
A Fast Approximate Algorithm for Mapping Long

Reads to Large Reference Databases

CHIRAG JAIN,1,2 ALEXANDER DILTHEY,2 SERGEY KOREN,2

SRINIVAS ALURU,1 and ADAM M. PHILLIPPY2

ABSTRACT

Emerging single-molecule sequencing technologies from Pacific Biosciences and Oxford
Nanopore have revived interest in long-read mapping algorithms. Alignment-based seed-
and-extend methods demonstrate good accuracy, but face limited scalability, while faster
alignment-free methods typically trade decreased precision for efficiency. In this article, we
combine a fast approximate read mapping algorithm based on minimizers with a novel
MinHash identity estimation technique to achieve both scalability and precision. In con-
trast to prior methods, we develop a mathematical framework that defines the types of
mapping targets we uncover, establish probabilistic estimates of p-value and sensitivity,
and demonstrate tolerance for alignment error rates up to 20%. With this framework, our
algorithm automatically adapts to different minimum length and identity requirements
and provides both positional and identity estimates for each mapping reported. For
mapping human PacBio reads to the hg38 reference, our method is 290 · faster than
Burrows–Wheeler Aligner-MEM with a lower memory footprint and recall rate of 96%.
We further demonstrate the scalability of our method by mapping noisy PacBio reads
(each ‡5 kbp in length) to the complete NCBI RefSeq database containing 838 Gbp of
sequence and >60,000 genomes.

Keywords: Jaccard, long-read mapping, MinHash, minimizers, sketching, winnowing.

1. INTRODUCTION

Mapping reads generated by high-throughput DNA sequencers to reference genomes is a funda-

mental and widely studied problem (Li and Homer, 2010; Ruffalo et al., 2011). The problem is

particularly well studied for short read sequences, for which effective mapping algorithms and widely used

software such as Burrows–Wheeler Aligner (BWA; Li and Durbin, 2009) and Bowtie (Langmead and

Salzberg, 2012) have been developed. The increasing popularity of single-molecule sequencers from Pacific

Biosciences and Oxford Nanopore, and their continually improving read lengths (10 kbp and up), is gener-

ating renewed interest in long-read mapping algorithms. However, the benefit of long-read lengths is cur-

rently accompanied by much higher error rates (up to 15%–20%). Despite their high error rates, long reads

1School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia.
2National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 25, Number 7, 2018

Mary Ann Liebert, Inc.

Pp. 766–779

DOI: 10.1089/cmb.2018.0036

766

have proved advantageous in many applications, including de novo genome assembly (Chin et al., 2013;

Koren et al., 2013) and real-time pathogen identification (Ashton et al., 2015; Quick et al., 2016).

Sequence data from nanopore devices are available just minutes after introducing the sample. This can

enable real-time genomic analysis when coupled with fast computational methods that can map the data

stream against large reference databases. However, mapping raw sequences continues to be a bottleneck for

many applications. The problem is only going to worsen as Oxford Nanopore’s PromethION is projected to

generate multiple terabases of sequence per day. In parallel, reference databases are continually growing in

size, with the nonredundant NCBI RefSeq database close to exceeding a terabase in size. The high error

rate of raw single-molecule sequences further adds to the computational complexity.

Read mapping problems can be solved exactly by designing appropriate variants of the Smith–Waterman

(SW) alignment algorithm (Smith and Waterman, 1981); however, it is computationally prohibitive when

mapping reads from a high-throughput sequencer to large reference genomes. Seed-and-extend mapping

heuristics address this limitation for both long and short reads by limiting the search to locations, where

exact short word or maximal common substring matches occur before executing an alignment algorithm at

these locations (Altschul et al., 1997; Delcher et al., 2002; Chaisson and Tesler, 2012). Accurate alignment-

based long-read mappers include basic local alignment with successive refinement (BLASR; Chaisson and

Tesler, 2012) and BWA-MEM (Li, 2013). However, repetitive seeds that do not translate to correct

mappings combined with high sequencing error rates limit their scalability. Additionally, alignment-based

mapping algorithms preserve the complete reference sequence in the index, and hence, cannot scale to

terabase scale reference databases. Many genomics applications do not require detailed base-to-base

alignment information, and instead use only the alignment boundary and identity summaries. Such ap-

plications include depth-of-coverage analysis, metagenomic read assignment, structural variant detection,

and selective sequencing (Loose et al., 2016). Efficient algorithms for these problems, combined with

nanopore sequencing, could enable the real-time genomic analysis of patients, pathogens, cancers, and

microbiomes.

One class of algorithms for fast, approximate mapping relies on ideas originally developed for finding

similarities between web documents. Broder (1997) proved that an unbiased estimate of the Jaccard

similarity coefficient between two sets can be computed efficiently using a subset of hashed elements called

a sketch. Schleimer et al. (2003) proposed the winnowing algorithm, which picks a minimum hashed item

(also known as a minimizer; Roberts et al., 2004) from each consecutive window of text as a means to more

quickly estimate local similarity between web documents. These ideas have been used to develop new

mapping and assembly algorithms for long reads, such as the MinHash Alignment Process (Berlin et al.,

2015), minimap (Li, 2016), and BALAUR (Popic and Batzoglou, 2016). To date, the effectiveness of these

approaches has only been demonstrated empirically.

In this article, we propose a fast approximate algorithm for mapping long reads that scales to large

reference databases with sufficient theoretical guarantees and practical validation on the quality of results

reported. We propose a problem formulation that mathematically characterizes desired mapping targets by

linking the Jaccard coefficient between the k-mer spectra of the read and its mapping region to a sequence

error rate assuming a Poisson error model. We then provide an efficient algorithm to estimate the Jaccard

coefficient through a combination of MinHash and winnowing techniques that characterizes and guarantees

the types of mapping regions we find. On the quality side, we provide probabilistic bounds on sensitivity.

