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Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding
to partially complementary regions within the 3'UTR of their target genes. Computational
methods play an important role in target prediction and assume that the miRNA “seed
region” (nt 2 to 8) is required for functional targeting, but typically only identify ~80% of
known bindings. Recent studies have highlighted a role for the entire miRNA, suggesting
that a more flexible methodology is needed. We present a novel approach for miRNA target
prediction based on Deep Learning (DL) which, rather than incorporating any knowledge
(such as seed regions), investigates the entire miRNA and 3'TR mRNA nucleotides to learn
a uninhibited set of feature descriptors related to the targeting process. We collected more
than 150,000 experimentally validated homo sapiens miRNA:gene targets and cross refer-
enced them with different CLIP-Seq, CLASH and iPAR-CLIP datasets to obtain ~20,000
validated miRNA:gene exact target sites. Using this data, we implemented and trained a
deep neural network—composed of autoencoders and a feed-forward network—able to
automatically learn features describing miRNA-mRNA interactions and assess functionality.
Predictions were then refined using information such as site location or site accessibility
energy. In a comparison using independent datasets, our DL approach consistently outper-
formed existing prediction methods, recognizing the seed region as a common feature in the
targeting process, but also identifying the role of pairings outside this region. Thermody-
namic analysis also suggests that site accessibility plays a role in targeting but that it cannot
be used as a sole indicator for functionality. Data and source code available at: https://
bitbucket.org/account/user/bipous/projects/MIRAW.

Author summary

microRNAs are small RNA molecules that regulate biological processes by binding to the
3’UTR of a gene and their dysregulation is associated with several diseases. Computation-
ally predicting these targets remains a challenge as they only partially match their target

and so there can be hundreds of targets for a single microRNA. Current tools assume that
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most of the knowledge defining a microRNA-gene interaction can be captured by analys-
ing the binding produced in the seed region (~ the first 8nt in the miRNA). However,
recent studies show that the whole microRNA can be important and form non-canonical
targets. Here, we use a target prediction methodology that relies on deep neural networks
to automatically learn the relevant features describing microRNA-gene interactions for
predicting microRNA targets. This means we make no assumptions about what is impor-
tant, leaving the task to the deep neural network. A key part of the work is obtaining a
suitable dataset. Thus, we collected and curated more than 150,000 experimentally verified
microRNA targets and used them to train the network. Using this approach, we are able
to gain a better understanding of non-canonical targets and to improve the accuracy of
state-of-the-art prediction tools.

This is a PLoS Computational Biology Methods paper.

Introduction

MicroRNAs (miRNAs) are a family of ~22-nucleotide (nt) small RNAs that regulate gene
expression at the post-transcriptional level. They act by binding to partially complementary
sites on target genes to induce cleavage or repression of productive translation, preventing the
target gene from producing functional peptides and proteins. Despite advances in understand-
ing miRNA:mRNA interactions, the rules that govern their targeting process are not fully
understood [1-4].

While many miRNA targets have been computationally predicted only a limited number
have been experimentally validated. Moreover, although a variety of miRNA target prediction
algorithms are implemented, results amongst them are generally inconsistent and correctly
identifying functional miRNA targets remains a challenging task. The majority of prediction
tools are based on the assumption that it is the miRNA seed region—generally defined as a 6 to
8 nucleotide sequence starting at the first or second nucleotide—that contains almost all the
important interactions between a miRNA and its target and their focus is on these canonical
sites. This seed-centric view has been supported by structural studies [5] and a widely cited
report [6] that investigated the importance of other (non-canonical) regions within a miRNA
and concluded their contributions had relatively low relevance compared to the (canonical)
seed region. However, more recent studies have revealed that many relevant targets are imple-
mented via non-canonical binding and involve nucleotides outside the seed region, indicating
that the entire miRNA should be considered in target prediction algorithms [3, 7, 8]. This is
also supported by the performance of target prediction tools which typically identify approxi-
mately 80% of known miRNA targets, indicating the mechanisms associated with the remain-
ing 20% of non-canonical targets remain poorly understood. Thus, there is an opportunity for
novel approaches to improve knowledge of miRNA-regulated processes. In turn, this can lead
to better understanding the effects of mutations in the non-coding region of the genome in
terms of function and disease. To this end, in this work, we apply deep learning techniques to
investigate the role of non-canonical sites and pairing beyond the canonical seed region in
microRNA targets.
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Almost all target prediction methods are rule-based or adopt machine learning (ML) meth-
odology with varying success. Rule-based systems incorporate various human-crafted descrip-
tors to represent miRNA:gene target binding (e.g. type of pairs in the site, binding stability, or
conservation of the target site among species). Machine learning techniques also use human
crafted descriptors, but as input features to machine learning models. The limitation of both
these approaches is the process of feature selection and representation, which is constrained by
the use of handcrafted descriptors to model a process that is not fully understood.

