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Neurobiology of Disease

Orbitofrontal Signaling of Future Reward is Associated with
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Alterations in motivated behavior are a hallmark of attention-deficit/hyperactivity disorder (ADHD), one of the most common psychi-
atric disorders in children and adolescents. The orbitofrontal cortex (OFC) plays a key role in controlling goal-directed behavior, but the
link between OFC dysfunction and behavioral deficits in ADHD, particularly in adolescence, remains poorly understood. Here we used
advanced high-resolution functional magnetic resonance imaging (fMRI) of the human OFC in adolescents with ADHD and typically developing
(TD) controls (N = 39, age 12-16, all male except for one female per group) to study reward-related OFC responses and how they relate to
behavioral dysfunction in ADHD. During fMRI data acquisition, participants performed a simple decision-making task, allowing us to image
expectation-related responses to small and large monetary outcomes. Across all participants, we observed significant signal increases to large
versus small expected rewards in the OFC. These responses were significantly enhanced in ADHD relative to TD participants. Moreover, stronger
reward-related activity was correlated with individual differences in hyperactive/impulsive symptoms in the ADHD group, whereas high cogni-
tive ability was associated with normalized OFC responses. These results provide evidence for the importance of OFC dysfunctions in the
neuropathology of ADHD, highlighting the role of OFC-dependent goal-directed control mechanisms in this disorder.
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Attention-deficit/hyperactivity disorder (ADHD) is characterized by alterations in motivated behavior which can be understood
as diminished goal-directed control. The orbitofrontal cortex (OFC) plays a key role in controlling goal-directed behavior, but its
potential contribution to ADHD symptomatology remains poorly understood. Using high-resolution fMRI, we show that adoles-
cent ADHD patients display enhanced OFC signaling of future rewards and that these increased reward-related responses are
correlated with the severity of hyperactivity/impulsivity. These findings suggest that an inability to adequately evaluate future
outcomes may translate into maladaptive behavior in ADHD patients. They also challenge the idea that dysfunctions in dopami-
nergic brain areas are the sole contributor to reward-related symptoms in ADHD and point to a central contribution of goal-
directed control circuits in hyperactivity. j
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tional and reward processes are a hallmark of ADHD (Sagvolden et
al., 2005; Luman et al., 2010). ADHD patients typically prefer small
immediate rewards over large delayed rewards, make riskier
choices to obtain reward, and are particularly responsive to pos-
itive reinforcement (for review, see Luman et al., 2010). Current
models integrate these findings and suggest a link between ADHD
symptom severity and altered reward processing (Sonuga-Barke,
2011; Plichta and Scheres, 2014).

These behavioral alterations have been interpreted as reflecting
increased reward sensitivity and impulsivity, and, thus, previous
work on the neuropathology of reward processing in ADHD has
focused primarily on dopaminergic brain regions. For instance,
reward anticipation in adolescents (Scheres et al., 2007; van Hulst
et al., 2017) and adults (Strohle et al., 2008; Plichta and Scheres,
2014) with ADHD has frequently been shown to correlate with
decreased striatal activity, and effective pharmacological treat-
ments for ADHD enhance dopamine availability by blocking do-
pamine reuptake (Krause et al., 2000; Volkow et al., 2001).

However, deficits in reward-related behavior in ADHD could
also reflect deficient goal-directed control of behavior. The or-
bitofrontal cortex (OFC) is a key region supporting goal-directed
behavior (Wallis, 2007; Rudebeck and Murray, 2014; Stalnaker et
al., 2015). OFC neurons encode information about expected out-
comes (Padoa-Schioppa and Assad, 2006; Stalnaker et al., 2014;
Howard et al., 2015) and signal their current value depending on
the state of the organism (Gottfried et al., 2003; Rudebeck and
Murray, 2014; Howard and Kahnt, 2017). Accordingly, lesions to
the OFC are associated with impulsive decision making and mal-
adaptive behavior (Winstanley et al., 2004; Rudebeck et al., 2013).
This raises the possibility that OFC dysfunction, resulting in an
inability to adequately represent the value of future outcomes,
might account for executive impairments in goal-directed behav-
ior observed in ADHD.

