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Background and purpose — We aimed to evaluate the ability of 
artifi cial intelligence (a deep learning algorithm) to detect and 
classify proximal humerus fractures using plain anteroposterior 
shoulder radiographs. 

Patients and methods — 1,891 images (1 image per person) 
of normal shoulders (n = 515) and 4 proximal humerus fracture 
types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 
4-part, 247) classifi ed by 3 specialists were evaluated. We trained 
a deep convolutional neural network (CNN) after augmenta-
tion of a training dataset. The ability of the CNN, as measured 
by top-1 accuracy, area under receiver operating characteristics 
curve (AUC), sensitivity/specifi city, and Youden index, in compar-
ison with humans (28 general physicians, 11 general orthopedists, 
and 19 orthopedists specialized in the shoulder) to detect and clas-
sify proximal humerus fractures was evaluated. 

Results — The CNN showed a high performance of 96% top-1 
accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specifi city, and 0.97 
Youden index for distinguishing normal shoulders from proximal 
humerus fractures. In addition, the CNN showed promising results 
with 65–86% top-1 accuracy, 0.90–0.98 AUC, 0.88/0.83–0.97/0.94 
sensitivity/specifi city, and 0.71–0.90 Youden index for classifying 
fracture type. When compared with the human groups, the CNN 
showed superior performance to that of general physicians and 
orthopedists, similar performance to orthopedists specialized in 
the shoulder, and the superior performance of the CNN was more 
marked in complex 3- and 4-part fractures. 

Interpretation — The use of artifi cial intelligence can accu-
rately detect and classify proximal humerus fractures on plain 
shoulder AP radiographs. Further studies are necessary to deter-
mine the feasibility of applying artifi cial intelligence in the clinic 
and whether its use could improve care and outcomes compared 
with current orthopedic assessments.

■

Proximal humerus fractures are primarily diagnosed using 
plain radiographs, and the fracture type is determined accord-
ing to its anatomical location as well as fragmentation and 
displacement levels. However, since non-orthopedic sur-
geons or insuffi ciently experienced orthopedic surgeons 
are frequently the fi rst doctors to assess fractures, it is not 
unusual for proximal humerus fractures to be misdiagnosed. 
In addition, even an experienced orthopedic surgeon can mis-
diagnose the fracture type due to variable presentation (Mora 
Guix et al. 2009, Foroohar et al. 2011). Thus, a more effi cient 
and accurate manner of diagnosing and classifying fracture 
type is of interest. 

Deep learning is a branch of artifi cial intelligence that uses a 
cascade of many layers of nonlinear processing units to extract 
features and create transformations and is based on the learn-
ing of multiple levels of features or representations of the data 
(Wang and Summers 2012, Bengio et al. 2013, LeCun et al. 
2015). Deep learning comprises a neural network with mul-
tiple hidden layers that enhance image recognition accuracy, 
thereby increasing its versatility for capturing representative 
features (Shin et al. 2013). Since 2012, deep learning has 
rapidly become the cutting-edge method of enhancing perfor-
mance in medial image analysis with the use of convolutional 
neural networks (CNN), which are well suited for analyzing 
images, and has led to a decrease in the classifi cation error rate 
from about 25% in 2011 to 3.6% in 2015 (Russakovsky et al. 
2015, Lakhani et al. 2017).

With such success in identifying and classifying images 
using a deep learning algorithm, there has been interest in 
applying deep learning to medical image analysis in sev-
eral fi elds, including the detection of skin cancer (Esteva et 
al. 2017), diabetic retinopathy (Gulshan et al. 2016), mam-
mographic lesions (Kooi et al. 2017), and lung nodules (Hua 
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et al. 2015). However, in the fi eld of orthopedic surgery and 
traumatology, trials are very scarce despite its importance to 
public health. To our knowledge, only one study (Olczak et al. 
2017) has applied deep learning to fracture orthopedics, and 
reported promising outcomes of deep learning in identifying 
fracture, laterality, type of view, and body part. 