Recent increases in computational power have permitted the rise of methods that can dis-
pense with human-crafted features; making it possible to deal directly with raw data and
autonomously learn and identify patterns to appropriately represent data. In particular, deep
learning (DL) [9] has been shown to be an effective method for classification tasks in domains
with complex feature representation. Generally, DL methods represent raw data by incorporat-
ing multiple hierarchical levels of abstraction. While this approach is typically applied to stan-
dard ML problems such as image classification [10], natural language processing [11] or
speech recognition [12], it is now finding use in the life sciences for applications such as RNA
splicing prediction [13] and gene expression inference [14, 15]. DL has also been applied to the
miRNA target prediction problem. Cheng et al. [16] used convolutional neural networks to
analyze matrices of miRNA:site features, but the selected features were still human-crafted
descriptors and thus the method faces similar problems as rule-based and ML approaches. A
more recent work, DeepTarget [17], relied on recurrent neural networks to identify potential
binding sites and assess their functionality. However this work is still oriented to the identifica-
tion of canonical sites and relies on a limited small data set for the training phase.

In this paper we present miRAW, a novel miRNA target prediction tool that works with
raw input data and which makes no assumptions about suitable input descriptors. miRAW
scans the 3’UTR of the gene to identify potential target sites. It then uses DL to identify rele-
vant patterns by directly analyzing the whole mature miRNA transcript, rather than focusing
on the seed region and analyzing precomputed descriptors. It is trained and tested against
experimentally verified positive and negative datasets. The resulting predictions can then be
refined by incorporating exogenous information. When compared to other state-of-the-art
miRNA target prediction tools, miRAW demonstrates a significant improvement in perfor-
mance, highlighting the importance of considering pairing beyond the seed region. In order to
gain a deeper understanding of the characteristics of non-canonical targets, we also investi-
gated the prediction results in terms of model design (i.e., how different configurations affect
the type of predictions obtained) and from a biological perspective (i.e., how different classes
of predicted target sites varied in terms thermodynamic stability and binding structures). In
particular, results reveal (i) many potential functional non-canonical binding structures that
are supported by experimentally verified miRNA:mRNA target data and (ii) commonly priori-
tized features such as site accessibility energy and seed region structure are relevant but not
sufficient for discerning between functional and non-functional target sites.

Materials and methods

In our approach, we sought to minimize the introduction of potential biases in the data repre-
sentation by working directly with the raw data—i.e., the miRNA and mRNA transcripts—
rather than incorporating any human selected feature descriptors. To this end we applied deep
artificial neural networks (ANN) theory, taking advantage of two of their fundamental proper-
ties: (i) with sufficient data-samples and an adequate number of nodes and hidden layers, an
ANN can approximate any mathematical function [18]; and (ii) an ANN has the capacity to
automatically learn the relevant features of complex data structures by means of its hidden
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layers [19]. In the following text, we refer to a target site within the 3’UTR of a gene as a

miRNA binding site (MBS), comprising the set of sites where partially complementary nucleo-
tides individually form bonds between the miRNA and the target mRNA.