However, evidence linking OFC activity to ADHD is sparse
and inconsistent, particularly in adolescent populations. Some
studies have found that OFC responses to monetary outcomes
(Strohle et al., 2008; Edel et al., 2013; von Rhein et al., 2015) and
rewarding feedback (Dibbets et al., 2009; Cubillo et al., 2012) may
be altered in ADHD, while others have found no differences (Stoy
et al., 2011; Wilbertz et al., 2012). Moreover, most studies have
not observed OFC activation in ADHD during expectation of
monetary outcomes (Strohle et al., 2008; von Rhein et al., 2015)
or reported no differences compared with healthy control sub-
jects (Stoy et al,, 2011).

Inconsistent findings relating OFC function to ADHD could
be due, in part, to technical difficulties in imaging the human
OFC using functional magnetic resonance imaging (fMRI; Cor-
tese etal., 2012). Due to its close proximity to nasal and paranasal
sinuses, fMRI signals in the OFC are susceptible to signal dropout
and geometric distortions (Deichmann et al., 2003; Weiskopf et
al., 2006). However, recent advances in fMRI sequence develop-
ment, including reduced field-of-view (rFOV) and parallel imag-
ing (Heidemann et al., 2012), now allow more sensitive and
reliable measurements of OFC activity.

In this study, we used advanced high-resolution rFOV fMRI
of the OFC and a simple decision-making task (Kahntetal., 2010)
to test whether encoding of expected reward in the OFC is altered
in adolescents with ADHD relative to typically developing (TD)
adolescents. Moreover, we tested whether potential differences in
OFC activity are associated with relevant diagnostic parameters,
such as inattentive and/or hyperactive symptoms (Edel et al,,
2013), aggressive/dissocial behaviors (Rubia et al., 2009), age, and

Tegelbeckers et al. @ Orbitofrontal Signaling Predicts Hyperactivity in ADHD

Table 1. Sample characteristics

ADHD 1)) t(p)

N 19 (1 female) 20 (1 female)
Age 1411 14.6 —1.19(0.24)
1Q (CFT-20R) 102.95 110.45 —2.22(0.03)
Attentional capacity (d2, t value) 52.58 62.70 —3.82(0.00)
Attentional problems

Self-rating (YSR; t value) 61.67 53.25 4.44(0.00)

Parental rating (CBCL; £ value) 69.18 52.50 7.68 (0.00)
Aggression

Self-rating (YSR; t value) 55.61 52.25 1.77 (0.09)

Parental rating (CBCL; £ value) 61.65 52.7 4,14 (0.00)
Dissocial behavior

Self-rating (YSR; t value) 54.78 52.15 1.49(0.15)

Parental rating (CBCL; £ value) 56.12 52.5 2.35(0.02)

cognitive ability (Stoy et al., 2011). Finally, we performed voxel-
based morphometry (VBM) to test whether structural abnormali-
ties resulting from a potential prefrontal maturational delay (Shaw et
al., 2007) might explain altered OFC activity in ADHD.

