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Abstract

Ocular images play an essential role in ophthalmology. Current research mainly focuses on

computer-aided diagnosis using slit-lamp images, however few studies have been done to

predict the progression of ophthalmic disease. Therefore exploring an effective approach of

prediction can help to plan treatment strategies and to provide early warning for the patients.

In this study, we present an end-to-end temporal sequence network (TempSeq-Net) to auto-

matically predict the progression of ophthalmic disease, which includes employing convolu-

tional neural network (CNN) to extract high-level features from consecutive slit-lamp images

and applying long short term memory (LSTM) method to mine the temporal relationship of

features. First, we comprehensively compare six potential combinations of CNNs and LSTM

(or recurrent neural network) in terms of effectiveness and efficiency, to obtain the optimal

TempSeq-Net model. Second, we analyze the impacts of sequence lengths on model’s per-

formance which help to evaluate their stability and validity and to determine the appropriate

range of sequence lengths. The quantitative results demonstrated that our proposed model

offers exceptional performance with mean accuracy (92.22), sensitivity (88.55), specificity

(94.31) and AUC (97.18). Moreover, the model achieves real-time prediction with only

27.6ms for single sequence, and simultaneously predicts sequence data with lengths of

3–5. Our study provides a promising strategy for the progression of ophthalmic disease, and

has the potential to be applied in other medical fields.

Introduction

Ocular images play a vital role in clinical diagnosis and individualized treatment schedule of

ophthalmic diseases [1–3]. Much attention has been focused on creating a computer-aided diag-

nosis system based on the currently available images, and committed to the enhancement of the

diagnostic accuracy and efficiency [4–6]. These studies can classify and grade the severity of the

emerging ophthalmic diseases, however they are incapable of predicting the impending trend of
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ophthalmic diseases. Moreover, it is difficult to predict the progression of diseases for ophthal-

mologists during their clinical practice. Because this prediction process involves a comprehen-

sive analysis and comparison of the re-examination results from multiple stages, which suffers

from time-consuming, subjective and waste of excellent physician resources [7, 8]. However,

this prediction and inference for ophthalmic disease is of great clinical significance for the prog-

nosis management and risk control [8–10], which can help ophthalmologists to implement

therapeutic schedule effectively and remind the patients of what needs to be prevented. There-

fore, more research is urgently needed to explore a feasible and efficient strategy to predict the

progression of ophthalmic diseases automatically and to provide appropriate treatment sched-

ule in a timely manner.

The number of blind people worldwide is projected to reach 75 million by the year 2020

[11]. Cataracts are the leading cause of blindness, accounting for about half of the blind glob-

ally [12]. Monitoring the recurrence of cataract surgery is a typical temporal sequence predic-

tion scenario. Postoperative patient requires routine re-examination to monitor the changes of

posterior capsular opacification and to gain favorable prognosis [13, 14]. During the re-exami-

nation process, we have accumulated a number of slit-lamp images, which include multiple

sequential examination stages and form a complete temporal sequence dataset [15]. However,

these images exhibit a variety of disease phenotypes, unavoidable noise, and its similarity or

mutability between the before and after images [7, 16]. For example, as shown in Fig 1, the pro-

gression trend of the first three rows are stable from column a to f; whereas in the fourth row,

the patient’s condition suddenly deteriorate from column b to c. The progression of cataract

opacification is complicated in the slit-lamp sequence images, which cannot be simulated and

predicted based on manually-designed features using simple linear models. These factors rep-

resent common problems of medical images and pose significant challenges for exploring an

effective sequence method to predict the progression of ophthalmic diseases.

