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Abstract

Medical imaging examination on patients usually involves more than one imaging modalities, such 

as Computed Tomography (CT), Magnetic Resonance (MR) and Positron Emission 

Tomography(PET) imaging. Multimodal imaging allows examiners to benefit from the advantage 

of each modalities. For example, for Abdominal Aortic Aneurysm, CT imaging shows calcium 

deposits in the aorta clearly while MR imaging distinguishes thrombus and soft tissues better.1 

Analysing and segmenting both CT and MR images to combine the results will greatly help 

radiologists and doctors to treat the disease. In this work, we present methods on using deep neural 

network models to perform such multi-modal medical image segmentation.

As CT image and MR image of the abdominal area cannot be well registered due to non-affine 

deformations, a naive approach is to train CT and MR segmentation network separately. However, 

such approach is time-consuming and resource-inefficient. We propose a new approach to fuse the 

high-level part of the CT and MR network together, hypothesizing that neurons recognizing the 

high level concepts of Aortic Aneurysm can be shared across multiple modalities. Such network is 

able to be trained end-to-end with non-registered CT and MR image using shorter training time. 

Moreover network fusion allows a shared representation of Aorta in both CT and MR images to be 

learnt. Through experiments we discovered that for parts of Aorta showing similar aneurysm 

conditions, their neural presentations in neural network has shorter distances. Such distances on 

the feature level is helpful for registering CT and MR image.

Keywords

Medical Image Segmentation; Machine Learning; Neural Networks

Further author information: (Send correspondence to Duo Wang), Duo Wang.: wd263@cam.ac.uk, Telephone: +44 1223 7-63628. 

Europe PMC Funders Group
Author Manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 July 31.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. ; 10574: . doi:10.1117/12.2293371.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



1 Introduction

Medical imaging examination on patients usually involves more than one imaging 

modalities, such as Computed Tomography (CT), Magnetic Resonance (MR) and Positron 

Emission Tomography(PET) imaging. Multimodal imaging allows examiners to benefits 

from the advantage of each modalities. For example, for Abdominal Aortic Aneurysm 

(AAA), CT imaging shows calcium deposits in the aorta clearly while MR imaging 

distinguishes thrombus and soft tissues better.1 Analysing and segmenting both CT and MR 

images to combine the results will greatly help radiologists and doctors to treat the disease. 

In this work, we develop deep neural network models to perform such multi-modal medical 

image segmentation, in particular AAA image segmentation.

Semantic image segmentation aims to label pixels or super-pixels of images by their 

corresponding class. Recently Deep Convolutional Neural Networks (CNN) have been 

successfully applied to a wide range of semantic image segmentation tasks.2, 3 For 

biomedical image segmentation, CNN has been successfully applied for Neuronal 

Membrane segmentation,4 Brain tumour segmentation,5 Prostate segmentation6 and many 

other tasks. However most of the methods only focus on one modality, namely CT, MR or 

Microscope images. For multi-modal image segmentation, currently research works mostly 

focus on images that can be easily registered, for example T1 and T2 MR sequence images 

of head.5 Because of the accurate registration process, such methods can treat different 

modality of the image as different channels of the image, similar to the Red, Green and Blue 

colour channels in RGB colour images. Several human body regions, such as abdominal 

region, contains soft tissues that can easily deform. Complex non-affine deformations with 

manual interventions have to be applied to register images of different modality.7 Therefore 

treating image modality as channels cannot be readily applied to such tasks requiring 

complex process of image registration.

A naive approach is to train CT and MR segmentation network separately. However, such 

approach is time-consuming and resource-inefficient. We propose a new approach to fuse 

the high-level part of the CT and MR network together, hypothesizing that neurons 

recognizing the high level concepts of Aortic Aneurysm can be shared across multiple 

modalities. Such network is able to be trained end-to-end with non-registered CT and MR 

image using shorter training time. Moreover network fusion allows a shared representation 

of Aorta in both CT and MR images to be learnt. Through experiments we discovered that 

for Aorta images showing similar aneurysm conditions, their higher layer representations in 

neural network are closer to each other. We also observed that manual shift and rotation of 

aligned CT and MR images will increase feature distances. We hypothesize that such 

distances on the feature level can be applied to align different modalities and to combine 

information for better diagnose and treatment results.

2 Methods

2.1 AAA CT-MR dataset

We have tested Cross-Net on Abdominal Aortic Aneurysm (AAA) segmentation dataset 

provided by Department of Radiology, University of Cambridge. AAA dataset consists of 
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CT and MR scans of twenty-one anonymous patients with Abdominal Aortic Aneurysm 

recruited from Changhai Hospital, Shanghai, China. This study was approved by the review 

board of Changhai Hospital and written informed consent was obtained from each patient. 