Materials and Methods

Participants. Forty-nine children and adolescents (27 ADHD, 22 TD)
aged between 12 and 16 years participated in the study. They were re-
cruited through local newspaper advertisements and the Department of
Child and Adolescent Psychiatry and Psychotherapy at Otto von Guer-
icke University Magdeburg. All participants and their parents underwent
clinical interviews with the Revised Schedule for Affective Disorders and
Schizophrenia for School-Age Children—Present and Lifetime Version
(K-SADS-PL; Kaufmann et al., 1997) for assessment of psychiatric dis-
orders based on DSM criteria. Attentional deficits were further evaluated
using the Youth Self-Report (YSR; self-rating; Achenbach, 1991a) and
the Child Behavior Checklist (CBCL; parental rating; Achenbach, 1991b).
Performance in standardized measures of intelligence [Culture Fair Intelli-
gence Test—Revised Version (CFT-20R); Weiss, 2008] and attentional capac-
ity (d2; Brickenkamp, 2002) was assessed in all participants. Subjects with an
intelligence quotient (IQ) <85 or >130 (3x ADHD, 2x TD [three ADHD
and two TD participants were excluded based on this criterion]), any current
or previous neurological or psychiatric disorder other than ADHD or oppo-
sitional defiant disorder or conduct disorder (CD) accompanying ADHD,
substance abuse, or severe head motion during fMRI scanning (2x ADHD
[two ADHD participants were excluded based on this criterion]) were ex-
cluded. In total, seven participants were excluded based on these criteria.
Moreover, three ADHD patients were excluded based on task performance
(<4 correct trials per condition in >3 runs). The final ADHD sample (N =
19) consisted of 10 patients who fulfilled the diagnostic criteria for the com-
bined subtype of ADHD, 7 patients who fulfilled criteria for the inattentive
subtype, and 2 patients of the hyperactive-impulsive subtype. All subjects in
the final sample were male, except for one female participant in each group.

Based on the information about parental employment from the CBCL
questionnaire, the estimated household income of ADHD patients was
lower compared to TD families (¢5,, = —2.67, p = 0.011). Although
these estimates do not provide insight into the immediate finances of the
adolescents (e.g., allowance), they can serve as a proxy for the financial
situation of the family and might therefore correlate with the subjective
value of the monetary outcomes used in the experiment. Parental ratings
of aggressive and dissocial behaviors were significantly higher in the
ADHD group than the TD group (Table 1), but only two patients fulfilled
the criteria for oppositional defiant disorder. ADHD patients currently
medicated with stimulants (N = 3, lifetime N = 7) discontinued the
intake at least 48 h before the experiment. Table 1 describes the final
study sample.

The study was approved by the local ethics committee of the medical
faculty at Otto von Guericke University Magdeburg. All participants and
parents gave written informed assent/consent. Participants received a
voucher for a local shopping mall as reimbursement (€5 per hour) in
addition to their earnings from the experimental task.



Tegelbeckers et al. @ Orbitofrontal Signaling Predicts Hyperactivity in ADHD

A

(c W R

cue
2s
response

1s

Figure1.

10 ct

13s outcome

J. Neurosci., July 25,2018 - 38(30):6779—6786 + 6781

direction

Experimental design and the optimized rFOV imaging protocol. 4, lllustration of experimental task structure. B, Examples of the visual dimensions of the CSs predicting reward. For half

of the participants, the depicted CS-value association was inverted. ¢, Midsagittal view of a sample subject showing the rFOV (yellow) over the OFCand the saturation band (hatched area) for outer
volume suppression with a sharp transition edge at the side slightly overlapping with the rFOV. D, Mean functional rFOV echoplanar image of a representative subject. ct, Cents.

Experimental task design. Participants completed a decision-making
task in which four different triangle shapes served as visual conditioned
stimuli (CSs; green or red triangles that pointed either upward or down-
ward; Fig. 1B). These CSs were associated with large and small monetary
rewards (10¢ and 2¢, respectively). CSs were counterbalanced across
subjects such that for half of the participants, red upward and green
downward triangles were associated with large rewards, and red down-
ward and green upward triangles were associated with small rewards. On
each trial, one CS was presented for 2 s, and participants were instructed
to remember the color and orientation of the CS for a variable delay (4—8
s). This delay allowed us to dissociate CS- and outcome-evoked activity.
Participants then had to report either the color or orientation of the CS
by button press with the right index or middle finger within an interval of
1.5 s to gain the monetary reward predicted by the CS. The chosen
response was briefly surrounded by a white frame to indicate the partic-
ipant’s selection, and feedback about the monetary outcome was pre-
sented if the response was correct (Fig. 1A). If the response was incorrect
or too slow, feedback of 0¢ was presented.