Thus, we aimed to evaluate the diagnostic accuracy of the 
deep learning algorithm with deep CNN for detecting and 
classifying proximal humerus fractures using plain antero-
posterior (AP) shoulder radiographs. We then compared the 
results with those of humans.

Patients and methods
Dataset
1,891 plain shoulder AP radiographs (1,376 proximal humerus 
fracture cases and 515 normal shoulders) from 1,891 patients 
(591 men, 1,300 women; 1,083 from Konkuk University Med-
ical Center, 209 from Kyungpook National University Hospi-
tal, 165 from Myungji Hospital, 203 from Kangwon National 
University Hospital, 41 from the National Police Hospital, 25 
from Seoul Saint Mary’s Hospital, and 165 from Wonkwang 
University Sanbon Hospital) were used as the total dataset in 
this study. We used only 1 image per person to decrease the 
overperformance of deep learning by the inclusion of a very 
similar image of the same patient in each test and training set. 
The mean age of patients was 65 (24–90) years.

 
Fracture classifi cation
To evaluate the performance of fracture classifi cation, we clas-
sifi ed the proximal humerus fractures into 4 types based on 
Neer’s classifi cation, which is the most commonly used classi-
fi cation for the proximal humerus fracture: greater tuberosity, 
surgical neck, 3-part, and 4-part (Neer et al. 1970). A greater 
tuberosity fracture was defi ned as 1 displaced fragment of the 
greater tuberosity component, and A surgical neck fracture 
as 1 displaced fragment of the surgical neck component. A 
3-part fracture was defi ned as 2 displaced fragments, while 
a 4-part fracture was defi ned as having 3 or more displaced 

fragments from the proximal humerus. In cases of proximal 
humerus fractures combined with shoulder dislocation (frac-
ture dislocation type), we used the images after reduction and 
classifi ed them.

Each plain shoulder AP radiograph was manually cropped 
into a square in which the humeral head and neck were centered 
and constituted approximately 50% of the square image, resized 
to 256 × 256 pixels, and stored as a JPEG fi le (Figure 1). 

Fracture classifi cation was performed by 2 shoulder ortho-
pedic specialists with 14 and 17 years of experience (SWC 
and KSO) and 1 radiologist with expertise in musculoskel-
etal diseases and 15 years of experience (NRK). For cases in 
which the 3 specialists could not agree, the corresponding CT 
images were checked (CTs were available for all fractures 
that failed consensus) and then re-discussed. If consensus 
still could not be achieved even after the evaluation of the CT 
image(s), the images were excluded from the dataset (n = 21). 
346 cases were ultimately classifi ed as greater tuberosity frac-
tures, 514 cases as surgical neck fractures, 269 cases as 3-part 
fractures, and 247 cases as 4-part fractures. In addition, 515 
cases without proximal humerus fractures were classifi ed as 
the normal group to evaluate the ability of the CNN to distin-
guish between normal and fractured shoulders (Figure 1). 

Training of the deep CNN and framework
We used and trained the deep CNN using the training dataset 
and validated it using the test dataset. The dataset of the 1,891 
images was divided into 10 partitions without overlapping 
images. Among the 10 partitions, 1 partition was used as a 
test dataset, while all other images were used as training data-
sets. Thus, for the 10 parts (1 partition = test dataset, the other 
9 partitions and remnants = training dataset) 10 experiments 
were performed, after augmenting the training dataset. The 
entire training process was then repeated 3 times to adjust for 
possible deviations in the results. We ran Caffe 9 (http://caffe.
berkeleyvision.org/) on Ubuntu 16.04 (https://www.ubuntu.
com/download/desktop) with NVIDIA GTX 1070 (CUDA 8.0 
and cuDNN 5.1) (https://developer.nvidia.com/cuda-zone and 
https://developer.nvidia.com/cudnn) and used the open source 
pre-trained Microsoft ResNet-152 (https://github.com/kaim-