The current deep convolutional neural network (CNN) models have demonstrated extraordi-

nary performance in image and video recognition tasks [17–19], especially in the automatic diag-

nosis of medical images [4, 6, 20, 21]. In previous works, we conducted extensive automatic

diagnosis studies with satisfactory results for cataract and confirmed the effectiveness of high-

level features extracted from the CNN model [6, 16, 22, 23]. In addition, long short term memory

(LSTM) and recurrent neural network (RNN) models have achieved impressive performance in

a wide variety of sequence learning and prediction tasks such as speech recognition [24],

machine translation [25] and video understanding [26]. In this study, we propose an effective

temporal sequence network (TempSeq-Net) to predict the progression of ophthalmic disease by

combining deep CNN [19, 27, 28] and sequence processing method LSTM [29]. First, we employ

a convolutional neural network to extract high-level features from the slit-lamp images, and then

apply the LSTM method to mine their internal relations, so as to construct an end-to-end model

to predict and analyze the progression of ophthalmic disease. Second, we conduct and compare

six combinations of three CNNs and LSTM (or RNN) using 5-fold cross-validation to select the

optimal combination. Third, we perform the detailed comparative experiments on different

lengths of sequence data for training and prediction, evaluate their stability and validity, to deter-

mine the appropriate range of sequence lengths. Finally, we conclude the effective guidelines for

the training and prediction of temporal sequence model in clinical application.

Methods

Ethics approval

The research protocol involving patients was approved by the Institutional Review Board/Eth-

ics Committee of Xidian University and Zhongshan Ophthalmic Center of Sun Yat-sen
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University. The authors confirm that all methods were performed in accordance with the rele-

vant guidelines and regulations. Written informed consent was obtained from all the study

participants’ parents or legal guardian according to Childhood Cataract Program of the Chi-

nese Ministry of Health (CCPMOH) [15].

Fig 1. Examples of the progression of ophthalmic disease. (a)–(f) The slit-lamp images of six consecutive re-

examination stages: the 3rd, 6th, 9th, 12th, 18th and 24th month. The first two rows are negative samples defined as

manageable patients during the whole recovery period, while the third and fourth rows represent positive samples who

require Nd-YAG laser surgery at the 6th re-examination stage. Notes: Nd-YAG: neodymium-doped yttrium aluminum

garnet.

https://doi.org/10.1371/journal.pone.0201142.g001

Fig 2. The architecture of the TempSeq-Net model. (a) Temporal sequence data inputs. The sequence images are

sorted according to the re-examination stages and then entered into the convolutional neural network sequentially. (b)

Convolutional neural network. The CNN is used for extracting the high-level features of temporal sequence images. (c)

Long short term memory. The LSTM is used for mining and summarizing the internal rules of temporal sequence

images. (d) The prediction output. The model predicts the probability of the progression of ophthalmic disease at an

upcoming stage, where F and S represent follow-up and laser surgery, respectively. (e) The internal structure of the

LSTM. Notes: 3M: the 3rd month of re-examination; FC: full-connected layer; TempSeq-Net: temporal sequence

network.

https://doi.org/10.1371/journal.pone.0201142.g002
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TempSeq-Net model

As shown in Fig 2, the architecture of the TempSeq-Net mainly consists of temporal sequence

data inputs (Fig 2A), convolutional neural network (CNN) (Fig 2B), long short term memory

(LSTM) (Fig 2C) and prediction output (Fig 2D). The internal structure of the LSTM is shown

in Fig 2E. In addition, the dataset augmentation and transfer learning are also essential tech-

nologies to overcome overfitting problem and accelerating model convergence. The technical

details are described below.

To enhance the reproducibility of our proposed model and experiment results, we also

deposited the TempSeq-Net model, source code, and training and evaluation procedures in

dx.doi.org/10.17504/protocols.io.qgzdtx6.

Convolutional neural networks

Three CNNs (AlexNet, GoogLeNet, and ResNet) are being compared to determine the best

model for the sequence prediction tasks (Fig 2B). The AlexNet CNN [19] employed convolu-

tional layers, overlapping pooling, fully-connected layers and non-saturating rectified linear

units (ReLUs) to construct an eight-layer CNN, which won the first prize in the 2012 ImageNet

Large Scale Visual Recognition Challenge (ILSVRC). Subsequently, a number variants of

CNNs were presented to enhance model’s recognition performance. In particular, a 22-layer

inception CNN (GoogLeNet) was proposed by Google researchers [27] based on the Hebbian

principle, filter aggregation, average pooling and auxiliary classifier technologies. Kaiming He

then employed residual connection scheme, batch normalization and scale operations to estab-

lish a 50-layer residual CNN (ResNet) [28]. Because these three CNNs perform distinct princi-

ples and demonstrate significant performance differences in the natural images recognition

competition, we first need to measure their differences on the medical sequence prediction

problems to select a better model.