The miRAW pipeline (Fig 1) for investigating the target potential of a miRNA and the

3’'UTR of a query gene can be summarized as follows: A 30nt sliding window with a 5nt step is
used to scan the 3'UTR of a gene. For each 30nt fragment, miRAW predicts the stability of the
binding between the miRNA and the fragment. If the structure is sufficiently stable, miRAW
examines the secondary structure to see whether the extended seed region meets the criteria
defined in the candidate site selection method (CSSM). If the criteria are met, the sequence of
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Fig 1. Schematic of the process used by miRAW to evaluate a miRNA binding site. (i) A 30nt sliding window (with
5nt step) is used to scan the 3’'UTR of a gene; (ii) The Vienna RNACofold software package is used to estimate whether
the microRNA and the 30nt transcript can form a stable bond; (iii) If a stable bond is predicted, miRAW checks if the
extended seed region meets the criteria defined in the candidate site selection method (CSSM); (iv) If the criteria are
met, the full mature microRNA transcript and 30nt corresponding to the candidate site are fed into miRAW’s neural

network to generate a classification; (v) The prediction can be refined by a filtering step that applies additional

information that is external to the miRNA:site duplex.

https://doi.org/10.1371/journal.pcbi.1006185.9001
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the entire mature miRNA and the 30nt fragment are binarized and fed into network to gener-
ate a classification. The prediction can be further refined by including one or more filtering
steps that apply additional information that is external to the miRNA:site duplex.

Dataset preparation

A key factor for successful application of any ML classification technique is access to a suffi-
ciently variable and representative dataset that will generalize a trained model to new and
unseen data. For the miRNA target prediction problem, this requires a comprehensive dataset
of verified positive and negative targets that encompass both canonical and non-canonical
examples. While there are multiple data repositories providing information regarding experi-
mentally validated positive miRNA targets [20-22], there are significantly fewer experimen-
tally verified negative targets. This is not an issue for methods that use rule-based approaches
to describe positive matches [6], but it represents a major concern for ML-based approaches
that require similar numbers of labeled examples for both classes.

Here, we focused on human data and used (i) Diana TarBase [21]—the most comprehen-
sive publicly available dataset, which contains information for both positive (121,090) and neg-
ative (2,940) experimentally verified human miRNA:mRNA interactions—and (ii)
MirTarBase [20]—containing 410,000 experimentally verified positive targets—as the knowl-
edge core for our study. Annotation related to transcripts and miRNA binding site locations
were obtained by cross-referencing Diana TarBase identifiers with miRBase release 21 [23]
and Ensembl release 87 [24] entries. As a preliminary step, the Diana and MirTarBase data
were parsed to (i) remove inconsistent entries that were marked both as positive and negative
targets—due to contradictory results in different experimental validations—and (ii) combine
entries that were validated more than once by different verification methods. This produced a
final dataset of 303,912 positive (+) and 1,096 negative (-) miRNA:mRNA interactions. The
data was then split into two parts (each consisting of 151,956+ and 548- interactions) for the
training and testing stages (see Fig A in S1 and S2 Files).

Training dataset. The training dataset serves the purpose of training and validating the
ANN responsible for classifying miRNA target sites between functional (positive targets) and
non-functional (negative targets). Thus, the training dataset is composed of miRNA:MBS pairs
rather than miRNA:mRNA pairs.

o Positive Training Dataset To build the positive training dataset we used the reference tran-
scripts of the mature miRNAs and the target mRNAs and, where possible, the binding sites
of the experimentally verified targets. However, binding site information is only available
and/or parsable for a limited number of Diana Tarbase’s targets. Thus, in order to obtain
specific information regarding binding site locations for the remaining target entries, we
cross-referenced Diana Tarbase and TarBase with publicly available datasets containing
miRNA:MBS locations obtained through PAR-Clip [2] and CLASH [25] experiments. While
CLIP and CLASH data provides information regarding experimentally identified miRNA
binding site locations, these sites are not necessarily functional. In order to reduce the proba-
bility of including non-functional sites in the positive training dataset we considered MBSs
that (i) formed stable duplexes —negative free energy in the predicted secondary structure—
according to Vienna RNACofold [26] and (ii) corresponded to a miRNA:gene pair marked
as functional in mirTarBase or Diana TarBase.