We present techniques for choosing algorithmic parameters as a function of error rate and sequence lengths

that guarantees the desired statistical significance. The theory is validated using PacBio and MinION

datasets, and we demonstrate the scalability of our approach by mapping PacBio metagenomic reads to the

entire RefSeq database. The speed and space efficiency of our algorithm enables real-time mapping, and

compared with minimap, our method maintains high sensitivity with better precision for large, repetitive

genomes. The implementation is available at github.com/MarBL/MashMap (v1.0).

2. PRELIMINARIES

2.1. Read error model

We assume errors occur independently at the read positions, and use a Poisson error model as in previous

works (Fan et al., 2015; Ondov et al., 2016). A binomial model would also be appropriate, but is not

discussed in this study for brevity. Let � 2 [0‚ 1] be the per-base error rate. The expected number of errors

ALGORITHM FOR MAPPING LONG READS 767

in a k-mer is k � �, and the probability of no errors within each k-mer, assumed independent, is e - �k. We

assume the statement is valid irrespective of error type.

2.2. Jaccard similarity

Assuming X ‚Y are the sets of k-mers in sequences X and Y, respectively, their Jaccard similarity is

defined as J(X‚ Y) = jX \ Yj=jX [Yj. The Poisson error model is used to compute the relationship between

Jaccard similarity and alignment error rate (Ondov et al., 2016). We approximate the length of a read

alignment to be the read length. Let A be a read derived from Bi, where Bi denotes the length jAj substring of

reference B starting at position i. If c and n denote the number of error-free and total k-mers in A, respectively,

then the expected value of c/n, termed k-mer survival probability, is e - �k. This equation assumes k is large

enough such that k-mers in A or Bi are unique, because jAj = jBij, J(A‚ Bi), abbreviated as J, equals c=(2n - c).

Using the two equations, we derive the following functions G and F to estimate J and �:

G(�‚ k) =
1

2e�k - 1
and F (J‚ k) =

- 1

k
· log

2J

1 + J

� �
‚ (1)

where G(�‚ k) serves as an estimate of the Jaccard similarity given an error rate and F (J‚ k) estimates the

converse. F (J‚ k) can be shown as the maximum likelihood estimator (MLE) for error rate (proof in

Section 10). Note E(J) � G(�‚ k) (using Jensen’s inequality).

2.3. MinHash approximation

The MinHash algorithm is a fast and space-efficient approximation technique to compute an unbiased

estimate of Jaccard similarity (Broder, 1997), without explicitly computing the underlying set inter-

section and union. Let s be a fixed parameter. Assuming universe U is the totally ordered set of all

possible items, and O : U ! U is a permutation chosen uniformly at random, Broder (1997) proved that

P(min
x2A

O(x) = min
x2Bi

O(x)) = J(A‚ Bi), and that

jS(A [Bi) \ S(A) \ S(Bi)j = jS(A [Bi)j (2)

is an unbiased estimate of J(A‚ Bi), where S(A) (called the sketch of A) is the set of the smallest s hashed

items in A, that is, S(A) = minsfO(x) : x 2 Ag. Typically, the denominator jS(A [Bi)j is referred as the

MinHash sketch size and the numerator as the count of shared sketch elements. This estimate is unbiased

provided S(A) is a simple random sample of A. Increasing the sketch size improves the accuracy of the

estimate.

Assuming s is fixed and the true Jaccard similarity j = J(A‚ Bi) is known, the count of shared sketch

elements between S(A) and S(Bi) follows a hypergeometric distribution. Since s is much smaller than jAj, it

can be approximated by the binomial distribution.

p(jS(A [Bi) \ S(A) \ S(Bi)j = xjs‚ j) = s

x

� �
jx(1 - j)s - x (3)

As an example, Figure 1 illustrates this distribution for a read with known Jaccard similarity

j =G(� = 0:15‚ k = 16) (using Eq. 1) and sketch size s varying from 200 to 500.

FIG. 1. Probability distributions of count of

shared sketch elements for a read with 15%

alignment error (� = 0:15) and k-mer size of 16,

with varying sketch sizes. Estimated Jaccard

similarity computed using Equation (1) is 0:0475.

768 JAIN ET AL.

2.4. Winnowing

Winnowing is a local fingerprinting algorithm, proposed to measure similarity between documents by

using a subset of hashed words (Schleimer et al., 2003). Unlike MinHash sketching, it bounds the maxi-

mum positional gap between any two consecutive selected hashes. It works by sampling the smallest

hashed item in every consecutive fixed size sliding window (Fig. 2). Formal description of this algorithm in

the context of genomic sequences follows.

Let A0 denote the set of all k-mer tuples Æki‚ iæ in sequence A, i denoting the k-mer position. Let w be the

window size used for winnowing, and Kj be the set of w consecutive k-mer tuples starting at position j in A,

that is, Kj = fÆki‚ iæ : j � i < j + wg. Assume O is a hash function defined as a random permutation. Then,

the set of minimizers sampled by the winnowing algorithm in sequence A is W(A) = f min
Æk‚ iæ2Kj

ÆO(k)‚ iæ :
0 � j � jA0j - wg, where

min (Æk1‚ i1æ‚ Æk2‚ i2æ) = Æk1‚ i1æ k1 < k2 or (k1 = k2 and i1 > i2);
Æk2‚ i2æ otherwise;

�

Schleimer et al. (2003) prove that the expected set count of minimizers selected from a random sequence

A is 2jA0j=w. Moreover, W(A) can be computed efficiently in O(jAj) time and O(w) space using a double-

ended queue, as sequence A is read in a streaming fashion (Smith, 2016).

3. PROBLEM FORMULATION

Given a read A and the maximum per-base error rate �max, our goal is to identify target positions in reference

B, where A aligns with � �max per-base error rate. This problem can be exactly solved in O(jAj � jBj) time by

designing a suitable quadratic time alignment algorithm. When mapping to a large database of reference

sequences, solving this problem exactly is computationally prohibitive. Hence, we define an approximate version

of this problem using the Jaccard coefficient as a proxy for the alignment as follows: Let Bi denote the substring of

size jAj in B starting at position i (0 � i � jBj - jAj). For a given k, we seek all mapping positions i in B such that

J(A‚ Bi) � G(�max‚ k) - d (4)

Note that if A aligns with Bi with per-base error rate � �max, then E(J(A‚ Bi)) � G(�max‚ k) (using Eq. 1).