Long short term memory method

The RNN and LSTM have proven to be effective on sequence tasks [24–26] such as speech rec-

ognition, video understanding and text generation. Instead of using traditional RNN [30], the

LSTM model [26] is adopted in this study because it provides a solution by incorporating

memory unit to avoid the vanishing or exploding gradients problem during back-propagation.

Benefited from the memory unit, the LSTM learns when to forget previous hidden states and

when to update hidden states with the new information given. As shown in Fig 2E, the LSTM

is updated at time t as Eq 1.

it ¼ sðWxixt þWhiht� 1 þ biÞ

ft ¼ sðWxf xt þWhf ht� 1 þ bf Þ

ot ¼ sðWxoxt þWhoht� 1 þ boÞ

gt ¼ �ðWxgxt þWhght� 1 þ bgÞ

ct ¼ ft � ct� 1 þ it � gt
ht ¼ ot � �ðctÞ

ð1Þ

where ϕ(x) = (ex−e−x)/(ex+e−x) and σ(x) = (1+e−x)−1 are nonlinear functions, xt, ht, it, ft, ot, gt, ct
and � denote current input data, current hidden state, input gate, forget gate, output gate,

input modulation gate, memory unit and element-wise product, respectively. The memory

unit ct is a function of the previous memory unit ct−1, the current input xt and the previous hid-

den state ht−1. ft and it enable the memory unit ct to selectively forget its previous memory ct−1
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or consider new input xt. These additional units enable the LSTM to learn very complex tem-

poral dynamics for ophthalmic disease prediction.

Transfer learning

Collecting a sample of ophthalmic sequence requires two-year follow-up from a patient after

cataract surgery, so that the number of sequence samples is less than that of the natural images.

It is insufficient to optimize millions of trainable parameters from scratch using the fully-trained

method. In contrast, transfer learning [31, 32] is an alternative technology for medical images,

which allows the pre-trained model to be fine-tuned from a better starting point and effectively

accelerates the model’s convergence. First of all, we downloaded the trained model file of CNN

from the caffe official website (https://github.com/BVLC/caffe/) and used it to initialize the

parameters of the same layers of the TempSeq-Net. Then, we set the learning rate of the parame-

ters of the Softmax classification layer and LSTM (or RNN) layer to 10 times that of other layers’

parameters. Therefore, this technology guaranteed that the parameters of these two new layers

were fully trained while the parameters of other layers were only fine-tuned using the ophthal-

mic sequence images. The final trained model does not only inherit the color, texture and shape

features of the natural images, but also learns the unique characteristics of ophthalmic sequence

images. Furthermore, data augmentation methods including transformed images and horizon-

tal reflections [33] are adopted to prevent over-fitting problem.

Optimization process of the TempSeq-Net model

For one iterative training, d ophthalmic sequence samples are randomly selected to form a

mini-batch training dataset D ¼ fðx1
t ; y

1
t Þ
w
t¼1
; ðx2

t ; y
2
t Þ
w
t¼1
; . . . ; ðxkt ; y

k
t Þ
w
t¼1
; . . . ; ðxdt ; y

d
t Þ
w
t¼1
g. A

sequence data ðxkt ; y
k
t Þ
w
t¼1

denotes consecutive w input data (xkt ) and prediction label (ykt ) of the

k-th patient. The prediction label ykt represents the progression trend of ophthalmic disease

(laser surgery or follow-up) at time t+1. We optimize parameters of the TempSeq-Net model

to minimize the cross-entropy loss function of a mini-batch sequence samples as shown in Eq

2.