To gain familiarity with the task and to learn the associations between
the CSs and monetary outcomes, all participants performed a training
session before MRI scanning (consisting of 4 runs with 12 trials each).
Subsequently, subjects performed 7 runs with 24 trials each (six presen-
tations of each triangle in pseudorandomized order) while fMRI data
were acquired. At the end of each experimental run, the total gain was
displayed. The entire experimental session, including the instructions,
training, anatomical scan, and behavioral task, lasted ~1.5 h.

MRI data acquisition. MRI data were collected on a Siemens Prisma 3
Tesla system with a 64-channel head/neck coil. An Original Pillow Junior
(Tempur World) was placed on the base of the coil surrounding the sides
and the back of the head for comfort and to prevent movement.

T1-weighted structural images were acquired with an MPRAGE se-
quence using the following parameters: 1 X 1 X 1 mm* voxel size, 256 X
256 X 192 matrix, 2.82 ms echo time, 2.5 s repetition time (TR), 1.1 s
inversion time, 7° flip angle, 140 Hz pixel bandwidth, 7/8 partial Fourier,
and parallel imaging with a Generalized Autocalibrating Partial Parallel
Acquisition (GRAPPA) factor of 3.

For high-resolution functional imaging, we used a combination
(Heidemann et al., 2012) of rFOV gradient EPI and parallel imaging to
minimize signal dropout, geometric distortion, and loss of blood oxygen
level-dependent (BOLD) contrast in the OFC. This imaging sequence is
part of the Siemens “Advanced fMRI” work-in-progress software. Dur-
ing each of the seven functional runs, we acquired 190 volumes using the
following parameters: 24 slices without interslice gap, 1.8 mm slice
thickness, interleaved slice acquisition order, 120 X 240 mm? rFOV,
1.25 X 1.25 mm? in-plane voxel size, 30 ms echo time, 2 s TR, 90° flip
angle, 1 mT/m - ms z shim, 0.73 ms echo spacing, and GRAPPA factor of
2. The transversal slice block was tilted 20° with respect to the anterior com-
missure—posterior commissure line as shown in Figure 1C. An example of a
mean functional image for one participant is shown in Figure 1D.

To facilitate anatomical registration of the rFOV imaging data, we also
acquired 10 whole-brain EPI volumes. To keep geometrical distortions
within the rFOV part of the whole brain data set identical to the func-
tional scans, the shim settings were copied and the FOV and matrix size
in phase direction as well as the GRAPPA factor were doubled.

MRI data preprocessing. All analyses of the MRI data were conducted
using SPM12 (RRID: SCR_007037, Wellcome Trust Centre for Neuro-
imaging, London, UK). For preprocessing, all functional rFOV echopla-
nar images were realigned to the first volume. Independent sample ¢ tests
on mean absolute head motion revealed group differences in translation
(t37) = 4.36,p < 0.001) and rotation (.;,, = 4.27, p < 0.001). To control
for potential signal differences induced by head motion, motion pa-
rameters were included in first- and second-level statistical models
(see section Statistical analysis of functional MRI data below).

We used the whole-brain echoplanar images to facilitate spatial nor-
malization of the rFOV EPIs. Specifically, the 10 whole-brain echoplanar
images were motion corrected, averaged, and coregistered to the T1
structural image. Next, the functional rFOV EPI time series was coregis-
tered to the mean whole-brain echoplanar image using the mean rFOV
echoplanar image. Spatial normalization was then performed by normal-
izing the T1-weighted structural image to MNI (Montreal Neurological
Institute) space using the six tissue probability map provided by SPM12.
Deformation fields were applied to the functional rFOV echoplanar im-
ages. The normalized images were smoothed with a 6 mm FWHM Gauss-
ian kernel.

Statistical analysis of functional MRI data. For each participant, a gen-
eral linear model (GLM) was fitted to the normalized and smoothed
functional rFOV EPI data. The GLM included the following six event-
related regressors: the onsets of the visual CSs (separately for large and
small rewards), button presses, and outcomes [separately for large, small,
and no rewards (incorrect responses)]. These regressors were convolved
with a canonical hemodynamic response function. The GLM also in-
cluded the following nuisance regressors to account for head motion: six
realignment parameters, their squares, their derivatives, and their squared
derivatives (total 24). In addition, within-volume motion was estimated
using the absolute difference between odd and even slices, as well as the
variance across slices, and included in the GLM. Within-volume motion
estimates were also used to identify volumes with excessive motion
(more than four times SD), which were modeled separately using addi-
tional volume-specific regressors.