As this equation applies only to the expected value of J(A‚ Bi), we lower this threshold by d to account for

variation in the estimate. The parameter d is defined as the margin of error in Jaccard estimation using a

90% confidence interval.

4. THE PROPOSED ALGORITHM

Directly computing J(A‚ Bi) for all positions i is as asymptotically expensive as the alignment algorithm.

The rationale for reformulating the problem in terms of Jaccard coefficients is that it enables the design of

fast heuristic algorithms. We present an algorithm to estimate J(A‚ Bi) efficiently using a combination of

MinHash and winnowing techniques. In addition, we compute an estimate of the alignment error rate � for

each mapping reported. Our method relies on an indexing and search strategy we developed to prune the

incorrect mapping positions efficiently.

FIG. 2. Illustration of the winnowing method on

a sequence of hashed k-mers in A. W(A) represents

the minimizers sampled from the sequence with

window size w = 5.

ALGORITHM FOR MAPPING LONG READS 769

4.1. Definitions

Let W(A) be the set of minimizers computed for read A using the winnowing method with window size w. We

sketch W(A) instead of sketching A itself. Assuming s is a fixed parameter, we define S(W(A)) as the set of the s

smallest hashed k-mers that were sampled using winnowing of A, that is, S(W(A)) = minsfh : Æh‚ posæ 2 W(A)g.
To estimate J(A‚ Bi), we define winnowed-minhash estimate J (A‚ Bi) for J(A‚ Bi) as

J (A‚ Bi) =
jS(W(A) [W(Bi)) \ S(W(A)) \ S(W(Bi))j

jS(W(A) [W(Bi))j
(5)

In contrast to the MinHash approximation (Eq. 2), our estimator J (A‚ Bi) uses winnowing to reduce the

sampling frame before picking the minimum hash values. Even though S(W(A)) is no longer a simple

random sample of the k-mers in A, we empirically show in Section 8.1 that the quality of the Jaccard

estimation using J (A‚ Bi) is as good as the MinHash estimation. We use Wh(A) to denote the set of hashed

k-mers in W(A), that is, Wh(A) = fh : Æh‚ posæ 2 W(A)g.

4.2. Indexing the reference

Retaining the minimizers W(Bi) is sufficient for Jaccard similarity estimation J (A‚ Bi) (Eq. 5). Since

W(Bi) � W(B) (Section 2), we compute W(B) from the reference sequence B to be able to extract W(Bi)

efficiently for any i. The set W(B) can be computed from B in a linear scan in O(jBj) time. We store W(B) as

an arrayM of tuples Æh‚ posæ. When created, the set is naturally in ascending sorted order of the positions.

Furthermore, to enable O(1) look-up of all the occurrences of a particular minimizer’s hashed value h, we

also replicate W(B) as a hash tableH with h as the key and an array of its positions fpos : Æh‚ posæ 2 W(B)g
as the mapped value. The expected space requirements forM and H are 2jBj=w (Section 2). We postpone

our discussion on how to compute an appropriate window size w to Section 5. Besides low memory

requirements, a key advantage of this indexing strategy is that a new reference sequence can be incre-

mentally added to the existing data structure in time linear to its length, which is not feasible for suffix array

or Burrows–Wheeler transform-based indices, typically used in most mapping software.

4.3. Searching the reference

The goal of the search phase is to identify for each read A, positions i such that J(A‚ Bi) � G(�max‚ k) - d.

We instead compute the winnowed-minhash estimate J (A‚ Bi). Let s =G(�max‚ k) - d. To avoid directly

evaluating J (A‚ Bi) for each Bi, we state and prove the following Theorem 1:

Theorem 1. Assuming sketch size s � jWh(A)j,
J (A‚ Bi) � s 0 jWh(A) \Wh(Bi)j � s � s 8i 0 � i � jBj - jAj:

Proof. s � jWh(A)j 0 jS(W(A) [W(Bi))j = s (6)

From Equation (5),

J (A‚ Bi) � s 0
jS(W(A) [W(Bi)) \ S(W(A)) \ S(W(Bi))j

jS(W(A) [W(Bi))j
� s

0
jS(W(A) [W(Bi)) \ S(W(A)) \ S(W(Bi))j

s
� s (using Eq. 6)

Note that S(W(A) [W(Bi)) � S(W(A)) [S(W(Bi)): Therefore,
j(S(W(A)) [S(W(Bi))) \ S(W(A)) \ S(W(Bi))j

s
� s

0 jS(W(A)) \ S(W(Bi))j � s � s
But, S(W(A)) � Wh(A) and S(W(Bi)) � Wh(Bi)

Therefore, jWh(A) \Wh(Bi)j � s � s -

We use the above condition as a filter and only consider positions in B which satisfy jWh(A) \Wh(Bi)j
� s � s. To maximize effectiveness of the filter, we set the sketch size s = jWh(A)j. The search proceeds in

two successive stages. The first stage identifies candidate positions i using Theorem 1, and the second stage

computes J (A‚ Bi) at each candidate position i. The position is retained as output if J (A‚ Bi) � s, and

discarded otherwise.