JðyÞ ¼ �
1

d

Xd

i¼1

Xw

t¼1

Xk

j¼1

Ifyit ¼ jg�log
eyTj x

i
t

Xk

s¼1
eyTs x

i
t

2

4

3

5þ
l

2

Xk

j¼1

Xm

s¼1

y
2

js ð2Þ

where d, t, k,m and θ denote number of training sequence samples, time t, number of classes,

number of input neurons, and trainable parameters respectively. Ifyit ¼ jg represents the indi-

cator function (Ifyit is equal to jg ¼ 1 and Ifyit is not equal to jg ¼ 0). l

2

Xk

j¼1

Xm

s¼1

y
2

js is a weight

decay term which is applied to penalize larger trainable weights. We train the TempSeq-Net

model using mini-batch gradient descent (Mini-batch-GD) [34], with back-propagation used

to compute the gradientryj
JðyÞ over mini-batch D as Eq 3. Finally, we obtain the optimal

trainable weights θ
�

as Eq 4.

ryj
JðyÞ ¼ �

1

d

Xd

i¼1

Xw

t¼1

xit�ðIfy
i
t ¼ jg � pðy

i
t ¼ jjx

i
1:t; y

i
1:t� 1

; yÞÞ

" #

þ lyj ð3Þ

y
�
¼ arg min

y
JðyÞ ð4Þ
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Results and discussion

Dataset

A total of 6,090 slit-lamp images were derived from the Zhongshan Ophthalmic Center of Sun

Yat-sen University [15, 35], the leading eye hospital in China. As shown in Fig 1, these images

contain six consecutive re-examination stages (the 3rd, 6th, 9th, 12th, 18th and 24th month)

from 1,015 patients with two years of follow-up. The positive samples (367) represented

patients suffering from serious posterior capsular opacification (PCO) that required Nd-YAG

(neodymium-doped yttrium aluminum garnet) laser treatment at the 6th re-examination

stage, and the negative samples (648) are defined as manageable PCO patients during the

whole recovery period. Each image was examined, discussed and labeled by three experienced

ophthalmologists. More representative temporal sequence data of the slit-lamp images can be

found in S1 File.

Evaluation metrics

To evaluate the performance and stability of temporal sequence network (TempSeq-Net) for

ophthalmic disease, we calculated six quantitative metrics, including accuracy (ACC), sensitiv-

ity (SEN), specificity (SPE), precision (PRE), F1-measure (F1_M), and G-mean (G_M), as fol-

lows.

Accuracy ¼ ðTPþ TNÞ=ðTPþ FN þ TN þ FPÞ

SensitivityðRecallÞ ¼ TP=ðTP þ FNÞ

Specificity ¼ TN=ðTN þ FPÞ

Precision ¼ TP=ðTPþ FPÞ

F1 � measure ¼ ð2 �Recall � PrecisionÞ=ðRecall þ PrecisionÞ

G � mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP=ðTPþ FNÞÞ�ðTN=ðTN þ FPÞÞ

p

ð5Þ

TP, FP, TN and FN represent the numbers of true positives, false positives, true negatives and

false negatives respectively. The accuracy, sensitivity, specificity and precision are the common

evaluation indicators for classification. Furthermore, the F1-measure, G-mean [36], the

receiver operating characteristic curve (ROC), and the area under the ROC curve (AUC) indi-

cators are employed to comprehensively measure the accuracies of the positive and negative

samples at the same time.

Overall prediction framework for the progression of ophthalmic disease

As shown in Fig 3, the overall prediction framework consists of four modules: preparing the

slit-lamp sequence images, seeking the optimal model TempSeq-Net, training and evaluating

classifiers with different lengths of sequence images.

We employed a classification model to predict the progression of ophthalmic disease, of

which the input images are the previous re-examination results and the label is the impending

trend such as laser treatment or follow-up. First, the slit-lamp sequence images were resized to

a size of 160×120 pixels and then sorted according to the re-examination time (Fig 3A). Sec-

ond, we combined three CNNs (AlexNet, GoogleNet and ResNet) [19, 27, 28] and two

sequence processing methods (LSTM and RNN) [29, 30] to construct six potential models. We

trained these models with the first five images as input data and the 6th image as prediction

label. We randomly divided the entire dataset into five equal parts and employed 5-fold cross-

validation to fully evaluate the performance of these models in terms of effectiveness, efficiency
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and resource utilization to select the optimal model TempSeq-Net (temporal sequence net-

work) (Fig 3B).