All patients enrolled into this study were imaged by contrast enhanced CT angiography on a 

multi-slice CT scanner (Sensation Cardiac 64, Siemens, Germany). MR scans were obtained 

using Siemens Skyra 3T Machine. For our experiments we use T1 sequence of the MR 

image. For CT images, axial view images are segmented into five different classes, namely 

Aorta wall, lumen, thrombus, calcium deposits and irrelevant parts as background. Currently 

for MR images, the axial view images are segmented into four classes excluding calcium 

deposits. Figure 1 illustrates this segmentation task. Ground truth segmentation is provided 

for each scan image by radiologists and cardiovascular specialists.

2.2 Separate Neural Network Models

In this section we describe our Convolutional Neural Network (CNN) model developed for 

segmenting images of a single modality. Our CNN follows the recently popular encoder-

decoder neural network design3, 4 which can be trained end-to-end to produce segmentation 

maps of the same size as input image. Such architectures usually contains an encoder which 

encodes image into high-level feature representations, and an decoder which decodes feature 

representations into dense segmentation maps. Encoder are implemented as stacks of 

convolutional layer and pooling layers, while decoder are implemented as stacks of 

deconvolutional layers, sometimes referred to as transposed convolutional layer. While 

convolutional layer maps a small local neighbourhood region of pixels into a single 

activation value, deconvolutional layer maps a single pixel to a small regions of output 

values at corresponding spatial location. Figure 2 shows an overview of the architecture used 

for single modality CT and MR image segmentation. Such CNN models are trained with 

images of a single modality (e.g. CT) and its corresponding ground truth segmentations. 

During training, these models learn to minimize the error between predicted segmentation 

and ground truth segmentation. In practice we use cross-entropy pixel-wise loss function as 

in equation 1:

L(x, y) = ∑
i

∑
j

yi
jlog( f (xi)) (1)

where x is input image and y is ground truth segmentation maps. i is index of pixel locations 

in the image, and j is index of class. f (xi) is the neural network output for the ith pixel of 

image x.

In addition to the encoder-decoder architecture, we also added skip connections8 that are 

shown to improve segmentation accuracies particularly for biomedical images. Skip layers 

are used to allow decoder to not only use high-level feature representations of the image, but 

also spatially more accurately lower layer information from the encoder. In the original 

implementation, layers in the encoder are copied and passed to corresponding layer in the 

decoder via the skip connections. However in our experiments, we discovered that rather 

than direct copying, processing by a convolutional layer with kernel size 1 × 1 improves 

segmentation accuracy of CT by 0.4% and of MR by 0.3%. We train our CNN model with 
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image patches randomly sampled from scans in the axial plane. For CT image we use patch 

size of 128 × 128. For MR image, we use smaller patch size of 64 × 64 due to smaller sizes 

of the MR scans. We also apply data augmentation in the form of random horizontal and 

vertical flips. In total there are 77502 CT image patches and 89320 MR image patches 

sampled. The exact neural network configurations are not listed due to space limitations but 

can be found online in author’s github repository *.

2.3 Fusion Models

Training models for each modality separately does not make efficient use of available data. 

We hypothesize that the higher layer feature representations of Aorta images can be shared 

across modalities. This is because even though the detailed image statistics (e.g. pixel 

intensities and edge sharpness) of CT and MR image may differ, the higher level feature 

representations of Aorta should be relatively independent from the specific image modality. 

A well trained radiologists can recognize Aorta with Aneurysm in any image modality.

We therefore decide to fuse intermediate layers processing higher level feature 

representations for each modality. Figure 3 illustrates the model fusion. The intermediate 

layers, (including top layers of encoder and decoder) are fused from two streams processing 

CT and MR modality separately into one stream that process both CT and MR modality. 

This fusion models have two pathway, namely CT and MR pathway, with the intermediate 

layers fused between pathways. Such fusion models are trained in an alternating method 

with CT and MR data. In each mini-batch iteration, firstly fusion model’s CT pathway is 

trained with CT image, while keeping MR pathway except for the fused layers unvarying. 

Afterwards, the model’s MR pathway is trained with MR data while keeping CT pathway 

except fused layers unvarying.

There are two benefits of fusing higher level feature layers. Firstly, fusion model’s validation 

accuracy during training increase faster than separate models while keeping the same 

number of model parameters. This is because in fusion model, shared layers can learn a 

higher feature representations from both image modalities while separate models can only 

learn from a single image modality. Secondly, fusion models allow a shared representation 

to learnt for all image modalities. This means the neural representations (also referred as 

neuron activations or feature maps) in fused layers are similar for CT and MR image 

showing similar parts of Aorta. We demonstrated with experiments that this is indeed the 

case. Moreover we discovered that for two aligned CT and MR image, a manually induced 

translation or rotation will increase the feature representation distances. This can be 

potentially applied for image registration for different image modality.