770 JAIN ET AL.

Stage 1: Algorithm 1 outlines the first stage of our mapping procedure. It calculates all offset positions i

in B such that jWh(A) \Wh(Bi)j � Øs � sø = m. The output list T is created in the form of one or more tuple

ranges Æx‚ yæ, implying that the criterion holds true for all Bi, x � i � y. We begin by computing the

minimizer hashed values Wh(A) by winnowing the read A, and compute the positions of their occurrence in

the reference (line 4). Accordingly, L = fpos : h 2 Wh(A) ^ Æh‚ posæ 2 W(B)g. Next, we sort the array L to

process all the positions in ascending order. If Bi satisfies the filtering criterion, there should be at least m

entries in L with values between [i‚ i + jAj). It also implies that m consecutive entries should exist in L with

positional difference between the first and mth entry being < jAj. This criterion is efficiently evaluated for

all Bi using a linear scan on L (lines 6–9). If satisfied, we push the associated candidate range into T. To

avoid reporting Bi more than once, we merge two consecutive overlapping tuple ranges into one.

Algorithm 1: Stage 1 of mapping read

Input: read A, reference index map H (hash k-mer ! pos[]), s, s
Output: list T of candidate regions in the reference

1 m = Øs � sø
2 T = L = []

3 for e 2 Wh(A) do

4 L.append(H(e))

5 sort (L)

6 for i)0 to jLj - m do

7 j) i + (m - 1)

8 if (L[j] - L[i]) < jAj then

9 T.append(ÆL[j] - jAj + 1‚ L[i]æ)

Algorithm 2: Stage 2 of mapping read

Input: index M, Stage 1 output T, s‚ s
Output: P

1 L0 =L = fg‚ L0 .insert (Wh(A))

2 for Æx‚ yæ 2 T do

3 i)x, j)x + jAj‚L)L0

4 L .insert (getMinimizers(i‚ j))

5 if J = solveJaccard (L) � s
then

6 P: append Æi‚J æ
7 while i � y do

8 L .delete (getMinimizers(i‚ i + 1))

9 L .insert (getMinimizers(j‚ j + 1))

10 if J = solveJaccard (L) � s then

11 P: append Æi‚J æ
12 i)i + 1‚ j)j + 1

13 Function getMinimizers (p, q) return

fh : Æh‚ posæ 2 W(B)‚ p � pos < qg
14 Function solveJaccard Lð Þ

shared sketch =
Ps - 1

k = 0 L[k]

15 return J = shared sketch=s

Stage 2: Evaluation of each tuple Æx‚ yæ in the Stage 1 output array T requires computing J (A‚ Bi) 8i‚ x

� i � y. Accordingly, we compute the minimum s unique sketch elements within Wh(A) [Wh(Bi), and

count the ones shared between A and Bi. We show the step-by-step procedure in Algorithm 2. We use L to

contain the minimizer hashed values fh 2 Wh(A) [Wh(Bi)g. To implement L, we make use of the C++
ordered map data structure that supports logarithmic time insertion, deletion, and linear time iteration over

unique ordered keys. We keep the hashed value as the map’s key, and map it to 1 if it appears in both the

reference and the read, and 0 otherwise. For each tuple Æx‚ yæ, we begin by saving the hashed values Wh(A)

in read A into map L (lines 1 and 3). Two loops (lines 2 and 7) evaluate each tuple Æx‚ yæ in T, and consider

ALGORITHM FOR MAPPING LONG READS 771

each Bi‚ x � i � y for Jaccard estimation J (A‚ Bi). The function getMinimizers gathers the reference

minimizer hashes Wh(Bi) by sequentially iterating over M in the required position range and popu-

lating the minimizers associated with each Bi into the map L (lines 4, 8–9).

Note that a few incorrect corner minimizers fh : Æh‚ posæ 2 W(B)‚ i � pos � i + jAjgnWh(Bi) can appear

in L that were winnowed from windows overlapping with Bi. However, these can be discarded by re-

computing the minimum of the first and last window of Bi. Finally, function solveJaccard computes

jS(W(A)[W(Bi)) \ S(W(A)) \ S(W(Bi))j by iterating over s minimum unique sketch elements and counting

the ones shared between A and Bi. If J (A‚ Bi) � s, then the position i and Jaccard estimate J (A‚ Bi) are

saved into the output P as pair Æi‚J (A‚ Bi)æ. The corresponding estimate of the alignment error rate � in this

case, computed using Equation (1), would be F (J (A‚ Bi)‚ k).

5. SELECTING WINDOW AND SKETCH SIZES

The sketch size for Jaccard similarity estimation is inversely proportional to the window size w (Section

4.3). A larger window size improves the runtime and space requirement during the search, but also

negatively affects the statistical significance and accuracy of our estimate. To achieve the right balance, we

analyze the p-value of a mapping location being reported under the null hypothesis that both query and

reference sequences are random. For the subsequent analysis, we will assume the sketch size is s, the count

of shared sketch elements is a discrete random variable Z, the k-mer size is k, the alphabet set is S, and the

read and reference sequence sizes are q and r, respectively.

Location i is reported if J (A‚ Bi) � s, that is, at least Øs � sø sketch elements are shared. Following Ondov

et al. (2016), consider two random sequences of length q with k-mer sets X and Y, respectively. The

probability of a random k-mer a appearing in X or Y, assuming q@k‚ is P(a 2 X) = P(a 2 Y) =
1 - (1 - jSj - k

)q. Therefore, the expected Jaccard similarity Jnull = J(X‚ Y) is given by

Jnull =
P(a 2 X \ Y)

P(a 2 X [Y)
=

P(a 2 X) � P(a 2 Y)

P(a 2 X) + P(a 2 Y) - P(a 2 X) � P(a 2 Y)

For sketch size s, the probability that x or more sketch elements are shared is P(Z � xjJnull‚ s) =Ps
j = x

s

j

� �
(Jnull)

j(1 - Jnull)
s - j: Using this equation, we compute the probability of a random sequence of length

q mapping to at least one substring in a random reference sequence of size r@q as 1 - (1 - P(Z � xjJnull‚ s))r.

For a minimum read length l0 and x = Øs � sø, we wish to ensure that this probability is kept below a user-

specified threshold pmax. As reported mapping locations i must satisfy J (A‚ Bi) � s and q � l0, a mapping

with J (A‚ Bi) = s‚ q = l0, in general, will have the highest probability of generating a random match.