Voxelwise parameter estimates from this GLM reflect the amplitude of
the BOLD signal in response to events of interest (CSs and outcomes).
The BOLD signal is related to the overall level of neural activity evoked by
these events. Individual contrast images for CSs predicting large versus
small rewards (expectation) and large versus small outcomes (outcome)
were computed based on these parameter estimates. The outcome con-
trast included correct responses only as incorrect trials were modeled in
aseparate regressor (no reward). Contrasts were entered into one-sample
t tests across all participants for group analysis. To account for differ-
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and that larger rewards were associated with faster response times in both groups. There was no significant group-by-value interaction. *p << 0.05. n.s., nonsignificant; ct, cents. Error bars indicate

SEM.

ences in head motion, we included absolute head motion as a covariate of
no interest.

We used an inclusive mask of the OFC, defined as the conjunction of
an anatomical OFC mask (Anatomical Automatic Labeling atlas) and a
gray matter (GM) mask (SPM’s tissue probability map, thresholded at
>0.20). Significant clusters were defined using a statistical threshold of
p < 0.05, familywise error (FWE) corrected at the voxel-level. Individual
parameter estimates were extracted from the OFC (cluster defined across
all subjects at p < 0.001, uncorrected) and compared between groups
using an ANOVA with group (ADHD vs TD) and reward value (high vs
low) as factors.

To relate OFC activity to IQ and ADHD symptomatology, we used a
stepwise multiple linear regression analysis. The initial regression model
included age, IQ, number of hyperactive/impulsive and inattentive
symptoms (K-SADS-PL rating of the parental interviews), and T values
for dissocial behavior and aggression (CBCL). For variables included in
the final regression model, Pearson’s correlations coefficients between
the parameter estimates and these variables were computed.

Statistical analysis of structural MRI data. We tested for group differ-
ences in GM volume using VBM (Ashburner and Friston, 2005). The
preprocessing followed the manual of the CAT12 toolbox (http://www.
neuro.uni-jena.de/cat/): each image was automatically normalized into
template space and segmented into GM, white matter, and CSF. The
individual whole-brain volume for each tissue type and total intracranial
volume (TIV) was extracted. After a quality check of the individual im-
ages and a check for homogeneity between the groups, the images were
smoothed with an 8 mm FWHM Gaussian kernel. Finally, the groups
were compared using independent-sample ¢ tests, with TIV as a covariate
to correct for overall differences in brain volume. Furthermore, we per-
formed automatic segmentation of regions of interest based on Ham-
mer’s atlas as provided by CAT12. GM volume in left and right OFC was
compared between groups (independent-sample # test) and related to age
(Pearson’s correlation).

Results

Behavioral results

Participants reported the correct color or orientation with high
accuracy, indicating that they attended to the task (average, 89.33%
correct; one-sample ¢ test against 50% chance, #;5) = 46.54, p <
0.001). A two-way ANOVA with the factors reward value (2¢ vs
10¢) and group (ADHD vs TD) on the percentage of correct
responses revealed an overall inferior performance of the ADHD
group compared to TD participants (F(, 5,y = 12.4, p = 0.001),

but no effect of reward value (F, 5,y = 0.58, p = 0.45) and no
group-by-value interaction (F(, ;,, = 0.02, p = 0.89; Fig. 2A).
Analysis of response times (RTs) showed that ADHD patients
responded slower than TD participants (F(, s,y = 4.13, p =
0.049). However, RTs in both groups were shorter in the high-
value than in the low-value condition (F, 5,y = 5.08, p = 0.03),
with no group-by-value interaction (F(, 5;, = 0.02, p = 0.89),
demonstrating that CS-induced reward expectations had compa-
rable effects on behavioral responses in both groups (Fig. 2B).
Overall, these results suggest that even though ADHD patients
showed unspecific behavioral deficits (possibly related to deficits
in attention or working memory) relative to TD participants, all
participants were able to perform the task, and that the value of
expected rewards had comparable behavioral effects on both
groups. Importantly, the absence of group-by-value interactions
indicates that subsequent analyses of the imaging data are not
confounded by behavioral group differences.