3 Results

3.1 Training comparison

In this section we compare the validation accuracies during training between fusion models 

and separate models. We segregate dataset into training dataset, validation dataset and test 

*https://github.com/thematrixduo/fusion_net
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dataset in 8:1:1 ratio randomly. The number of parameters of the fusion model is the same as 

that of CT and MR separate models combined. We use Adam optimizer9 for training and 

keep learning rates the same for the two different methods. In each training iteration we feed 

one mini-batch of CT data and one mini-batch of MR data to both fusion models and 

separate models. We noticed that time taken for both methods are relatively the same. 

Therefore we decide to report validation accuracy increase with respect to number of 

training iterations. Figure 4 shows the plot of validation accuracy of each models against 

number of training iterations. In this plot, validation accuracies of fusion models for CT and 

MR modality increase considerably faster than that of separate models. Validation 

accuracies level off approximately after 5000 iterations. At 5500 iterations, the validation 

accuracy for CT image modality is very close (99.1% v.s. 98.8%) for both models. The 

validation accuracy for MR image modality of fusion models is 98.5%, which is 1.2% than 

that of separate models.

3.2 Shared feature representations

We examined intermediate layer feature representations of trained fusion models for CT and 

MR scans of the same patient. Through experiments we observed that for fusion models, 

images showing Aorta with Aneurysm condition have closer feature representations from 

each other than from healthy Aorta. This is also exhibited between images of healthy Aorta. 

Figure 5 shows the cosine distance matrix between CT and MR slices of a patient. MR 

sequences are obtained 7 days after CT scans. The CT sequence contains 77 image patches 

centred at Aorta from Thorax and Abdomen. The MR sequence contains 45 sequences 

mainly from Abdomen. Aneurysm condition are shown from the 51st CT image patch and 

from 6th MR image patch. The cosine distance are computed with equation:

dist(FCT, FMR) = 1 − FCT ⋅ FMR

FCT FMR (2)

Where FCT and FMR are feature representations of CT and MR images. We observed that 

feature representations of CT images and MR images showing Aneurysm condition have 

smaller distances between each other (blue region in Figure 5). Feature representations of 

CT image showing aneurysm condition have larger distances from those of MR images 

showing healthy Aorta (red region). We also observed that CT images (No. 39-41) and MR 

images(No. 1-5) showing the same part of healthy Aorta also exhibits shorter feature 

distances.

We also observed increases in feature distances when one modality image of pre-aligned CT 

and MR images are manually translated or rotated. Figure 6 shows heatmap plot of one 

randomly selected pre-aligned CT-MR image pair with CT image manually translated in 

both horizontal and vertical directions, for both fusion model and separate models. From the 

plot one can observe that or fusion model, both horizontal and vertical shift in patch 

extraction location of CT image patch induce an increase in feature distance between CT and 

MR image patch pair. This is not exhibited for separately trained models. Figure 7 shows the 

plot of one randomly selected pre-aligned CT-MR image pair with CT image manually 
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rotated in the degree range of −20° − 20°. For fusion models, manual rotations induce 

increases in feature distance, which again is not exhibited for separately trained models. 

While we showed only a randomly selected example, we observed the same phenomenon in 

majority of image patch pairs.

4 Conclusion

In this work we developed network fusion methods for multi-modality medical image 

segmentation. We performed experiments on AAA CT-MR dataset and showed that fusion 

model improves training speed and allow shared representation of multi-modality images to 

be learnt. Such shared representations are potentially useful for multi-modality image 

registration and analysis.
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Figure 1. 
Illustration of CT (top) and MR(bottom) segmentations.
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Figure 2. 
Illustration of Encoder-Decoder architecture implemented for single modality CT(top) and 

MR(bottom) image segmentation.
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Figure 3. 
Illustration of model fusion for CT and MR image modality. The intermediate layers 

(including top layers in encoder and decoder) are fused from two separate streams into one 

stream.
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Figure 4. 
plot of validation accuracy of each models against number of training iterations. ”CT” 

and ”MR” are separate models while ”CT fusion” and ”MR fusion” are fusion models.
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Figure 5. 
Cosine distance matrix between CT scan sequences and MR scan sequences of one patient.
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Figure 6. 
Heatmap plot of feature distances between manually translated pre-aligned CT-MR image 

pair. For fusion model, both horizontal and vertical shift in patch extraction location of CT 

image patch induce an increase in feature distance between CT and MR image patch pair. 

This is not exhibited for separately trained models.
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Figure 7. 
Plot of feature distances between manually rotated pre-aligned CT-MR image pair. Rotation 

degree range is −20° − 20°. For fusion models, manual rotations induce increases in feature 

distance, which is not exhibited for separately trained models.
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