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Abstract

In this work, we developed a computational protocol that employs multiple molecular docking 

experiments, followed by pose clustering, molecular dynamic simulations (10 ns), and energy 

rescoring to produce reliable 3D models of antibody–carbohydrate complexes. The protocol was 

applied to 10 antibody–carbohydrate co-complexes and three unliganded (apo) antibodies. Pose 

clustering significantly reduced the number of potential poses. For each system, 15 or fewer 

clusters out of 100 initial poses were generated and chosen for further analysis. Molecular 

dynamics (MD) simulations allowed the docked poses to either converge or disperse, and 

rescoring increased the likelihood that the best-ranked pose was an acceptable pose. This approach 

is amenable to automation and can be a valuable aid in determining the structure of antibody–

carbohydrate complexes provided there is no major side chain rearrangement or backbone 

conformational change in the H3 loop of the CDR regions. Further, the basic protocol of docking a 

small ligand to a known binding site, clustering the results, and performing MD with a suitable 

force field is applicable to any protein ligand system.
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INTRODUCTION

Oligosaccharides (glycans) comprise a repertoire of structurally diverse biomolecules that, 

unlike proteins or nucleic acids, are often branched. In eukaryotes, glycans are often 

components of cell surfaces, where they are typically covalently bound to either proteins 

(glycoproteins) or lipids (glycolipids). Glycans present in these glycoconjugates play a 

central role in a variety of biological recognition processes, including signal transduction 

and protein folding.1 Because of their exposure on cell surfaces, bacterial and viral 

pathogens often target host glycans to initiate adhesion and infection.2 Conversely, glycans 

and polysaccharides present on pathogen surfaces may be targeted by the host immune 

system.3 Additionally, changes in glycan composition or distribution are considered 

hallmarks of many diseases such as rheumatoid arthritis4 and a range of cancers.5–8 The 

significance of glycans in disease progression, together with their cell surface accessibility, 

makes them attractive targets for developing pharmaceutical agents,9,10 such as 

carbohydrate-based vaccines,11,12 anticarbohydrate antibodies,13,14 and endogenous human 

lectins.15

Both lectins and antibodies can be employed to detect glycans. However, the design and 

development of lectin-based pharmaceuticals is challenged by multiple issues; most lectins 

are of plant origin and therefore suffer from unreliable availability, inconsistent activity, and 

high immunotoxicity. Furthermore, lectins often display a broad or complex specificity16 but 

have on occasion been engineered to have improved properties.17,18 Antibodies generally 

display high affinity and specificity toward antigens, and compared to lectins, they have the 

benefit of low toxicity when used as therapeutics. Although monoclonal antibody production 

has become commonplace19 since the advent of hybridoma technology in 1975,20,21 the 

generation of anticarbohydrate antibodies remains challenging due to the T-cell independent 

nature of carbohydrate antigens. Selection of carbohydrate-binding antibodies via 

biopanning of antibody combinatorial libraries has been employed to overcome this 

challenge,22 but it can be difficult to obtain a high affinity antibody.23 Additionally, 

antibodies against carbohydrate antigens can also demonstrate cross-reactivity,24 in part due 

to the inherent structural similarity of many glycans. Structure-based analyses of antibody–

carbohydrate or lectin–carbohydrate interactions offer an alternative means to guide affinity 

or specificity optimization.17,25,26

In order to be effective, an anticarbohydrate antibody should be capable of differentiating 

between closely related glycan structures that vary in both the monosaccharide composition 

and glycosidic linkages that connect residues. Anticarbohydrate antibodies frequently evolve 

to maximize hydrophobic interactions, while forming specific hydrogen bonds to the glycan.
27 The structural and energetic characterization of antibody–carbohydrate interactions is 

therefore essential for the rational design of diagnostic and therapeutic antibodies that target 

carbohydrates.28–30

X-ray crystallography and NMR spectroscopy have been used to characterize the 3D 

structure of antibody–carbohydrate complexes; however, there are several difficulties 

associated with employing these techniques. Generally, the antigen-binding fragment (Fab) 

must be cleaved from the fragment crystallizable (Fc) domain and purified prior to 
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crystallization, which is a procedure that is laborious and necessitates an ample supply of the 