Increased OFC responses to expected rewards in ADHD

In a first step, we tested whether OFC responses differed between
CSs predicting large versus small outcomes across the entire
group of participants. This analysis revealed a significant cluster
in the left OFC (BA1L, x = —16,y = 42,z = —20; t(5,, = 5.79,
Prwe = 0.004; Fig. 3A). Additional bilateral OFC clusters did not
survive correction for multiple comparisons (Table 2 shows re-
sults at p < 0.001, uncorrected). We did not find regions in the
OFC that were more responsive to small compared to large ex-
pected rewards.

We next tested whether OFC responses to expected rewards
differed between groups. A two-way ANOVA on parameter esti-
mates in the left OFC cluster defined above revealed a significant
interaction between reward value and group (F(, 5,y = 5.76, p =
0.022). As illustrated in Figure 3B, OFC responses to large versus
small expected rewards were stronger in the ADHD group, and
there was no significant main effect of group (F, 5,y = 0.01, p =
0.92). We confirmed this finding using non-parametric statistical
tests [Wilcoxon rank-sum, p = 0.0197; permutation (N =
10,000), p = 0.0117]. Note that this analysis is unbiased, such that
the OFC cluster in which responses were compared between
groups was defined independently of group differences (Krieges-
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fMRI responses to reward expectation and outcome. A, Responses in OFC to large versus small expected rewards in adolescents with ADHD and TD peers. B, Parameter estimates

[arbitrary units (a.u.)] for responses to large versus small expected rewards in the left OFC differed between ADHD and TD groups (significant group-by-value interaction). €, Responses in the OFC to
feedback of small versus large monetary outcomes in ADHD and TD participants. D, Parameter estimates for responses to large versus small reward outcomes in the OFC did not differ between ADHD

and TD groups. *p << 0.05. n.s., nonsignificant; ct, cents. Error bars indicate SEM.

Table 2. OFC responses to expectation of large versus small outcomes across all
participants (p < 0.001, k > 10)

k MNI (in mm) t Prwe
Left OFC 40 —16 42 —-20 5.79 0.004
Left OFC 13 —36 38 —14 425 0.168
Right OFC 14 24 43 —=10 461 0.074
Right OFC 18 6 38 —12 419 0.190

korte et al., 2009). Moreover, a model with IQ as a covariate
revealed that group differences in expectation-related activity in
the OFC were influenced by IQ but survived as a trend (¢34, =
1.68, p = 0.10, two-tailed). However, ADHD and lower cognitive
ability, as measured by IQ tests, are genetically codetermined
(Kuntsi et al., 2004), and statistically controlling for IQ when
comparing ADHD with TD peers is therefore not generally ad-
visable (Dennis et al., 2009), as this would remove variance that is
intrinsically related to the disorder. A weakening of the observed
effect was therefore expected. Finally, the effect remained signif-
icant when controlling for household income (t‘(36> 222,p =
0.033), suggesting that potential differences in the subjective
value of the monetary rewards did not account for our results
(Tobler et al., 2007). These results demonstrate that compared
to TD adolescents, adolescents with ADHD show increased OFC
responses to stimuli predicting large versus small rewards and
that this effect is not fully explained by IQ or participants’ finan-
cial background.

No group differences in OFC responses to reward outcomes
In a second step, we examined OFC responses to reward feed-
back. Across all subjects, we found significantly increased activity
in the right lateral OFC (BA11,x = 44,y = 48,z = —14;t5, =
5.23, ppwr = 0.017; Fig. 3C) in response to small compared to
large outcomes.