Figure 1. Each shoulder anteroposterior radiograph was manually cropped into a square in which the humeral head and neck are centered such 
that they comprise approximately 50% of the square image as illustrated above. Images were then resized to 256 × 256 pixels. Examples of 
normal and each fracture type: (A) normal, (B) greater tuberosity fracture, (C) surgical neck fracture, (D) 3-part fracture, and (E) 4-part fracture.
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ingHe/deep-residual-networks) as a deep CNN model, and 
further fi ne-tuned the pre-trained ResNet model to our proxi-
mal humerus fracture datasets (fi ne-tuning = training using 
our datasets). The detailed process of the deep CNN training 
process is shown in the Appendix (see Supplementary data).

Evaluation of the deep CNN algorithm
After training the deep CNN, we computed the top-1 accuracy. 
The deep CNN has to answer top-1 (the one with highest prob-
ability) to compute the top-1 accuracy, which is the conven-
tional accuracy for the deep CNN answer (top-1) being exactly 
the expected answer, among 5 choices of normal, greater 
tuberosity fracture, surgical neck fracture, 3-part fracture, and 
4-part fracture. The deep CNN had to fi nd whatever differ-
ences it could to make up criteria and defi ne the groups. Then, 
algorithm performance was measured using the area under the 
receiver operating curve (AUC) generated by plotting sensitiv-
ity versus 1-specifi city, which reported the best sensitivity and 
specifi city that maximizes the sum of sensitivity and specifi c-
ity. In addition, the Youden index (sensitivity + specifi city – 
1) was calculated. The performance for discerning fractures 
from normal shoulders and for classifying fractures (the abil-
ity to defi ne a certain fracture group (4 fracture group) after 
excluding normal shoulders from the test set) was evaluated 
using each value. For fracture type classifi cation, performance 
was measured only in the fracture images after excluding the 
normal shoulder images to evaluate the actual performance of 
fracture classifi cation, thus avoiding the possibility of overfi t-
ting of the deep CNN by the inclusion of normal cases that are 
relatively easy to discern.

Evaluation of the diagnostic performance of human 
readers
To compare the performance in diagnosing and classifying the 
proximal humerus fracture between the CNN and human read-
ers, we provided each reader with the same information as the 
CNN. The readers consisted of 3 groups of general physicians 
(n = 28), general orthopedists (n = 11), and orthopedists spe-
cialized in shoulders (n = 19). The orthopedic surgeons mainly 
composed the human readers, as generally an orthopedic sur-
geon both classifi es the fracture on radiographs and takes the 
decision to operate or not, and then performs surgeries. The 10 
parts (181 images each) were converted into 10 image sheets 
(181 images each) containing the proximal humerus images 
without explanations (Figure 2, see Supplementary data). 

Each reader then received 3 image sheets that were ran-
domly selected using a randomization program (http://www.
randomizer.org) and were requested to provide the most prob-
able diagnosis of each image (543 (3 × 181) images) in the 
form of 1 to 5 (1, normal; 2, greater tuberosity fracture; 3, 
surgical neck fracture; 4, 3-part fracture; 5, 4-part fracture). 
We calculated the top-1 accuracy, AUC, sensitivity/specifi city, 
and Youden index for each group of human readers as with the 
CNN and then compared the values.

Statistics 
All statistical analyses were performed using SPSS 15.0 
(SPSS, Inc., Chicago, IL, USA). The receiver operating char-
acteristic curves were generated using a Python script, and 
each AUC was determined. Descriptive statistics were used 
to report each value of the top-1 accuracy, AUC, sensitivity/
specifi city, and Youden index, which was described as a mean 
and a 95% confi dence interval (CI). Comparisons between the 
CNN and each human group were performed using a one-way 
analysis of variance, followed by Bonferroni post hoc analysis 
for multiple comparison with the signifi cance level set at p < 
0.05. 