antibody. Fab fragments are typically too large to be amenable to full structural 

characterization by NMR, although they can be employed in STD-NMR experiments to 

provide insight into the region of the antigen in contact with the antibody.31–34 Both 

techniques are further limited by additional complexities that arise from the flexible nature 

of glycans35 and the difficulties involved in synthesizing or isolating complex biological 

glycans in sufficient quantities and purity.36

Due to the challenges associated with the experimental techniques, computational docking is 

often employed to generate models of the immune complex, given a structure for the 

antibody fragment.37,38 Multiple theoretical orientations of the carbohydrate in the binding 

site may be possible, each forming the same number of hydrogen bonds with the antibody.
26,39 Thus, the energy scoring function must be capable of discriminating between 

topologically similar ligand poses. Typical scoring functions40–42 attempt to take into 

account the contributions from van der Waals contacts, electrostatic interactions, desolvation 

effects, and entropy changes. However, features specific to the ligand, such as 

conformational preferences, are generally ignored, as is receptor flexibility and the role 

played by explicit waters in the binding site. These severe approximations increase the speed 

of the process and permit high throughput screening; nevertheless, in many cases, there is no 

alternative to docking to generate an initial structure of a receptor–ligand complex. These 

aspects are areas of active research in the development of carbohydrate-specific docking 

protocols.43–45 Despite these improvements, the top-scoring pose in carbohydrate docking 

cannot necessarily be trusted,46,47 and further analysis of all docked poses becomes 

necessary. Subsequently, there are numerous established refinement methods, reviewed 

recently, that take into account flexibility, explicit water, and entropy.48

In this study, we examine the performance of combining two common strategies for culling 

unlikely poses from the ensemble of structures generated by docking, namely, clustering 

data from multiple docking runs and postdocking molecular dynamic (MD) simulations. 

Pose clustering provides an alternative to energy ranking for the identification of probable 

poses41 and can serve to reduce the number of unlikely poses. While MD simulations permit 

the inclusion of explicit solvent and molecular motions, they are costly to perform. Here, we 

show that by eliminating unlikely poses through a clustering analysis MD simulations may 

be performed on the remaining subset of potential poses, with the goal of optimizing the 

ligand orientation and further eliminating incorrect poses. Assessment of the MD data was 

based on changes in the position of the ligand, as well as on the rank of the complex based 

on post-MD rescoring. Docking was performed using Vina-Carb (VC), a recently modified 

version of AutoDock Vina40 that incorporates the conformational preferences of 

oligosaccharides.39 Vina-Carb was selected because it biases the docking in favor of 

probable oligosaccharide shapes. The Dock/Cluster/MD approach was applied to 10 

antibody carboydrate co-complexes and to three unliganded (apo) anticarbohydrate 

antibodies. The co-crystals provide a positive control for the ability of the algorithm to place 

the ligand correctly when the protein is in a conformation predisposed to recognize the 

ligand. Docking to the apo antibodies represents the more common situation, where a co-

complex does not exist.
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METHODS

Selection of Test Set.

The cognate docking test set consisted of 10 crystal structures of antibody–carbohydrate 

complexes from the Protein Data Bank (PDB)49 (www.rcsb.org). The apo docking test set 

included five systems from the cognate docking test set for which an apo protein was 

available. Systems were chosen based on ligand size and diversity of binding site 

topography50 (Table 1). For systems in which multiple chains were present, the chain 

containing the ligand with the lowest B-factor was chosen.

Automated Docking Protocol.

Molecular docking was performed using Vina-CARB51 with 20 docked models generated 

for each experiment. Coordinates for the variable domains of the antibodies were obtained 

for each system from the PDB and aligned based on a previously published protocol45 in 

order to ensure consistent placement of the grid box relative to the CDR regions across all 

the systems. The 3-D structures of the ligands for each system were built using the 

GLYCAM-Web server (www.glycam.org). The protein and ligand files for docking were 

prepared using Autodock tools (ADT)42 with Gassteiger52 partial atomic charges assigned to 

both the protein and ligand residues. Crystallographic water molecules were removed prior 

to docking, and hydrogen atoms were added to the protein using ADT.42 The hydrogen 

atoms in the ligand were assigned based on the GLYCAM residue templates. The protein 

was maintained rigid for both cognate and apo rigid receptor docking. The glycosidic ϕ, φ 
angles, and hydroxyls in the ligand were allowed to be flexible in all of the docking 

experiments. The exhaustiveness and energy range parameters were set to 12 and 10, 

respectively. The chi coefficient and cutoff value were set to 1 and 2, respectively.