Therefore, we compute the maximum value of w that satisfies the pmax constraint for this instance. Sketch

size s is set to jWh(A)j, which from Section 4.3 is expected to be q � 2=w. Since x, s, and w have a circular

dependency, we iteratively solve for w, starting from the maximum value l0, until the probability of a

random mapping is � pmax. Influence of different parameters on window size is shown in Figure 3. The

window size w increases with increasing pmax or l0, but has an inverse relationship with �max. These plots

also highlight that as read length and error rate improve, our algorithm automatically adapts to a larger

window size, greatly improving efficiency.

FIG. 3. Illustration of how w varies with pmax, �max, and l0, respectively. The default values are set as l0 = 5000,

�max = 0:15, pmax = 0:001, k = 16, and r = 109. Steps appear in the first two curves because Z is a discrete variable.

772 JAIN ET AL.

6. PROOF OF SENSITIVITY

We analyze the sensitivity exhibited by our algorithm in identifying correct mapping locations as a

function of the read alignment error rate. Let i be a correct mapping location for read A. If �true is the true

error rate in aligning A with Bi, then Jtrue � G(�true‚ k). Our algorithm reports this mapping location if the

Jaccard estimate J (A‚ Bi) � s, that is, the count of shared sketch elements Z � s � s. The associated

probability is given by P(Z � s � sj Jtrue‚ s) �
Ps

j = Øs�sø
s

j

� �
(Jtrue)j(1 - Jtrue)s - j. We report the corresponding

values in Table 1 while varying �max and �true from 0.04 to 0.20 error rate, for two sketch sizes s = 200 and

500, respectively. In an ideal scenario, a mapping should be reported only if �true � �max, that is, a perfect

algorithm would have ‘‘1’’ in each of the entries at or above the diagonal, and ‘‘0’’ in all other positions. From

the table, it is evident our algorithm achieves close to ideal sensitivity for alignment error rates up to 20%.

7. OTHER IMPLEMENTATION DETAILS

7.1. Optimizing for variable read lengths

In contrast to cyclic short-read sequencing, single-molecule technologies can generate highly variable

read lengths (e.g., 102–105 bases). Previously, we discussed how the window size w is determined using the

minimum read length l0 in Section 5. From Figure 3c, notice that we can further reduce the sampling rate

(i.e., use a larger window size) for reads longer than l0 while still satisfying the p-value constraint.

However, to realize this, the sampling scheme for indexing the reference sequence B needs to be consistent

with that of query. We propose the idea of multilevel winnowing to further optimize the runtime of our

algorithm by choosing custom window size for each input read. Suppose Ww(B) denotes the set of win-

nowed fingerprints in the reference computed using window size w, then W2w(B) � Ww(B) (Schleimer

et al., 2003). We exploit this property to construct a multilevel reference index with multiple window sizes

fw‚ 2w‚ 4w . . .g recursively. This optimization yields us faster mapping time per base pair for reads longer

than l0 as we independently compute the window size for a given read length l � l0, and round it to the

closest smaller reference window size fw‚ 2w‚ 4w . . .g. The expected time and space complexity to index

the reference using multiple levels is unaffected because the expected size of W2x + 1w(B) is half of W2xw(B)

and W2x + 1w(B) can be determined in linear time from W2xw(B).

Table 1. Probability of a Mapping Location Being Reported

by Our Algorithm for Different Values of �true and �max

�true

�max

0.04 0.08 0.12 0.16 0.20

0.04 0.951 1 1 1 1

0.08 0 0.937 1 1 1

0.12 0 0.016 0.925 1 1

0.16 0 0 0.184 0.907 0.997

0.20 0 0 0.003 0.403 0.922

0.04 0.08 0.12 0.16 0.20

0.04 0.939 1 1 1 1

0.08 0 0.949 1 1 1

0.12 0 0 0.937 1 1

0.16 0 0 0.013 0.904 1

0.20 0 0 0 0.104 0.896

True mapping locations correspond to �true � �max, that is, entries at or above

the diagonal in the tables. Sketch sizes are set to 200 and 500 for the top and

bottom tables, respectively. The k-mer size k is set to 16.

ALGORITHM FOR MAPPING LONG READS 773

7.2. Strand prediction

To account for the reads sequenced from the reverse strand relative to the reference genome, we compute

and store only canonical k-mers, that is, the lexicographically smaller of the forward and reverse-

complemented k-mer. For each k-mer tuple Æk‚ iæ in W(A) and W(B), we append a strand bit 1 if the forward

k-mer is lexicographically smaller and -1 otherwise. While evaluating the read mappings in Stage 2, we

compute the mapping strand of the read through a consensus vote among the shared sketches using sum of

pairwise products of the strand bits.

8. EXPERIMENTAL RESULTS

8.1. Quality of Jaccard estimation

We first show that the accuracy of the winnowed-minhash estimator J to estimate the Jaccard similarity is

as good as the direct MinHash approximation, which is an unbiased statistical estimator. We construct a

random sequence of length 5 kbp with each character having equal probability of being either A, C, G or T.

We generate reads while introducing substitution errors at each position with probability 0.15. Note that both

substitutions and indels have a similar effect of altering the k-mers containing them, and a uniform distri-

bution of errors alters more k-mers than a clustering of errors. Figure 4 shows the estimation difference

against the true Jaccard similarity using MinHash and our estimator for two different sketch sizes s = 100 and

s = 200. Based on these results, we conclude that the bias in our estimation is practically negligible as the

mean error by our method in estimating Jaccard similarity is <0.003 for both sketch sizes. Similar to MinHash

approximation, we note that the magnitude of estimation error reduces with increasing sketch size.