After obtaining the optimal model, we further explored the impact of different lengths of

sequence data on the training and prediction procedure. Similarly, we employed two sequence

datasets with different lengths (four and three) and their labels to train other two classifiers

TempSeq-Net-1 and TempSeq-Net-2 respectively (Fig 3C), The results are compared with the

TempSeq-Net classifier. Because the input data can be of arbitrary length in the prediction pro-

cess, we evaluated these three classifiers using sequence data with lengths of 2–5 (Fig 3D) to

help determine the appropriate range of sequence lengths for training and prediction.

Experimental environment setting

In this study, all models were trained using four Nvidia Titan X graphics processing units

based on the Caffe toolbox [37]. The mini-batch size was set to 25 on each GPU, to obtain 100

sequence data for one iteration training and calculated the average value of these samples to

update the trainable parameters. The learning rate was initialized with 0.01 and successively

reduced to one tenth of the original value per 500 iterations; a total of 2000 iterations were per-

formed. Appropriate settings for these parameters can ensure rapid convergence and obtain

Fig 3. The overall prediction framework for the progression of ophthalmic disease. (a) The 6,090 slit-lamp sequence images consist of six consecutive re-

examination stages (the 3rd, 6th, 9th, 12th, 18th and 24th month) of the 1,015 patients. Each image was examined and labeled independently by three experienced

ophthalmologists. (b) Seeking the optimal classifier. The 5-fold cross-validation was employed to evaluate the performance of six combinations of three CNNs and

two sequence methods (LSTM and RNN) to obtain the optimal TempSeq-Net model. (c) Training classifiers with different sequence lengths. Sequence datasets with

different lengths (five, four and three) and their labels are employed to train three classifiers TempSeq-Net, TempSeq-Net-1 and TempSeq-Net-2, respectively. (d)

Evaluating classifiers with different sequence lengths. The classifiers trained in the (c) are compared using sequence images with lengths of 2–5. Notes: CNN:

convolutional neural network; LSTM: long short term memory; RNN: recurrent neural network.

https://doi.org/10.1371/journal.pone.0201142.g003
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better performance on ophthalmic sequence dataset. To facilitate research and reference, we

also have released all source code of the TempSeq-Net model, which is available from Github:

https://github.com/Ophthalmology-CAD/TempSeq-Net.

Performance comparisons and optimal sequence model search

After applying 5-fold cross-validation, we calculated the detailed quantitative indicators with

mean value and standard deviation, which included accuracy, specificity, sensitivity, AUC,

F1-measure and G-mean to evaluate the performance of these six models (Table 1). From the

experimental results, we obtained two meaningful conclusions. First, the LSTM method is bet-

ter compared to the RNN method, which does not get effected when it is combined with any

one of the CNNs. For example, the ACC, SEN, F1_M and G_M of GoogLeNet-RNN (85.71,

74.80, 78.83 and 82.78) are inferior to the GoogLnet-LSTM (92.51, 88.83, 89.50 and 91.67),

and the similar results between LSTM and RNN are also showed on the Residual CNN.

Although the differences between AlexNet-RNN and AlexNet-LSTM is not obvious, the SEN

indicator of the LSTM method is enhanced by more than 2% compared to the RNN method.

These performance improvements are mainly attributed to the fact that the LSTM method

uses memory units to avoid the vanishing or exploding gradients problem existed in the RNN

method. As the number of patient’s re-examination increases, the length of the image sequence

becomes longer and the differences between LSTM and RNN would become more obvious.

Second, the performance of three CNNs combined with LSTM is almost equivalent. The Alex-

Net and GoogLeNet is slightly better than the residual CNN (ResNet), this is mainly due to the

limited medical images which is lacking to train ultra-deep ResNet.

Furthermore, we plotted the ROC curves to investigate the performance differences of the

models (Fig 4A). The ROC curves of LSTM models are closer to the left upper corner than

those of the RNN models, and all AUC indicators of LSTM models were maintained at above

0.975. This result also indicates that the LSTM models considerably outperform the RNN

models in the prediction task of ophthalmic sequence data.

In addition, we also explored the linear classification model to predict the progression of

ophthalmic disease. First of all, the color and texture features were extracted from the consecu-

tive slit-lamp images based on our previous research [16, 22, 23], then we input them into the

logistic regression classifier for prediction. However, the ACC, SPE, SEN, F1_M and G_M

indicators of this model only reaches 73.79%, 82.10%, 58.94%, 62.10% and 69.54%, which is far

weaker than the performance of the deep learning models. This is probably due to the fact that

the relationship between temporal sequence data is not linear, especially in the real-world

Table 1. The quantitative evaluation of six different temporal sequence networks.