MD Simulations.

MD simulations were performed with the GPU implementation of the pmemd code, 

pmemd.cuda53 from AMBER12,54 using the ff99SB55 parameters for the protein and 

GLYCAM06h56 parameters for the carbohydrate. The systems were solvated in a cubic 

water box using a TIP3P57 water model (12.0 Å per side), and counterions were added to 

neutralize the system. The following protocol was performed for each system. First, the 

water molecules were subjected to energy minimization (10,000 steps steepest decent 

followed by 10,000 steps conjugate gradient). During this minimization, the protein and the 

ligand were restrained with a force constant of 100 kcal/mol Å2. Full systems were then 

subjected to further energy minimization (10,000 steps steepest decent, 10,000 steps 

conjugate gradient) during which the backbone atoms of the protein and all the atoms of the 

ligand were restrained with a force constant of 5 kcal/mol Å2 allowing only the side chains 

to relax. This was followed by heating from 5 to 300 K over the course of 50 ps at constant 

volume. A 1 ns constant pressure (NPT ensemble) MD was used to ensure proper water and 

ligand equilibration. Then, 10 ns production MD simulations were performed at constant 

pressure (NPT ensemble) with the temperature being held constant at 300 K using the 

Langevin thermostat. The backbone atoms of the protein were restrained with a force 

constant of 5 kcal/mol Å2 during heating, equilibration, and production simulations, while 

the protein side chains and ligand atoms were allowed to be flexible. The backbone atoms 
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were restrained to ensure that the protein fold remained stable during the course of the 

simulation. The SHAKE58 algorithm was used to constrain all covalent bonds involving 

hydrogen atoms, thereby allowing a time step of 2 fs. A nonbonded cutoff of 8 Å was used, 

and long-range electrostatics were accounted for by the particle mesh Ewald59 method.

Analysis.

Docked models were compared to their respective experimental structures by calculating 

RMSD values of the ring atom positions of the ligand. For the pose clustering analysis, the 

protocol implemented in Autodock 4.041 was employed with a cutoff value of 2.0 Å. In this 

method, the lowest energy docked model forms the seed for the first cluster, and the second 

lowest energy model is then compared to it by calculating the RMSD between them. If the 

RMSD is less than 2.0 Å, the second model is added to the first cluster else it becomes the 

seed for a second cluster. The next best docked structure is then compared to the lowest 

energy structure. If the RMSD value is less than 2.0 Å, this pose is added to the first cluster, 

else it is compared to the seed of the second cluster. If the RMSD value is less than 2.0 Å, it 

is added to the second cluster, else it forms the seed for the third cluster. This continues until 

each docked model becomes part of a cluster. To assess the stability of the complexes during 

the course of the simulation, the RMSD values for the ring atoms of the ligand position 

relative to both the first time step of the simulation and the crystal ligand were calculated. 

For the post-MD score-in-place calculations, snapshots of the protein and the ligand were 

obtained at 10 ps intervals from the final 1 ns of the simulation. Both RMSD values and 

snapshots were generated using the ptraj module of AMBERTOOLS 12.60 The extracted 

snapshots were prepared for score-in-place calculations using ADT42 with the same 

parameters that were employed in the initial docking protocol. Structural images were 

created using the Visual Molecular Dynamics program61 and 3D-SNFG plugin.62

RESULTS

Docking to Co-Crystals (Cognate Docking).