8.2. Mapping MinION and PacBio reads

We refer the C++ implementation of our algorithm as mashmap and compare its run-time performance

and memory usage against alignment-based long-read mappers BWA-MEM (v0.7.15-r114; Li, 2013),

BLASR (vSMRTportal 2.3.0; Chaisson and Tesler, 2012), and minimap (v0.2; Li, 2016). We also perform

a comparison of the approximate mapping targets generated by mashmap and minimap. Like mashmap,

minimap uses winnowing to index the reference, but does not use the MinHash approximation to estimate

Jaccard similarity or nucleotide identity. Instead, minimap seeks clusters of minimizer matches to identify

regions of local similarity. Importantly, minimap approximates a local alignment process, which is useful

for split-read mapping. However, because mashmap is currently designed to find complete read mappings,

we only consider this case for the following comparisons.

8.2.1. Datasets and methodology. We evaluated the algorithms by mapping long-read datasets

generated using single-molecule sequencers from Pacific Biosciences and Oxford Nanopore, and report

single-threaded execution timings on an AMD Opteron 2376 CPU with 64 GB RAM. We use two datasets,

labeled N1 and P1, respectively, both containing reads of length � 5 kbp. Dataset N1 is a random sample of

30,000 reads from the MinION (R9/1D) sequencing dataset of the Escherichia coli K12 genome (Loman,

FIG. 4. Jaccard similarity estimation using MinHash and winnowed-minhash estimator J (A, Bi) over simulated reads,

with sketch sizes s = 100 and s = 200. Red bar indicates the average estimation difference over all reads.

774 JAIN ET AL.

2016). Dataset P1 contains 18,000 reads generated through a single SMRT (single molecule real-time) cell

from PacBio’s (P6/C4) sequencing of the CHM1 human genome (Chaisson et al., 2015). We map N1 to E. coli

K12 (4.6 Mbp) and P1 to the human reference (3.2 Gbp). For mashmap, we use the following parameters:

l0 = 5000, �max = 0:15, and pmax = 0:001. When a read maps to multiple locations, mashmap only reports

locations where mapping error rate is no >1% above the minimum of error rate over all such locations.

8.2.2. Run-time performance. Run-times for the index building and mapping stages, and memory

used, for the four methods are compared in Table 2. As both BWA-MEM and BLASR are alignment-based

methods, we expect their run-times to be significantly higher. Indeed, they take several hours in comparison to

seconds (N1) or a few minutes (P1) taken by mashmap and minimap. The principal challenge is whether the

latter methods can retain the quality obtainable through alignment-based methods. We note that mashmap has

the lowest memory footprint for both datasets, and its run-time compares favorably with minimap. The ability

to compute the sampling rate at run-time gives mashmap its edge in terms of memory usage.

8.2.3. Quality of mapping. As there is no standard benchmark using real datasets, we assess sensi-

tivity/recall using BWA-MEM’s starting read mapping positions, and precision by computing SW alignments

of the reported mappings (Table 3). Since both minimap and BWA-MEM also report split-read alignments, we

post-filter their results to only keep alignments with ‡80% read coverage. Recall is measured against BWA-

MEM alignments which satisfy the �max = 0:15 cutoff (‡80% identity). Because both minimap and mashmap

estimate mapping positions, the reported mapping is assumed equivalent to BWA-MEM if the predicted

starting position of a read is within –50% of its length. Precision was directly validated using SW alignment

(with scoring matrix: match = 1, mismatch = - 1, gapopen = - 2, gapextend = - 1). For minimap’s and our re-

sults, we allow SW-identity ‡75% and query coverage ‡80%. Results in Table 3 show that both mashmap and

minimap have close to ideal sensitivity/recall, demonstrating their ability to uncover the right target locations.

Mashmap also achieves high precision, avoiding false positives on the repetitive human genome.

Minimap’s low precision on human is largely driven by false-positive mappings to repetitive sequence,

which could potentially be resolved with alternative clustering parameters. Mashmap false positives are

dominated by reported mappings with a SW query coverage <80% of the read length. It may be possible to

avoid such mappings by considering the positional distribution of shared sketch elements during the

second-stage filter, or by adopting a local alignment reporting strategy like minimap.

We compare our identity estimates (1–e) · 100 against the SW alignment identities in Figure 5. For the

PacBio reads, we observe that most of the points are aligned close to y = x. However, for the nanopore

Table 2. Run-time and Memory Usage Comparison of Mashmap Against Minimap, Burrows–Wheeler

Aligner-MEM and Basic Local Alignment with Successive Refinement for N1, P1 Datasets

Method

N1 (MinION-K12) P1 (Pacbio-CHM1)

Index Map

Memory

(MB) Index Map

Memory

(GB)

Mashmap 0.5 seconds 54 seconds 17 5 minutes 52 seconds 1 minutes 24 seconds 3.7

Minimap 0.7 seconds 37 seconds 232 3 minutes 7 seconds 1 minute 56 seconds 6.8

BWA-MEM 2.6 seconds 5 hours 39 minutes 72 1 hours 19 minutes 6 hours 46 minutes 5.5

BLASR 1.3 seconds 10 hours 17 minutes 697 40 minutes 36 seconds 20 hours 40 minutes 17.6

BWA-MEM was executed with long-read mapping parameters-x pacbio/ont2d.

BWA, Burrows–Wheeler Aligner.

The best results are highlighted in bold.

Table 3. Precision and Recall Statistics of Mashmap

and Minimap Using Datasets N1 and P1

ID

Recall statistics Precision statistics

Mashmap Minimap No. of BWA mappings Mashmap Minimap

N1 100% 99.87% 10,823 94.39% 94.32%

P1 96.8% 98.7% 10,115 84.59% 30.34%

The best results are highlighted in bold.

ALGORITHM FOR MAPPING LONG READS 775

reads, our approach overestimates the identity. This is because PacBio sequencing produces mostly random

errors, whereas current nanopore errors are more clustered and systematic (Laehnemann et al., 2016).