However, a two-way ANOVA on parameter estimates ex-
tracted from this OFC cluster revealed no significant differences

between groups (main effect of group, F, 5, = 0.77, p = 0.39;
group by outcome value interaction, F, 5,y = 2.33,p = 0.14). We
did not find regions in the OFC that were more responsive to
large compared to small reward outcomes.

Reward-related responses in OFC are related to

ADHD symptoms

Having established altered OFC responses in ADHD participants
compared to TD participants, we next tested whether responses
in the ADHD group were associated with relevant diagnostic pa-
rameters (IQ, age, hyperactivity/impulsivity, inattentiveness, ag-
gressive or dissocial behavior).

Using stepwise linear regression, we found that fMRI responses
to large versus small expected rewards were best explained (R* =
0.573, F; 14y = 9.375, p = 0.003) by a combination of IQ (8 =
—0.423, p = 0.032) and the number of hyperactive/impulsive
symptoms (8 = 0.558, p = 0.007). None of the other variables
including age, inattentiveness, and aggressive and dissocial
behaviors significantly increased the model fit. Subsequent cor-
relation analyses confirmed a negative correlation between the
expectation-related OFC responses and 1Q (r = —0.499, p =
0.03; Fig. 4A) and a positive correlation with the number of hy-
peractive/impulsive symptoms (r = 0.49, p = 0.033; Fig. 4B) in
the ADHD group. These findings suggest that hyperactivity/im-
pulsivity is related to alterations in OFC reward processing,
whereas cognitive capacity is associated with reduced OFC activ-
ity during reward expectation.

In contrast to CS-related responses, a stepwise linear regres-
sion on OFC responses to large versus small reward outcomes
revealed no significant effects of any of the predictors.

Influence of gray matter volume on reward processing

In a final step, we examined whether group differences in reward-
related responses could be explained by differences in GM vol-
ume. Whole-brain and left OFC GM volume were negatively
correlated with age across all participants (whole-brain, r =
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—0.367, p = 0.021; left OFC, r = —0.38, p = 0.017; right OFC,
r = —0.291, p = 0.072). However, there were no significant
group differences between TD and ADHD adolescents in either
whole-brain or OFC GM volumes ( p values >0.34). This suggests
that ongoing structural brain organization affects ADHD and TD
adolescents to a comparable degree. In addition, controlling for
age, OFCresponses to large versus small expected rewards did not
correlate with GM volume in the OFC (left OFC, r = 0.233,p =
0.16; right OFC, r = 0.106, p = 0.53) or the whole brain (r =
0.121, p = 0.47).

Discussion

By signaling the current value of available options, the OFC plays
an essential role in goal-directed behavior and decision making
(Wallis, 2007; Stalnaker et al., 2015). However, its contribution to
maladaptive and impulsive behavior in ADHD has remained
unclear. Here we showed that OFC signaling of future rewards
differs in adolescents with ADHD and TD age-matched peers.
Specifically, we observed stronger responses to large versus small
expected rewards in ADHD patients, suggesting enhanced signal-
ing of expected value in this disorder.

Our findings suggest a potential role of enhanced reward sig-
naling in ADHD pathology. OFC activity was correlated with
ADHD symptoms, such that patients with particularly strong
OFC responses to large versus small rewards displayed higher
levels of hyperactivity/impulsivity. It is tempting to speculate that
OFC activity during reward expectation could translate into po-
tentially maladaptive behaviors by aberrant assignment of value
to expected outcomes or goals. In theory, ascribing high value to
goals could increase the likelihood of approach behavior in chil-
dren with ADHD, such that patients who strongly represent the
value of future rewards might not only display heightened reward
sensitivity but may also experience waiting for rewards as partic-
ularly disturbing (delay aversion) and react with stimulation
seeking as compensation (Sonuga-Barke, 2005). Future studies
that are designed to directly examine impulsive behavior are needed
to further explore this potential mechanism.