Method ACC (%) SPE (%) SEN (%) F1_M (%) G_M (%) AUC (%)

AlexNet-RNN 91.72(1.37)§ 94.76(1.42) 86.26(2.73) 88.20(2.42) 90.40(1.70) 96.84(1.59)

GoogLeNet-RNN 85.71(3.75) 91.85(2.77) 74.80(8.70) 78.83(6.33) 82.78(5.14) 93.17(3.29)

ResNet-RNN 87.88(3.76) 93.48(1.78) 77.93(7.74) 82.19(5.49) 85.28(4.69) 94.74(1.91)

AlexNet-LSTM 92.22(1.98) 94.31(1.71) 88.55(3.32) 89.10(2.98) 91.38(2.24) 97.18(1.46)

GoogLeNet-LSTM 92.51(1.49) 94.62(0.93) 88.83(2.97) 89.50(2.36) 91.67(1.85) 97.04(1.08)

ResNet-LSTM 90.64(1.84) 94.60(0.46) 83.53(4.68) 86.45(3.19) 88.87(2.63) 96.11(1.84)

Notes: RNN: recurrent neural network; LSTM: long short term memory; ResNet: 50-layers residual neural network; AlexNet: eight-layers AlexNet neural network;

GoogLeNet: 22-layers inception neural network; AlexNet-LSTM: the combination model of AlexNet neural network and LSTM; ACC: accuracy; SPE: specifcity; SEN:

sensitivity; F1_M: F1-measure; G_M: G-mean; AUC: area under the receiver operating characteristic curve

§Mean (standard deviation).

https://doi.org/10.1371/journal.pone.0201142.t001
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chaotic prediction of diseases’ progression, and the linear classification model is not suitable

for the prediction of ophthalmic disease. This result also further confirms the superiority and

reasonability of the TempSeq-Net.

To select the best model from three LSTM models, we further compared their efficiency

and resource utilization, including the model size, the number of parameters, the time con-

sumption per sequence data, and GPU memory usage for testing. In this paper, we used the

same sequence images, mini-batch size and hyper-parameters for fair comparison. We

obtained the detailed comparison results as shown in the Table 2 and Fig 4B. The size and the

number of parameters are the least for GoogLeNet-LSTM model, followed by the AlextNet-

LSTM model. However, the AlexNet-LSTM (27.6ms) is faster than GoogleNet-LSTM (39.3ms)

for single sequence prediction (Fig 4B), and the AlextNet-LSTM uses less GPU resource in

testing procedure. ResNet-LSTM is inferior to the other two models in terms of accuracy, effi-

ciency and resource usage. In general, the disk space of the computer is sufficient, but real-

time prediction is required in clinical application. Therefore, we prefer AlexNet-LSTM as the

final model (TempSeq-Net) and conduct further performance analysis based on this model.

Exploring effective range of sequence lengths for prediction

Since the input data can be of arbitrary length, we want to explore the effect of different lengths

of sequence images on the prediction performance to determine the appropriate range of

sequence lengths for clinical use. We specifically selected and input four sequence data with

Fig 4. The ROC curves and performance comparison of six temporal sequence networks. (a) The ROC curves and AUC values of six temporal

sequence networks: AlexNet-LSTM, GoogLeNet-LSTM, ResNet-LSTM, AlexNet-RNN, GoogLeNet-RNN and ResNet-RNN. (b) The performance

comparison of LSTM models (AlexNet-LSTM, GoogLeNet-LSTM and ResNet-LSTM) in terms of accuracy, the model size and time consumption per

sequence data. Notes: ROC: receiver operating characteristic curve.

https://doi.org/10.1371/journal.pone.0201142.g004

Table 2. The efficiency and resource utilization comparison of three LSTM models.