There is a potential benefit in performing multiple docking experiments when using 

stochastic algorithms like the genetic algorithm used in Vina-Carb (VC) since employing 

different random seeds can lead to different distributions of docked poses in each 

experiment. To assess whether this approach could be beneficial when docking 

carbohydrates to antibodies, five independent docking experiments were performed using 

VC on each of 10 antibody systems; 20 models were obtained from each experiment, 

resulting in a total of 100 docked models for each system. The root-mean-squared deviation 

(RMSD) between the positions of the ring atoms of the docked ligands and the 

corresponding positions in the crystallographic co-complexes were computed for all of the 

systems. An RMSD of 2 Å or less was considered an acceptable pose51 and an indication of 

a successful docking result. In 8 of the 10 systems, an acceptable pose was found 

consistently in each independent docking experiment, and it was also the top-ranked pose in 

six of the systems (Table 2). In systems 1MFB (heptasaccharide) and 1S3K 

(tetrasaccharide), an acceptable pose was found in the top five ranked poses but was never 

the top-ranked pose. Notably, multiple docked models within the top five ranked poses of the 

1CLY ligand (tetrasaccharide) contained conformations similar to that of the crystal co-
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complex; however, the orientations within the binding pocket were incorrect (Figure 1). The 

docking scores of these models differed by less than 0.5 kcal/mol from that of the top-ranked 

acceptable pose. VC was designed to improve the accuracy of carbohydrate conformations 

by penalizing docked poses with energetically unfavorable glycosidic linkages; however, the 

results for 1CLY demonstrate that even a correct ligand shape may not guarantee that the 

orientation of the ligand in the top-ranked poses is acceptable.

For the two largest oligosaccharide systems (3C6S, dodecasaccharide; 3TV3, 

octasaccharide), VC failed to find an acceptable pose; the top-ranked poses for 3TV3 and 

3C6S had RMSD values of 16 and 22 Å, respectively. Difficulties in predicting the position 

of these large ligands suggests that the search algorithm is less effective when evaluating a 

large number of rotatable bonds, which has been recognized previously.64,65 To overcome 

this problem, docking experiments were repeated for 3C6S and 3TV3, in which only the 

oligosaccharide components that directly interact with the protein were docked. Such a 

fragment of an oligosaccharide is often referred to as the minimal binding determinant 

(MBD).26 In the case of 3TV3 and 3C6S, the MBDs are a disaccharide66 and 

pentasaccharide,67 respectively (Figure 2). Docking of the MBD generally improved the 

results (Table 3); however, an acceptable pose was only found in two of the five docking 

experiments for 3TV3, demonstrating the importance of multiple docking experiments. 

There was also considerable variability in ranking of the acceptable poses between docking 

experiments, suggesting a lack of convergence in the sampling, and indicating a need to 

examine all docked poses.

The present results indicate that when applied to a positive control (cognate), docking a 

flexible oligosaccharide can lead to the identification of a top-ranked acceptable pose in 

approximately 6/10 cases, and this increases to 8/10 if the top five ranked poses are 

considered. However, in approximately 2/10 of the systems, the acceptable pose was not 

ranked in the top five, and there can be significant variability in ranking between 

independent docking experiments. Although an acceptable pose was found in the top five for 

8/10 of the systems, additional acceptable poses were poorly ranked (Table 2). The docking 

scores of these poses were within 0.5 kcal/mol of incorrect (high RMSD) docked models, 

detracting from confidence in the ranking system. In order to assess the ability of the scoring 

function to discriminate between correct and incorrect models, the differences in docking 

scores between the best model (lowest RMSD relative to the crystal structure) and the worst 

model (highest RMSD relative to the crystal structure) were calculated (Table 4). The 

docking scores differed by less than 1.2 kcal/mol across all 10 systems. In four systems, the 

difference in docking scores was less than 0.5 kcal/mol between the best and worst models, 

while the RMSD differed by more than 4.5 Å. Although the success rate could be as high as 

6/10, the existence of diverse poses that are energetically similar to the top-ranked pose 

suggests that the relative ranking is not a reliable metric for identification of the optimal 

pose. To avoid the issue of pose ranking all together, a clustering analysis of the poses was 

undertaken. The clusters were then examined to test the hypothesis that an acceptable pose 

should be present in the most populated cluster.
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Clustering Analysis.

Pose clustering potentially provides an alternative way to identify acceptable poses without 

relying on the ranking. Additionally, it reduces the number of poses that need to be 

examined since further analysis need only consider a representative pose from each cluster. 