Imaging of the OFC is challenging because this area is highly
susceptible to signal drop-out and geometric distortions (Deich-
mann et al., 2003; Weiskopf et al., 2006). These difficulties may
explain why previous models of reward sensitivity in ADHD have
focused primarily on the role of dopaminergic dysfunction and
alterations in the striatum in driving behavioral deficits (for re-
view, see Luman et al., 2010). These models are based on findings

of diminished dopamine availability (Spencer et al., 2005; Fusar-
Poli et al., 2012) and attenuated striatal responses to expected
rewards in ADHD (Scheres et al., 2007; Strohle et al., 2008; van
Hulst et al., 2017). However, reduced responses in dopaminergic
brain regions are difficult to reconcile with the fact that children
with ADHD typically display enhanced behavioral responses to
reward (Plichta and Scheres, 2014). Our data, acquired using an
advanced fMRI sequence, point toward aberrant value signaling
in the OFC as a potential mechanism underlying hyperactivity/
impulsivity in ADHD patients. Diminished striatal responses
combined with enhanced OFC signaling may create a disadvan-
tageous imbalance between neural circuits controlling reward-
related behaviors. Indeed, previous studies indicate that altered
functional connectivity between the ventral striatum and the OFC
may account for changes in reward-related behavior in ADHD (To-
masi and Volkow, 2012; Costa Dias et al., 2013).

Consistent with some (Stoy et al., 2011; Wilbertz et al., 2012)
but not all previous reports in ADHD (Strohle et al., 2008; von
Rhein et al., 2015), we did not find changes in OFC responses to
reward feedback. It is possible that inconsistencies among pre-
vious findings are related to difficulties in imaging the OFC in
humans. It is therefore important to note that our rFOV fMRI
sequence allowed us to measure OFC responses with almost no
spatial distortions. Our findings add to this discussion by sup-
porting the view that responses to reward outcomes are unaltered
in ADHD (Scheres et al., 2007, Tripp and Wickens, 2009).

In addition, CS-evoked OFC responses were not related to
aggressive or antisocial behaviors. Given that none of our patients
fulfilled the diagnostic criteria for CD, this null result might be
due to insufficient variance in our sample. However, it could
also indicate that impulsivity associated with ADHD may rely on
altered OFC encoding of value, whereas impulsivity underlying
CD could rely on overall decreased OFC activity (Rubia et al.,
2009). In line with this, ADHD patients are not impulsive per se,
but rather make impulsive choices when this strategy reduces
experienced delays (Sonuga-Barke et al., 1992).

Our results suggest a normalizing effect of intellectual ability
on aberrant OFC responses in ADHD. This adds to previous
studies reporting that differences in OFC activity between pa-
tients and TD peers were no longer evident when controlling for
IQ (Rubia et al., 2009; Stoy et al., 2011). However, IQ values, as a
product of multiple influences, should be considered as indices of
global functioning (Dennis et al., 2009), and the correlation be-
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tween OFC encoding of value and IQ suggests that specific neural
processes may relate to global functioning in ADHD. Alterna-
tively, working memory could be the common modulating factor
between 1Q and OFC encoding, as IQ and working memory are
highly correlated constructs (Colom et al., 2004; Ackerman et al.,
2005), and OFC has been linked to working memory for reward
information (Miller and Cohen, 2001; Wallis, 2007).

Importantly, our results cannot be explained by differences in
prefrontal development. VBM analyses confirmed that GM vol-
ume was comparable between ADHD and TD participants, rul-
ing out an effect of potential delays in brain maturation in this
ADHD sample (Shaw et al., 2007).

In conclusion, our study provides insights into how the OFC
may contribute to altered reward-related behavior in adolescent
ADHD. We show that enhanced OFC encoding of reward is as-
sociated with symptoms of hyperactivity/impulsivity. Our find-
ings thus challenge the idea that dysfunctions in dopaminergic
brain areas are the sole contributor to reward-related behavioral
symptoms and suggest that aberrant activity in goal-directed
control circuits may lie at the core of hyperactive/impulsive
symptoms in ADHD.
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