Method Size (MB) Parameters Time per sequence

(ms)

GPU usage (MB) Prediction accuracy

AlexNet-LSTM 58.8 1.5e+07 27.6 503 92.22

GoogLeNet-LSTM 29.0 7.6e+06 39.3 892 92.51

ResNet-LSTM 94.6 2.5e+07 81.5 3109 90.64

https://doi.org/10.1371/journal.pone.0201142.t002
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different lengths (2, 3, 4, and 5 re-examination stages) into the TempSeq-Net model to predict

their impending trend of ophthalmic disease at the next stage (3, 4, 5 and 6). Similarly, 5-fold

cross-validation was employed to compare their differences in performance. We managed to

achieve detailed quantitative indicators with means and standard deviations (Table 3), ROC

curves (Fig 5A) and the histogram comparison of ACC, SPE and SEN (Fig 5B). From the

experimental results, we obtained the following significant conclusions. First, when the length

of sequence data is five, the prediction performance is the best with ACC, SPE, SEN and AUC

achieving 92.22%, 94.31%, 88.55% and 97.18% (Table 3 and Fig 5B). Second, as the length of

sequence data decreases, the prediction performance declines gradually (Fig 5B). Third, when

the length is decreased to two, the performance is weak (only 74.19%, 78.42%, 66.73% and

91.47%) as shown in Table 3 and Fig 5B. Fourth, when the length is three or four, their results

are almost comparable and slightly improved (84.73%, 87.25%, 80.27% and 94.59% for length

three; 87.19%, 90.44%, 81.36% and 95.18% for length four). In addition, the ROC curves and

AUC values declines when the sequence length reduces from five to two (Fig 5A). The experi-

mental results indicate that our temporal sequence model TempSeq-Net can effectively predict

the progression pattern of ophthalmic disease based on three or more consecutive re-examina-

tion results.

Table 3. The performance comparison of TempSeq-Net model for prediction with different sequence lengths.

SL ACC (%) SPE (%) SEN (%) F1_M (%) G_M (%) AUC (%)

2 74.19(6.86)§ 78.42(8.01) 66.73(7.15) 65.27(8.22) 72.25(6.52) 91.47(1.52)

3 84.73(4.18) 87.25(4.42) 80.27(5.67) 79.08(5.95) 83.65(4.34) 94.59(1.14)

4 87.19(2.28) 90.44(2.48) 81.36(3.67) 82.04(3.68) 85.76(2.52) 95.18(1.30)

5 92.22(1.98) 94.31(1.71) 88.55(3.32) 89.10(2.98) 91.38(2.24) 97.18(1.46)

§Mean (standard deviation).

https://doi.org/10.1371/journal.pone.0201142.t003

Fig 5. The performance comparison of TempSeq-Net model over different sequence lengths. (a) The ROC curves and AUC values of TempSeq-

Net model over sequence lengths of 2–5. (b) The ACC, SPE and SEN indicators comparison of TempSeq-Net model over sequence lengths of 2–5.

Notes: SL: sequence length.

https://doi.org/10.1371/journal.pone.0201142.g005
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Analyzing the impact of different sequence data lengths on model’s

training

Furthermore, we want to analyze the impacts of different sequence data lengths on model’s

training. We trained two other classifiers TempSeq-Net-1 and TempSeq-Net-2 using sequence

lengths of four and three, respectively, and compare them with TempSeq-Net classifier trained

with sequence length five (Table 4). For fair comparison, we conducted the same testing dataset

in each group of comparative experiments. From the experimental results, we achieved a mean-

ingful conclusion: the performance of the models trained with longer data performs better than

or equal to that of the models trained with shorter data. For example, when the length of

sequence data is three, although the ACC and SPE of three models are almost equal, the SEN,

F1_M, G_M and AUC of TempSeq-Net (80.27, 79.08, 83.65 and 94.59), TempSeq-Net-1 (75.38,

76.01, 81.05 and 94.03) and TempSeq-Net-2 (74.01, 75.42, 80.49 and 93.73) are successively

reduced. When the length of sequence data is four, the ACC, SPE and SEN indicators of the

TempSeq-Net model (87.19, 90.44 and 81.36) are slightly better than those of the TempSeq-

Net-1 model (87.09, 91.00 and 79.97) and TempSeq-Net-2 (82.86, 87.29 and 74.81). Similar

results are also showed in the prediction of sequence data with length five, where the ACC, SPE

and SEN indicators of TempSeq-Net (92.22, 94.31 and 88.55) is significantly better than that of

the TempSeq-Net-1 classifier (87.68, 91.35 and 81.04). These experimental results indicate that

training the model with longer sequence data can enhance its prediction performance. Only

one model with longer sequence data needs to be trained to be able to simultaneously predict

short and long sequence data. As the number of re-examination increases, the sequence data

will become longer. Longer sequence data allows the model to obtain richer temporal-spatial

relationship and present a more precise prediction for the progression of ophthalmic disease.

