Elsevier. (E) A coarse-grained molecular dynamics 

simulation of 8 ENTH domains anchored to a lipid bilayer. Reproduced with permission 

from [77]. (F) A coarse-grained molecular dynamics simulation of the Exo70 dimer 

generating negative curvature in the lipid membrane. Reprinted from [73], Copyright 2013, 

with permission from Elsevier.
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Figure 2. 
Equilibrium morphologies of a patch of a lipid bilayer due to the assembly of CRPs on 

bilayer patches with lengths between 50–500 nm. (A) all-atom (AA) and coarse-grained 

(CG) simulations of membrane remodeling by BAR domains by Arkhipov et al [113, 115] 

(reprinted from [113], Copyright 2008, with permission from Biophysical Society), (B) AA 

simulation of the assembly of N-BAR helix on lipid membranes by Blood et al [79] 

(reprinted from [79], Copyright 2008, with permission from Biophysical Society), (C) CG 

simulations of the effect of curvature remodeling capsids by Reynwar et al [39] (reprinted by 

permission from Macmillan Publishers Ltd: Nature [39], Copyright 2007), (D) CG 

simulation of tubule formation by BAR domains by Yin et al [80] (reprinted from [80], 

Copyright 2009, with permission from Elsevier), (E) ultra CG simulations of BAR domain 

assembly by Noguchi [116] (reproduced from [116], CC BY 4.0), and (F) field theoretic 

simulations of membrane tubulation by the action of protein curvature field by Tourdot et al 
[117] (reprinted figure with permission from [117], Copyright 2014 by the American 

Physical Society). The solid lines in panels (A) and (B) denote the average curvature of the 

deformed membrane bilayer, and AA and CG refer to all-atom and coarse-grained molecular 

dynamics, respectively.
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Figure 3. 
(A) Equilibrium configurations of a membrane patch, with κ = 10 kBT, σ = 0, 

C0 = 0.8 a0
−1, ε2 = 2.3 a0

2, for number of protein fields nP = 4, 12 and 18. Tubular protrusions 

are stabilized on the membrane surface for nP ≥ 12. (B) P(H), the distribution of mean 

curvature H for the membrane surfaces displayed in panel (A).
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Figure 4. 
(A) Membrane tubes seen in the DTMC simulations and in experiments by Shi and 

Baumgart [139]. (B) The bulk excess chemical potential μex, excess chemical potentials in 

the planar and tubular regions μP
ex and μT

ex, respectively, are shown as a function of the 

protein number nP. The protein field exhibits curvature sensing behavior for nP < 9, beyond 

which it exhibits curvature inducing behavior. Data shown for a membrane with κ = 20 kBT, 

σ = 0, C0 = 0.8 a0
−1 and ε2 = 2.3 a0

2 . (C) Comparison of bulk chemical potential μex for a 

membrane with increasing membrane tension; the horizontal arrows denote the point of 

planar to tubular transition for each system.
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Figure 5. 
A comparison of the experimentally measured critical tension at tubulation σ* to that 

predicted computationally. Data shown as a function of the surface concentration of N-BAR 

domains.
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Figure 6. 
Comparisons of protein remodeled membrane structures obtained using the mesoscopic 

particle models, by Noguchi [116] (top panels in (A) and (B) reproduced from [116], CC BY 

4.0) and Ayton et al [148] (top panel in (C) reprinted from [148], Copyright 2009, with 

permission from Biophysical Society), with that from the nematic membrane model (bottom 

panels).
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Figure 7. 

(A) The relative free energy Δℱ, as a function of the directional spontaneous curvature C‖
0

for a nematic membrane with κ = 10 kBT, κ|| = 5 kBT, and ϕ = 0.25. Images marked (i)–(v) 

are representative snapshots of the membrane configuration at C‖
0 = − 0.9, −0.6, 0.0, 0.6 and 

0.9; the arrows underneath each image represent the range of C‖
0 over which the 

corresponding configuration is stable. (B) The main panel shows the relative internal 

energies denoted nematic (equation (7)), elastic (equation (1)), and anisotropic (equation 

(8)), and their sum is denoted by Δℋ. The entropic contribution to the free energy TΔS is 

shown in the inset.
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Figure 8. 
The relative free energy, for a nematic membrane with κ = 10, 20 and 40 kBT, as a function 

of its directional spontaneous curvature C0
‖. κ|| = 5 kBT, and ϕ = 0.25 for all three cases. The 

representative snapshots correspond to membrane configuration obtained at C0
‖ = − 0.9 (left 

panel) and 0.9 (right panel).
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Figure 9. 
(A) Representative snapshots for nematic membranes with protein concentrations ϕ = 0.1, 

0.25, 0.5, 0.75, and 1.0 are shown for directional spontaneous curvatures C‖
0 = − 0.9 (left 

panel) and C‖
0 = 0.9 (right panel). (B) The main panel shows the relative free energies for the 

five protein concentrations as a function of C‖
0, while the inset shows the corresponding 

entropic contributions. Data corresponds to a membrane with κ = 10 kBT, κ|| = 5 kBT, κ⊥ = 

0, and εLL = 3 kBT.
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Figure 10. 
(A) Fluorescence image of intraluminal vesicle (ILV) showing the membrane in red and the 

location of ESCRT proteins in green. Image reprinted by permission from Macmillan 

Publishers Ltd: Nature Reviews Molecular Cell Biology [61], Copyright 2010. ((A) and (B)) 

Simulation results showing the novel phenomenon of budding by constriction positively 

curved bud generated by negatively curved proteins and negatively curved bud from proteins 

inducing positive curvature. The protein field does not localize the area of the bud. (C) 

Image (reproduced from [137], CC BY 4.0) showing the role of Atg proteins (shown as 

beads) in stabilizing membrane morphologies that resemble cells undergoing autophagy.
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