Ethics, funding, and potential confl icts of interest
The study protocol was approved by the local ethics commit-
tee (IRB no. KUH1060143) with a waiver of informed con-
sent. This work was supported by Konkuk University in 2017. 
All authors declare no confl ict of interest.

 

Results 
Deep learning CNN performance
The top-1 accuracy of the deep learning CNN model in dis-
tinguishing between normal and proximal humerus frac-
tured shoulders exhibited more than 95% accuracy (96%, CI 
94–97%). Among the proximal humerus fracture cases, the 
top-1 accuracy of the CNN model for distinguishing each frac-
ture type from the other fracture types was 86% (CI 83–88%) 
for greater tuberosity fractures, 80% (CI 77–83%) for surgical 
neck fractures, 65% (CI 59–71%) for 3-part fracture, and 75% 
(CI 71–79%) for 4-part fractures. The distribution of mispre-
dicted cases in the CNN model is described in Table 1. 

The deep learning CNN exhibited excellent diagnostic 
performance with an AUC of 0.996 (CI 0.995–0.998) for 
discerning normal cases from fracture cases. The CNN accu-
rately classifi ed proximal humerus fractures with an AUC of 
0.98 (CI 0.98–0.99) for greater tuberosity fractures, 0.94 (CI 
0.93–0.94) for surgical neck fractures, 0.90 (CI 0.89–0.92) for 
3-part fractures, and 0.94 (CI 0.93–0.94) for 4-part fractures. 
At the optimal cutoff point, the mean sensitivity/specifi c-
ity in the CNN model were 0.99/0.97, 0.97/0.94, 0.90/0.85, 
0.88/0.83, and 0.93/0.85 for normal versus all, greater tuber-
osity, surgical neck, 3-part, and 4-part fractures, respectively. 
The mean Youden index of each group in the CNN model was 
as follows: normal, 0.97 (CI 0.96–0.97); greater tuberosity 
fracture, 0.90 (CI 0.88–0.92); surgical neck fracture, 0.75 (CI 
0.73–0.77); 3-part fracture, 0.71 (CI 0.68–0.74); and 4-part 
fracture, 0.78 (CI 0.77–0.80).

Comparison between CNN and human reader perfor-
mance (Tables 2 and 3 and Figure 3)
The CNN showed superior results in diagnosing proxi-
mal humerus fractures compared with every human group, 
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although the comparison with the general orthopedist and 
shoulder orthopedist groups did not reach statistical signifi -
cance (Table 2).

In addition, the CNN showed the highest performance for 
classifying proximal humerus fracture types among all fracture 
types except for greater tuberosity fractures, despite several 
comparisons with the shoulder orthopedist group not showing 
statistical signifi cance (Table 3, see Supplementary data). 

The diagnostic superiority of the CNN compared with the 
human groups was more marked in 3- and 4-part fractures 
(Table 3). The CNN was superior to a general physician or 
general orthopedist on comparing the diagnostic performance 
of CNN and each human group by overall distribution of the 
sensitivity/specifi city point per person on a receiver operating 
characteristic curve of the CNN (Figure 3). 

Discussion

In this study, we demonstrate the very high performance of 
deep learning CNN in distinguishing normal shoulders from 
proximal humerus fractures. We additionally show promising 
results for classifying fracture type based on plain shoulder 
AP radiographs, with the deep learning CNN exhibiting supe-
rior performance to that of general physicians and general 

orthopedists and similar performance to that of the shoulder 
orthopedists. This indicates the possibility of automated diag-
nosis and classifi cation of proximal humerus fractures and 
other fractures or orthopedic diseases diagnosed accurately 
using plain radiographs. As additional proximal humerus frac-
tures would further enhance the diagnostic performance of the 
CNN, we think that the deep learning CNN may outperform 
even the shoulder orthopedists as data accumulate.