Pose clustering may be employed to identify acceptable poses that occur repeatedly across 

multiple docking experiments. The clustering method implemented here was based on 

protocols from earlier Autodock versions,42 specifically, poses within 2 Å of each other 

were considered to be members of the same cluster. The average docking score of each 

cluster was calculated, and the clusters were ranked from most to least energetically 

favorable (Figure S1). In 8/10 systems, an acceptable pose was either in the most populated 

or the lowest energy cluster, and overall in 4/10 systems, the lowest energy cluster was also 

found to be the most populated cluster. In two systems, additional acceptable poses were 

identified in clusters that were neither the most populated nor the lowest energy. The 

dispersion of acceptable poses among the clusters suggested that additional analysis would 

be required in order to increase the likelihood of identifying an acceptable pose. To address 

this, we selected representative poses from various clusters for further analysis via MD.

Pose Filtering Using MD Simulations.

MD simulations account for solvent effects, as well as protein and ligand dynamics, 

potentially correcting some of the deficiencies associated with the docking protocol or 

scoring function. Representative poses were chosen from clusters that contained more than 

two members for analysis by fully solvated MD simulation (10 ns). The pose that was most 

similar to the geometric average of the clustered poses was chosen for MD rather than the 

lowest energy in the cluster, given the poor correlation between the VC scores and pose-

correctness.

Average RMSD values were calculated for the ligand ring–atom positions relative to those in 

the reference crystal structure at 10 ps intervals from the final 1 ns of the 10 ns trajectories. 

In order to determine the extent to which MD simulations altered the position of the ligand, 

the difference between the RMSD value from MD and the RMSD values from docking were 

computed (DRMSD). Low values of DRMSD were observed for acceptable poses, 

indicating that these poses remained stable throughout the simulation (Table 5). Simulations 

of unacceptable poses could, in principle, lead to either an improvement (DRMSD < 0) or a 

worsening (DRMSD > 0) in the ligand position. In practice, the majority of unacceptable 

poses did not transition into acceptable poses; however, the RMSD improved from 3.7 to 0.7 

Å for 1UZ8, from 2.2 to1.1 Å for 1M7D, 2.4 to 2.0 Å for 1OP3, and from 3.9 to1.1 Å for 

1CLY (Table S2). Notably, MD simulation was able to identify very poor poses (docked 

RMSD > 5 Å), as they generally drifted significantly from the initial binding pose during the 

simulation (Table S1). Additionally, in all but one case, those poses that drifted by more than 

2 Å from the known binding site also ranked worse after rescoring (Table S1). It thus 

appears that pose drift combined with worsening rank after rescoring can be used to 

discriminate likely from unlikely poses. These results support the hypothesis that even a 

relatively short MD simulation can enhance the discrimination between acceptable and 

unacceptable poses, a feature that is particularly helpful for identifying unacceptable poses 

that nevertheless received reasonable docking scores.
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In addition to RMSD values, average docking scores for the MD-generated poses were 

computed using the score-in-place option in VC. This method for computing the energies 

was selected because it allowed the poses from MD data to be ranked analogously to the 

data from docking. After MD, an acceptable pose was found as the top-ranked pose for 8/10 

systems, in contrast to the pre-MD ranking for which the top-ranked pose was acceptable in 

only 6/10 systems. In 3C6S, although the RMSD of the acceptable pose worsens slightly 

(1.9–2.5 Å) during the course of the simulation, the top two ranked models post-MD 

rescoring are populated with models closer to the crystal structure when compared to 

molecular docking alone where an acceptable pose is not found within the top five models. 

Examples of the effect of MD simulation on pose ranking and RMSD is shown for 1S3K 

and 3TV3 in Table 6 and the remaining systems in Table S2. The rescored docking scores 

show a marked improvement in the correlation between docking score and pose position 

(Figure 3).

MD simulation in the presence of explicit water provides a sufficiently improved model for 

the interaction between the ligand and the protein that poor poses resulting from docking 

may be identified as false positives by their instability during MD. Although on the 

relatively short 10 ns time scale of the present simulations false positives are rarely able to 

access favorable binding modes, they are able to drift further away from the protein, 

resulting after rescoring in weaker docking scores. Thus, MD offers a complementary 

method to identify and eliminate false positives in the docking output. Notably, post-MD 

rescoring increases the likelihood that the top-ranked pose will be an acceptable pose, 

assuming one is present among all of the docked-poses.