8.2.4. Performance gain from future improvements in long-read sequencing technologies. We

discussed how mashmap adjusts its k-mer sampling rate for estimating the Jaccard similarity based on the

provided error rate (�max) and minimum length (l0) cutoffs in Section 5. In this study, we show that

improvement in read lengths and sequencing error rate can boost the performance of mashmap without

affecting its output accuracy. For dataset P1, memory usage by mashmap drops significantly with de-

creasing per-base error rate threshold �max from 0.20 to 0.10 (Fig. 6a), or increasing minimum length

threshold l0 from 5 kbp to 30 kbp (Fig. 6b). Note that the reduced k-mer sampling rate from reference and

query sequences would also translate to faster mapping time. All this is achieved while maintaining high

recall scores (>90%) against the BWA-MEM mappings that satisfy the input thresholds (Fig. 6c, d).

8.3. Mapping to RefSeq

We perform mapping of a publicly available PacBio read set consisting of 127,565 reads (each ‡5 kbp)

sequenced from a mock microbial community containing 20 strains (Pacific Biosciences, 2014). To

demonstrate the scalability of our algorithm, we map these reads against the complete NCBI RefSeq

database (838 Gbp) containing sequences from 60,892 organisms. This experiment was executed using

default parameters (l0 = 5000‚ �max = 0:15‚ pmax = 0:001) on an Intel Xeon CPU E7-8837 with 1 TB memory.

BWA-MEM and minimap could not index the entire RefSeq database at once with this memory limitation.

Mashmap took 29 CPU hours to index the reference and 16 CPU hours for mapping, with a peak memory

usage of 660 GB. Note that the same index can be repeatedly used for mapping sequences, conferring our

method the ability to process data in real-time. To check the accuracy of our results, we ran BWA-MEM

against the 20 known genomes of the mock community. The recall of mashmap against BWA-MEM

mappings ranged from 97.7% to 99.1% for all the 20 genomes in the mock community.

9. CONCLUSIONS

We have presented a fast approximate algorithm for mapping long reads to large reference genomes. Instead

of reporting base-level alignments, mashmap reports all reference intervals with sufficient Jaccard similarity

compared with the k-mer spectrum of the read. In contrast to earlier techniques based on MinHash and

winnowing, we provide a formal characterization of the mappings the algorithm is intended to uncover, and

provide a provably good algorithm for computing them. In addition, we report an estimate of the alignment error

rate tailored to each mapping under an assumed error model. Mashmap provides significant benefits in run-time,

memory usage, and scalability, while achieving precision and recall similar to alignment-based methods. Future

work aims to extend this method to split-read mapping, compressed reference databases, and additional error

models. For example, the winnowed-minhash operation could be applied to paths within a de Bruijn graph to

recover identity estimates and identify the database sequences most similar to a query sequence. Such ap-

proximate algorithms promise to help address the ever-increasing scale of genomic data.

FIG. 5. Correlation between Smith–Waterman identity and the identity estimated by mashmap using datasets P1

(PacBio) and N1 (MinION). Red dotted line corresponds to the error cutoff �max = 0:15.

776 JAIN ET AL.

a
b

c
d

F
IG

.
6

.
(a

)
D

ro
p

in
m

em
o

ry
u

sa
g

e
o

f
m

as
h

m
ap

w
it

h
v

ar
y

in
g

v
al

u
es

o
f

m
ax

im
u

m
p

er
-b

as
e

er
ro

r
ra

te
th

re
sh

o
ld
� m

a
x

fr
o

m
0
:2

0
to

0
:1

0
.
H

er
e

l 0
is

fi
x

ed
to

5
k

b
p

.
(b

)
D

ro
p

in
m

em
o

ry
u

sa
g

e

o
f

m
as

h
m

ap
w

it
h

v
ar

y
in

g
v

al
u

es
o

f
re

ad
le

n
g

th
cu

to
ff

l 0
fr

o
m

5
k

b
p

to
4

0
k

b
p

.
H

er
e
� m

a
x

is
fi

x
ed

to
0

.1
5

.
(c

)
R

ec
al

l
sc

o
re

s
ag

ai
n

st
B

W
A

-M
E

M
m

ap
p

in
g

s,
w

h
ic

h
sa

ti
sf

y
in

p
u

t
cu

to
ff

s
w

it
h

v
ar

y
in

g
� m

a
x
.

T
h

es
e

v
al

u
es

ar
e

co
n

si
st

en
tl

y
ab

o
v

e
9

0
%

.
N

o
te

th
at

re
ca

ll
sc

o
re

is
re

la
ti

v
el

y
h

ig
h

er
at
� m

a
x

=
0
:2

0
b

ec
au

se
a

si
g

n
ifi

ca
n

t
fr

ac
ti

o
n

o
f

P
ac

B
io

re
ad

s
in

d
at

as
et

P
1

h
av

e
er

ro
r

ra
te

s

m
u

ch
<2

0
%

.
W

it
h

d
ec

re
as

in
g
� m

a
x

th
re

sh
o

ld
,

fr
ac

ti
o

n
o

f
b

o
rd

er
li

n
e

ca
se

s
in

cr
ea

se
s.

(d
)

R
ec

al
l

sc
o

re
s

ag
ai

n
st

B
W

A
-M

E
M

m
ap

p
in

g
s

w
it

h
v

ar
y

in
g

l 0
p

ar
am

et
er

.
T

h
es

e
sc

o
re

s
ar

e

co
n

si
st

en
tl

y
ab

o
v

e
9

7
%

.
B

W
A

,
B

u
rr

o
w

s–
W

h
ee

le
r

A
li

g
n

er
.

777

10. APPENDIX

Below, we show that the estimator F (J‚ k) (defined in Section 2) for estimating the per-base error rate �
is a MLE.

Claim: Under the assumed read error model in Section 2, and given Jaccard similarity J, F (J‚ k) = - 1
k

·
log 2J

1 + J

� �
is an MLE for error rate �.