Moreover, we found higher performance of CNN, espe-
cially in more complex type fractures such as 3- or 4-part frac-
tures, compared with humans, which suggests the superiority 
of CNN for classifying fractures with various fracture shapes 
based on plain radiographs because humans have greater dif-
fi culty, especially classifying complex fractures, but CNN 
performs relatively well. Since the number of images for the 
CNN training was smaller for 3- and 4-part fractures, the 
results seem more promising. With more training cases of 3- 
and 4-part fractures, the diagnostic performance of CNN for 
detecting and classifying complex fractures would improve. 
The higher performance of CNN for detecting and classify-
ing proximal humerus fractures, especially complex frac-
tures, may in part come from the fact that machine does not 
suffer from decreases in concentration and is consistent when 
presented with the same input data (i.e., the CNN will make 
the same prediction on a specifi c image every time) unlike 

Table 1. Mispredicted cases in the convolutional neural network model. Values are n (%)

 Types mispredicted as
  Greater Surgical Three- Four-
  tuberosity neck part part
Dataset Normal fracture fracture fracture fracture

Normal (n = 1,500) a  47 (3) 19 (1) 1 (0) 0 (0)
Greater tuberosity fracture (n = 990) 37 (4)  30 (3) 68 (7) 5 (1)
Surgical neck fracture (n = 1,500) 16 (1) 19 (1)  115 (8) 148 (10)
Three-part fracture (n = 750) 0 (0) 39 (5) 135 (18)  88 (12)
Four-part fracture (n = 690) 2 (0) 1 (0) 98 (14) 70 (10) 

a 50 in each partition x three repetitions x 10 partitions

Table 2. Diagnostic accuracy for differentiating proximal humerus fractures from normal shoulders among the 
CNN and human groups. Values are mean (CI)

    Orthopedists
  General General specialized
 CNN physician orthopedist in shoulder p-value

Top-1 accuracy (%)    96 (94–97)    85 (80–90) a    93 (90–96)    93 (87–99) < 0.001
Sensitivity 0.99 (0.99–1.00) 0.82 (0.78–0.87) a 0.93 (0.89–0.97) 0.96 (0.95–0.98) < 0.001
Specifi city 0.97 (0.97–0.98) 0.94 (0.93–0.96) a 0.97 (0.96–0.98) 0.98 (0.96–1.00)    0.002
Youden index 0.97 (0.96–0.97) 0.77 (0.72–0.82) a 0.90 (0.87–0.94) 0.94 (0.92–0.96) < 0.001

CNN, convolutional neural network
Youden index was calculated as [sensitivity + specifi city – 1].
a Statistically signifi cant in a comparison of CNN and each human group (results from a Bonferroni post hoc analy-
sis)
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humans, who are likely to make an error after a distorted pre-
vious experience in fracture classifi cation (humans seem to 
have a tendency to guess right more often in a typical case but 
have diffi culty when the fracture confi guration is a less famil-
iar shape) and through limited concentration. The machine 
can potentially be trained with an incredible amount of train-
ing samples, vastly more than any orthopedist will experience 
in his/her lifetime, which results in an incomparable possibil-
ity of deep learning CNN.

In addition, the diagnostic accuracy of CNN for classifying 
greater tuberosity fractures was the highest and that of 3-part 
fracture was the lowest. Greater tuberosity fractures exhibited 
a distinctive fracture line in the anatomical site of  the greater 
tuberosity with a low variance in the fracture shape among 
greater tuberosity fractures, whereas all other fracture types in 
this study have fracture lines in the surgical neck site. We think 
this anatomical characteristic of the greater tuberosity frac-
ture makes the detection of this fracture type easier with a low 
error rate. Conversely, the 3-part fracture has a shape between 
that of a surgical neck fracture and a 4-part fracture. Thus, the 

CNN seems to confuse more severe 3-part fracture cases with 
more displacement and angulation with 4-part fractures, while 
less severe 3-part fracture cases with less displacement and 
angulation, especially in the greater tuberosity fragments, are 
confused with surgical neck fractures.