Application to Apo Structures.

While cognate docking, using the receptor from a co-crystal structure of the complex with 

the ligand is a common method to validate docking results, it is biased toward a favorable 

outcome since the binding site is conformationally adapted to the ligand. Hence, cognate 

docking is not representative of the general application of docking to apo receptors. In order 

to test the ability of the (Dock-Cluster-MD-Rescore) protocol to produce accurate results in 

such scenarios, the protocol was applied to the apo antibody crystal structures that were 

available for 5 of the 10 antibodies (Table 1). During cognate docking, the protein was 

maintained rigid, while the glycosidic and exocyclic bonds in the ligand were permitted to 

be flexible. However, when docking to apo proteins, the possibility exists that ligand binding 

might induce conformational changes in the binding site, which would necessitate that a 

subset of the amino acid side chains be treated as flexible. In order to estimate the degree of 

induced fit in the co-complexes, the differences in positions of residues in the CDR loop 

regions in the apo and co-complexes were calculated (Table S3). For 3C5S, while an apo 

structure was available, there were several missing residues in CDR loops H1 and H3, 

eliminating this system from further study. In all remaining systems except 1OM3, the all-

atom RMSD values for the residues in the CDRs for the apo versus cognate systems were 

less than 1.5 Å, with the exception of one residue (ARG H99) from loop H3 in 1UZ8/6 that 

had an RMSD value of 2.4 Å. The low RMSD values in 1M7D/1, 1M7I/1, and 1UZ8/6 

indicate that any conformational changes in these systems resulting from binding are very 

subtle. In contrast, RMSD values for several residues in the H3 loop of the 1OP3/OM3 
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system ranged from 2.5 to 10 Å, and further analysis showed that the differences are a result 

of significant conformational change in the backbone conformation of these residues 

suggesting a large change in the loop upon ligand binding (Figure S2). Since Vina-Carb does 

not permit backbone flexibility, 1OM3 was also eliminated from further study. Thus, rigid 

protein docking was employed on three apo antibody structures (1M7D/1, 1M7I/1, 1UZ8/6). 

Given that the apo structures for these systems were similar to those in the co-complexes, it 

is not unexpected that docking to these systems resulted in essentially the same outcome as 

for cognate docking. For each of these systems, while the top-ranked pose was acceptable in 

each docking experiment, additional acceptable poses were also present that were poorly 

ranked (Table 7).

A clustering analysis was employed as in cognate docking (Figure S3/Table 8), and 

representative poses from clusters that contain more than two members were subjected to 

solvated MD simulations. The average RMSD values calculated relative to the crystal 

structure indicate that the acceptable poses in all the three systems improved slightly 

(ΔRMSD ≤ 1 Å) during the course of the simulation (Table 8). These acceptable poses 

include poses from 1UZ6/8 and 1M71/D, which were ranked 5 and 14, respectively, in an 

individual docking experiment and were not present either in the lowest energy or most 

populated cluster. Generally, across the three systems, the majority of the unacceptable poses 

worsened only modestly (ΔRMSD < 2 Å), while a few poses drifted significantly further 

away (ΔRMSD > 5 Å) from the binding site. However, in 1M71/I, an unacceptable pose 

with an RMSD of 3.5 Å transitioned into an acceptable pose (1.5 Å). Post-MD rescoring 

places the poorly ranked acceptable poses from 1UZ6/8, 1M71/D, and the improved docked 

model from 1M71/I among the top three models. These results indicate that the Dock-

Cluster-MD-Rescore protocol can be used reliably to predict apo complexes provided there 

is no significant conformational change upon binding.