Additionally, we complemented our positive training dataset by including the most probable
broadly conserved sites obtained from TargetScanHuman 7.1 [6] that matched experimen-
tally validated functional data from Diana Tarbase or mirTarBase. The resulting dataset was
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composed of both canonical and non-canonical MBSs and comprised a total of 33,142 posi-
tive target sites for training and validating the miRAW deep learning network.

Negative Training Dataset The smaller number of negative experimentally validated targets
poses a challenge when constructing a representative negative dataset. Some ML-based target
prediction tools address this problem by using “mock” miRNA targets which are artificially
generated miRNA:MBS sequences that resemble true positive targets but which do not
appear in positive miRNA target repositories [17, 27]. However, in our case, this type of
strategy can lead to the ANN learning the function used to generate the “mock” data and
being trained to discriminate between real data and artificial data rather than discriminating
functional and non-functional targets. In addition, there is no guarantee that the generated
sequences do not belong to miRNA:gene functional pairs yet to be discovered or validated.
Thus, we opted for building a negative dataset based upon experimentally verified data.

Any sequence of approximately 22 nt within a mRNA of a negatively validated miRNA:
mRNA pair represents a possible negative MBS. However, in practice, most of these
sequences are irrelevant as they cannot form a stable bond with a miRNA and including
them in the training set would merely introduce noise, unnecessarily increasing the com-
plexity of the problem. To obviate this issue, we only considered negative sites within the 3’
UTR of a mRNA that (i) comprise a region with a maximum length of 30 nucleotides and
(ii) where a miRNA has the potential to form a stable bond (The choice of a binding site
length greater than the average length of an mRNA allows the presence of bulges within the
MBS). For each experimentally verified negative miRNA:mRNA pair, we used a sliding win-
dow of 30 nt along the entire 3’UTR region. The secondary structure of the miRNA:MBS
duplex was then predicted using the RNACoFold tool from the ViennaRNA package [26]
using default settings for all parameters and was considered to be a potential MBS if it had

a negative binding energy. This process resulted in a total of 32,284 negatively validated
target sites.

For training and validating the neural network, we followed a 10 fold random-subsampling
cross-validation approach using the positive and negative training datasets. For the training
folds, we stratified the sampling process to ensure the presence of both positive and negative
samples for each miRNA family (miRNAs sharing a common ancestor and which have similar
similar sequence and structure [23, 28]); this prevents the network making predictions based
solely on the presence of a miRNA in only one of the classes and not using the whole set of
inputs. For the generation of validation and testing datasets we excluded those miRNA:MBS
pairs that shared miRNA and MBS with data instances in the training data; this ensures that
there is no overlap of miRNA families between testing and training, forcing the evaluation of
new data in the testing stage. 66.67% percent of data was used for training, 33.33% for testing
and validation. For each fold we used the same proportion of positive and negative class
instances.

Test dataset. To evaluate our methodology with independent data we generated two dif-
ferent test datasets: one using the ~ 17000 experimentally verified miRNA:gene targets
excluded from the training data (TarBase test dataset); and one using results of independent
microarray datasets reporting mRNA changes after transfecting a miRNA into HeLa cells [29]
(Transfection Test Dataset). Note that, in contrast to the training stage, the goal of the test
dataset is to evaluate the whole miRAW methodology and, therefore, the testing data consist of
pairs containing the miRNA and the whole gene 3’UTR transcripts, rather than the specific
MBSs.

The 17000 data points from the TarBase test dataset were highly biased towards positive
entries in a ratio of 97:3; this imbalance will impede true evaluation of the trained model—a
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tool that exclusively predicts positive targets against the full test data would achieve an accu-
racy of 97%. Thus, besides the full test dataset, additional datasets were generated with equal
numbers of positive and negative targets (548+, 548-) where positive entries were randomly
selected. To avoid bias attributable to positive target selection, different randomly sampled
datasets were generated and compared (10 folds and 100 folds).