This automated system for detecting and classifying proxi-
mal humerus fractures has potential benefi ts, such as increased 
accuracy, consistent interpretation, effi ciency, near-instanta-
neous reporting of results, reproducibility, and decreased bar-
riers to access. Since a deep CNN algorithm can have mul-
tiple operating points, its sensitivity and specifi city can be 
tuned to match the requirements of specifi c clinical settings, 
such as high sensitivity for a screening setting if necessary. 
With additional data, deep learning will facilitate diagnosis. 
Furthermore, we believe that the clinical application of deep 
learning for detection and classifi cation can be expanded to 
other orthopedic diseases that use radiographs for diagnosis.

Our study has several limitations. First, even though the Neer 
classifi cation is the most commonly used tool for proximal 
humerus fracture classifi cation, it has only fair to moderate 

Figure 3. The diagnostic performance between the CNN and each human group was compared using the receiver operating characteristics curves 
of the CNN and the sensitivity–specifi city distribution of each human group to differentiate normal shoulders from proximal humerus fractures (A) 
and to classify each fracture type: (B) greater tuberosity fracture, (C) surgical neck fracture, (D) 3-part fracture, and (E) 4-part fracture.
CNN = convolutional neural network; AUC = area under curve of the receiver operating characteristics curve.
   The representative receiver operating characteristics curve of the CNN was selected as the curve with the closest AUC value to the average 
AUC. 
   The dots on the plots represent the sensitivity and specifi city of each group (yellow, general physicians; green, general orthopedists; red, 
orthopedists specialized in the shoulder). All AUCs for the normal shoulder and each fracture type were over 90%. The CNN achieved superior 
performance at least to a general physician (yellow dot) or to a general orthopedist (green dot), most of whose sensitivity/specifi city point lay below 
the receiver operating characteristic curve of the CNN. 

  A   B

  D   E

  C
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reliability, and there is no gold standard for proximal humerus 
fracture classification. Development of a more reliable classi-
fication system for proximal humerus fracture could enhance 
the reliability in classification of the deep learning algorithm. 
However, the promising result of this study in detecting and 
classifying proximal humerus fracture by using a deep learn-
ing algorithm does not mean that it can be used immediately in 
clinical practice. This study was not to guide treatment. This 
study only has the significance that we showed the possibil-
ity of the future use of this deep learning algorithm even in 
the field of orthopedic surgery or traumatology. CNNs that 
consistently classify fractures could be a giant leap forward. 
Second, we evaluated the diagnostic performance of CNN 
based on a cropped single shoulder AP radiograph to keep 
this project simple, which may not actually reflect a clinically 
relevant scenario because a fracture evaluation would involve 
at least 2 radiographs under review. However, the evaluations 
based on various shoulder radiographs or CT images may 
enhance the diagnostic performance of CNN as well. Finally, 
the images were down-sampled to 256 × 256 pixels before 
they were fed into the network because of the sheer number of 
parameters inherent to the networks. The diagnostic accuracy 
may be improved using higher-resolution images. More devel-
opment on the memory of graphics processing units would 
allow larger matrix sizes without increasing the training time. 
In addition, the lossy JPEG compression may influence the 
image quality. It may be better to use non-lossy compression 
such as PNG or TIFF.

In conclusion, the use of artificial intelligence can accu-
rately detect and classify proximal humerus fractures on 
plain shoulder AP radiographs. Further studies are necessary 
to determine the feasibility of applying artificial intelligence 
in the clinic and whether its use could improve care and out-
comes compared with current orthopedic assessments.

Supplementary data
Figure 2, Table 3 and the Appendix are available as supple-
mentary data in the online version of this article, http://dx.doi.
org/ 10.1080/17453674.2018.1453714
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