CONCLUSION

In terms of objectively identifying the correct pose of a ligand in a binding site, molecular 

docking, followed by clustering and MD, enriched the number of poses that were acceptable 

and improved their rank compared to molecular docking alone for both cognate and the 

limited number of available apo receptors which show no significant conformational change 

upon binding. This protocol therefore is a viable approach in cases when the binding pose is 

unknown, where traditional docking alone is less likely to lead to the correct outcome. The 

success of this protocol shows that subjecting poses from docking to solvated MD 

simulations provides a promising method to identify correct poses by permitting unfavorable 

poses to dissociate from the protein surface (Table S1), while at the same time retaining 

acceptable poses. Further, we have shown that when docking large oligosaccharides the 

probability of generating an acceptable pose can be significantly increased by trimming the 

ligand down to the minimal binding determinant (MBD). It may be that significantly 

increasing the number of runs and the number of poses output by VINA might lead to the 

discovery of acceptable poses for large oligosaccharides. However, there will always be ever 

larger ligands; so we propose that the present approach offers a balance between the benefits 

of docking (throughput) with the accuracy of MD. The composition of the MBD can be 

inferred from complementary studies, such as by chemical modification of the ligand,68–70 
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by saturation transfer difference NMR spectroscopy,71–74 or by glycan array screening.
16,26,75,76 Lastly, the observation that the docking scores correlated well with pose-

correctness, after the poses were subjected to MD simulation, indicates that weaknesses in 

the performance of docking with Vina-Carb are not related primarily to the scoring function 

but to inaccuracies in the generation of the poses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Upper left: Docked model of the 1CLY ligand in the correct orientation in the binding 

pocket. Residues are depicted in gray with symbols according to the Symbol Nomenclature 

for Glycans (GlcNAc, Fuc, and Gal are blue cube, red cone, and yellow sphere, 

respectively).63 Upper middle: Ligand in an intermediate flipped orientation. Upper right: 

Final inverted ligand pose. Lower: Two orientations of the docked ligand are superimposed 

on the co-crystal structure, which is colored according to SNFG.
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Figure 2. 
Top: Oligosaccharide sequences for the ligands in the 3TV3 (left) and 3C6S (right) co-

crystals; the fragments (MBDs) chosen for docking are shown in magenta. Bottom: 

Acceptable docked poses from MBD docking to 3TV3 and 3C6S relative to the intact 

ligands in the co-crystals (green).

Makeneni et al. Page 16

J Chem Inf Model. Author manuscript; available in PMC 2018 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Comparison of correlation coefficient values for each of the 10 systems before (green) and 

after (orange) employing MD simulations. The column height corresponds to the R2 value of 

each system.
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Table 3.

Results from Five Docking Experiments of Fragment (MBD) Docking

PDB ID RMSD
a
 (Rank)

3C6S 1.97 (10) 1.93 (19) 1.8 (10) 2.0 (8)
−

b

3TV3 1.28 (9) 0.37 (8) − − −

a
RMSD (Å) value of the lowest ranked acceptable pose.

b
Inability to generate an acceptable pose indicated by “−”.
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Table 4.

Differences between Docking Scores and RMSD Values for Best and Worst Poses Ranked from Smallest 

RMSD Difference to Largest

PDB ID Difference in interaction energy
a

RMSD difference
b

1M7D 0.51 1.47

1MFB 0.31 1.91

1OP3 0.19 2.75

1MFA 0.25 4.52

1S3K 0.05 4.54

1UZ8 1.13 4.74

1CLY 0.39 4.75

1M7I 1.09 10.52

3C6S 0.40 11.59

3TV3 0.20 21.52

a
In kcal/mol.

b
In angstrom.
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Table 5.

DRMSD Values for 10 Cognate Systems

System
Total clusters subjected to 

MD refinement
DRMSD for single best-
ranked, acceptable pose

Number of unacceptable poses 

modestly
a
 improved/worsened

Number of unacceptable poses 

substantially
b
 improved/

worsened

1CLY 12 0.44 3/9
−/−

c

1M7D 11 0.74 4/6 −/1

1M7I 9 1.10 2/5 −/2

1S3K 11 1.80 1/7 −/3

1UZ8 13 0.03 1/7 1/4

1MFA 14 0.32 3/6 1/4

1MFB 9 1.90 3/5 −/1

1OP3 12 -0.09 3/5 −/4

3C6S 9 0.56 2/7 −/−

3TV3 10 -0.53 4/6 −/−

a
|DRMSD| < 2 Å.

b
|DRMSD| > 2 Å.

c
“−”indicates that the simulation neither significantly improved nor worsened the pose.
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