The Transfection Test Dataset was obtained from [29], which provides a collection of 175
published microarray datasets that monitored the mRNA expression response of transfecting
miRNAs or siRNAs (sRNAs) into HeLa cells. We compared the sSRNAs used in these experi-
ments with their miRbase 21 annotation and selected those annotated as high confident miR-
NAs (GSE8501-GSM210898: hsa-miR-9-5p, GSE8501-GSM210913: hsa-miR-181a-5p,
GSE8501-GSM210911: hsa-miR-148b-3p, GSE8501-GSM210909: hsa-miR-142-3p,
GSE8501-GSM210904: hsa-miR-132-3p). This makes it more plausible to relate the changes in
expression levels observed within each of the microarray datasets to the targets predicted by
the various target prediction tools that were selected for comparison. In the original paper
associated with the data, Garcia et Al. acknowledge that expression variability might come
from additional factors unrelated to targeting such as array noise, differential transfection effi-
ciencies, or differential sSRNA loading or stability. In a subsequent study, Agarwal et Al [6]
attempted to normalize and standarize datasets to address these issues as well as other phe-
nomena such as batch effects. Here, as all the selected datasets originated from the same series
[30] we used the original Garcia mRNA expression profiles.

Candidate site selection

Selection of candidate MBSs in a mRNA is another key step for a miRNA target prediction
algorithm as it identifies which regions within a mRNA have the potential to be a target bind-
ing site. Most target prediction methods follow a similar approach for candidate selection: they
scan the 3’UTR of the gene looking for sites that are partially complementary to the miRNA
transcript; if a site fulfills certain criteria, it is considered to be a candidate site and is subjected
to further analysis. Candidate site selection methods (CSSMs) that focus on the retrieval of
canonical targets only consider those sites that have perfect complementary within the miRNA
seed region (nucleotides 2 to 8, see Fig 2a) and will return the smallest number of predicted
targets. Methods willing to accept non-canonical sites have looser restrictions: some accept a
limited number of bulges, mismatches or wobble pairs in the seed region whilst others accept
such mismatches only if there are compensatory nucleotide pairs outside the seed region

(Fig 2b and 2¢).

In an ideal scenario where the training dataset contained sufficient examples of all the possi-
ble forms of positive and negative targets, the CSSM would not be required as, theoretically, an
ANN would be able to estimate the function acting as CSSM. In reality, there are limited num-
bers of reliable experimentally verified miRNA:targets (especially for negatively validated sites)
and the CSSM step effectively narrows the search space to simplify the ANN classification task.

The CSSM used by miRAW (CSS miRAW) for searching the 3’'UTR follows a similar
approach to other prediction tools —investigating successive 30-mer segments— but employs a
more relaxed set of restrictions that reflect recent experimental studies that relax the require-
ment of perfect pairing in the seed region and acknowledge a possible role for the other nucle-
otides. For example, Kim et al [8] report the role of nucleotide 9 in several miRNA binding
sites and Grosswendt et al [2] found that a significant number of miRNAs do not require per-
fect complementarity within the seed region and compensate for this in non-seed nucleotides.
Finally, a recent structural study by Klum et al [31] clarify a role for the 3’ end of the miRNA
in the targeting process. Based on the findings from these and other related studies, we
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a) Canonical site (PITA, TS, miRAW): d) Non canonical sites (miRAW):

Extended Seed region
Watson-Crick base pair === Wobble base pair

Fig 2. Examples of the types of miRNA binding sites considered by different candidate site selection methods (CSSMs). (a)
Potential canonical binding site accepted by the PITA, TargetScan (TS), and miRAW CSSMs. Here, the seed region contains a
perfect 7mer. (b) Potential non-canonical compensatory binding site accepted by TS and miRAW CSSMs. The missing nucleotide
pair in the seed region is compensated by the 9 consecutive pairs starting at position 10—centered pairing requires at least a 4mer at
positions 10 to 14. (c) Potential non-canonical centered target site accepted by TS and miRAW CSSMs. The lack of perfect seed
matching is compensated by additional consecutive pairs in nucleotides 9 to 12. (d) Potential non-canonical sites accepted only by
the miRAW CSSMs. The extended seed region (10 nucleotides) and the inclusion of wobbles allows these scenarios to be considered
as potential target sites.

https://doi.org/10.1371/journal.pcbi.1006185.9002

investigated three different approaches that expand the analysis beyond the typical 7mer seed
region and relax the broadly adopted requirement for perfect pairing within the seed region.