Proof. We follow the same notation as in Section 2. If c, n are the counts of conserved k-mers and total

k-mers in a read, respectively, then J = c
2n - c

, or c = 2J�n
1 + J

. Also, since � denotes the error rate, the probability

of a k-mer being conserved (denoted by h) equals e - �k. Note that the fraction of the conserved k-mers

follows a binomial distribution with parameters h‚ n:

P(c ; h‚ n) = n

c

� �
hc(1 - h)(n - c)

Therefore, likelihood function L(J‚ n; h) is given by:

L(J‚ n; h) = n

c

� �
hc(1 - h)n - c‚ where c =

2J � n
1 + J

To compute hmle that maximizes likelihood L, we set dL
dh = 0, therefore,

n

c

� �
c � hc - 1

mle (1 - hmle)n - c - (n - c)hc
mle(1 - hmle)n - c - 1

� �
= 0

0 c � (1 - hmle) - (n - c)hmle = 0

0 hmle =
c

n

0 e - �mlek =
c

n

0 e - �mlek =
2J

1 + J

0 �mle =
- 1

k
· log

2J

1 + J

� �

ACKNOWLEDGMENTS

This research was supported in part by the Intramural Research Program of the National Human Genome

Research Institute, National Institutes of Health, and the U.S. National Science Foundation under IIS-1416259.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Altschul, S.F., Madden, T.L., Schäffer, A.A., et al. 1997. Gapped blast and psi-blast: A new generation of protein

database search programs. Nucleic Acids Res. 250, 3389–3402.

Ashton, P.M., Nair, S., Dallman, T., et al. 2015. MinION nanopore sequencing identifies the position and structure of a

bacterial antibiotic resistance island. Nat Biotechnol. 33, 296–300.

Berlin, K., Koren, S., Chin, C.-S., et al. 2015. Assembling large genomes with single-molecule sequencing and locality-

sensitive hashing. Nat Biotechnol. 33, 623–630.

Broder, A.Z. 1997. On the resemblance and containment of documents. Proceedings of the Compression and Com-

plexity of Sequences 1997, Salerno, Italy. pp. 21–29.

778 JAIN ET AL.

Chaisson, M.J., and Tesler, G. 2012. Mapping single molecule sequencing reads using basic local alignment with

successive refinement (BLASR): Application and theory. BMC Bioinformatics. 13, 238.

Chaisson, M.J.P., Huddleston, J., Dennis, M.Y., et al. 2015. Resolving the complexity of the human genome using

single-molecule sequencing. Nature. 517, 608–611.

Chin, C.-S., Alexander, D.H., Marks, P., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read

SMRT sequencing data. Nat Methods. 10, 563–569.

Delcher, A.L., Phillippy, A., Carlton, J., and Salzberg, S.L. 2002. Fast algorithms for large-scale genome alignment and

comparison. Nucleic Acids Res. 30, 2478–2483.

Fan, H., Ives, A.R., Surget-Groba, Y., and Cannon, C.H. 2015. An assembly and alignment-free method of phylogeny

reconstruction from next-generation sequencing data. BMC Genomics. 16, 1.

Koren, S., Harhay, G.P., Smith, T.P.L., et al. 2013. Reducing assembly complexity of microbial genomes with single-

molecule sequencing. Genome Biol. 14, 1.

Laehnemann, D., Borkhardt, A., and McHardy, A.C. 2016. Denoising DNA deep sequencing data—high-throughput

sequencing errors and their correction. Brief Bioinform. 17, 154–179.

Langmead, B., and Salzberg, S.L. 2012. Fast gapped-read alignment with bowtie 2. Nat Methods. 9, 357–359.

Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint ar-

Xiv:1303.3997.

Li, H. 2016. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32,

2103–2110.

Li, H., and Durbin, R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics.

25, 1754–1760.

Li, H., and Homer, N. 2010. A survey of sequence alignment algorithms for next-generation sequencing. Brief

Bioinform. 11, 473–483.

Loman, N.J. Nanopore r9 rapid run data release. 2016. Available at: https://goo.gl/UlHVtL. Accessed September 8, 2016.

Loose, M., Malla, S., and Stout, M. 2016. Real time selective sequencing using nanopore technology. Nat Methods. 13,

751–754.

Ondov, B.D., Treangen, T.J., Melsted, P., et al. 2016. Mash: Fast genome and metagenome distance estimation using

minhash. Genome Biol 17, 132.

Pacific Biosciences. Human microbiome mock community shotgun sequencing data. 2014. Available at: https://goo.gl/

kjRcLb. Accessed September 8, 2016.

Popic, V., and Batzoglou, S. 2017. A hybrid cloud read aligner based on MinHash and kmer voting that preserves

privacy. Nature Commun. 8, 15311. DOI: 10.1038/ncomms15311.

Quick, J., Loman, N.J., Duraffour, S., et al. 2016. Real-time, portable genome sequencing for ebola surveillance.

Nature. 530, 228–232.

Roberts, M., Hayes, W., Hunt, B.R., et al. 2004. Reducing storage requirements for biological sequence comparison.

Bioinformatics. 20, 3363–3369.

Ruffalo, M., LaFramboise, T., and Koyutürk, M. 2011. Comparative analysis of algorithms for next-generation se-

quencing read alignment. Bioinformatics. 27, 2790–2796.

Schleimer, S., Wilkerson, D.S., and Aiken, A. 2003. Winnowing: Local algorithms for document fingerprinting. Pro-

ceedings of the 2003 ACM SIGMOD international conference on Management of data, San Diego, CA, pp. 76–85.

Smith, K.C. Sliding window minimum implementations. 2016. Available at: https://goo.gl/8RC54b. Accessed Sep-

tember 8, 2016.

Smith, T.F., and Waterman, M.S. 1981. Identification of common molecular subsequences. J Mol Biol. 147, 195–197.

Address correspondence to:

Dr. Srinivas Aluru

School of Computational Science and Engineering

Georgia Institute of Technology

Atlanta, GA 30332

E-mail: aluru@cc.gatech.edu

Dr. Adam M. Phillippy

National Human Genome Research Institute

National Institutes of Health

Bethesda, MD 20894

E-mail: adam.phillippy@nih.gov

ALGORITHM FOR MAPPING LONG READS 779