In particular, we consider a site to be a candidate MBS if there is a minimum number of
base pairs—considering both Watson-Crick (WC) pairing and wobbles—within an extended
seed region and investigated three different configurations:

o CSS miRAW-6-1:10: a candidate MBS contains at least 6 base pairs between nucleotides 1
and 10.

o CSS miRAW-7-1:10: a candidate MBS contains at least 7 base pairs between nucleotides 1
and 10.

o CSS miRAW-7-2:10: a candidate MBS contains at least 7 base pairs between nucleotides 2
and 10.

In each case, base pairs do not need to be consecutive in order to accommodate the pres-
ence of gaps and bulges.

Thus, these models can accommodate both standard canonical MBSs as well as a broader
range of non-canonical target site structures (see Fig 2), including the vast majority (up to
97.63%) of experimentally validated sites from Diana TarBase and CLIP/CLASH binding site
datasets. Moreover, while these relaxed conditions for the seed region generate a much larger
number of candidate sites, the decision of whether a site represents a functional target is dele-
gated to the ANN (which considers the entire miRNA & mRNA sequence). In this way, we
ensure that minimal assumptions, and hence bias, are incorporated into the analysis.
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To further evaluate the impact of choice of CSSM, we also implemented the CSSMs used in
two of the most commonly used miRNA target prediction tools:

« TargetScan (CSS miRAW-TS) considers three types of sites: (i) perfect canonical matches
(perfect complementarity in nt 2 to 8, Fig 2a), (ii) 3’ compensatory sites (a minimum of 3
consecutive WC pairs between nt 13 and 16 compensates an imperfect seed match —one
wobble, bulge or mismatch-, Fig 2b) and (iii) centered sites (imperfect seed match but 11
contiguous WC pairs between nt 4 and 15, Fig 2¢).

o PITA (CSS miRAW-Pita) considers (i) 7mers starting at nt 1 or 2 (Fig 2a) and (ii) sites con-
taining a gap, wobble or mismatch in the seed region (starting at nt 1) if it contains at least 7
WC pairs.

Both these CSSMs are subsets of CSSM-miRAW-6-1:10 and CSSM-miRAW-7-1:10 (Fig 2).

Implementation of different CSSMs served the primary purpose of fine-tuning miRAW but
also allowed us to investigate the targeting process from a biological perspective. The 5 pro-
posed methods encapsulate different target ranges. At one extreme, CSS-miRAW-TS and CSS-
miRAW-P adopt conservative approaches oriented towards canonical sites but they also con-
sider a limited number of non-canonical sites with small irregularities in the seed region; at the
other extreme, the other non-canonical CSSMs follow a greedier approach that allows the con-
sideration of several non-canonical sites with broader irregularities in the seed region. These
differences produce variations in both the canonical and non-canonical predicted targets.

Transcript binarization

As an ANN requires numerical data for input, we transformed the miRNA and candidate
mRNA site transcripts to binary values using one hot encoding. Each of the mRNA and
miRNA nucleotides was translated to a binary vector of dimension 4, corresponding to the
four possible nucleotide values (see Table 1). Thus, each miRNA target is represented by two
concatenated binary vectors: one composed of dimension 120 (4x30nt, where 30nt accommo-
dates the longest known miRNA) corresponding to the mature miRNA transcript, and a sec-
ond composed of dimension 160 (4x40nt) corresponding to the mRNA site (30 nt) and 5
additional upstream and downstream nucleotides. These additional nucleotides seek to cap-
ture any influence that the flanking sequence may exert on the target [32, 33]. The optimal
number of additional upstream/downstream nucleotides was determined by evaluating how it
affected the predictive power of the neural network (