Convergence analysis of the TempSeq-Net model

We also analyzed the convergence of the TempSeq-Net model under limited number of itera-

tive training. We performed one testing per 50 training sessions and calculated its accuracy

and its loss function value. A total of 2000 training sessions were conducted, we obtained 40

groups of accuracy and loss values. As shown in Fig 6, the loss function value and accuracy

changed dramatically at the beginning of the training, however both of them tend to be stable

with increasing iterations. This satisfactory performance indicates that our TempSeq-Net

model is effective and convergent in the prediction of the ophthalmic diseases.

Table 4. The performance comparison of the models trained with different sequence lengths.

SL Model ACC (%) SPE (%) SEN (%) F1_M (%) G_M (%) AUC (%)

3 TempSeq-Net 84.73(4.18)§ 87.25(4.42) 80.27(5.67) 79.08(5.95) 83.65(4.34) 94.59(1.14)

TempSeq-Net-1 82.96(3.86) 87.23(2.63) 75.38(6.74) 76.01(6.20) 81.05(4.72) 94.03(1.21)

TempSeq-Net-2 82.76(4.78) 87.68(2.92) 74.01(8.55) 75.42(7.58) 80.49(5.90) 93.73(1.17)

4 TempSeq-Net 87.19(2.28) 90.44(2.48) 81.36(3.67) 82.04(3.68) 85.76(2.52) 95.18(1.30)

TempSeq-Net-1 87.09(2.04) 91.00(1.96) 79.97(4.97) 81.66(3.30) 85.27(2.59) 95.24(1.39)

TempSeq-Net-2 82.86(2.68) 87.29(2.80) 74.81(3.74) 75.90(3.85) 80.79(2.78) 93.77(1.18)

5 TempSeq-Net 92.22(1.98) 94.31(1.71) 88.55(3.32) 89.10(2.98) 91.38(2.24) 97.18(1.46)

TempSeq-Net-1 87.68(2.06) 91.35(1.25) 81.04(4.23) 82.51(3.59) 86.02(2.64) 95.34(1.35)

Notes: TempSeq-Net-1: the temporal sequence network trained with sequence length four; TempSeq-Net-2: the temporal sequence network trained with sequence

length three

§Mean (standard deviation).

https://doi.org/10.1371/journal.pone.0201142.t004
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Conclusions and future work

In this study, we proposed an effective and feasible temporal sequence network to predict the

progression of ophthalmic disease based on the consecutive re-examination images. We have

compared the performance of six different combinations of CNNs and LSTM (or RNN) under

the same cross-validation dataset, to obtain the optimal TempSeq-Net model. Next, we evalu-

ated the prediction effectiveness of the TempSeq-Net on different lengths of sequence data,

and obtained the appropriate range of sequence lengths in prediction procedure. A meaningful

conclusion was obtained that only one model needs to be trained for prediction with different

sequence lengths. We also have achieved real-time prediction that can process single sequence

data in tens of milliseconds. This approach provides a promising solution to this challenging

task of ophthalmic disease prediction, which is of great benefit to the individual’s treatment

schedule and as an early warning for ophthalmologists and patients. What’s more, our study

opens up new possibility for artificial intelligence technologies in the prediction applications

for other medical images, videos and electronical records.

In the future, we will develop and deploy a web-based software to serve ophthalmologists

and patients, further validate the effectiveness of our approach in clinic, and gather more

sequence data to enhance model’s performance. On the other hand, we will continue exploring

different temporal sequence methods (such as Gated Recurrent Unit) to predict the progres-

sion of ophthalmic disease, and combine image localization (such as Faster RCNN or U-Net)

and interpretable methods of deep learning to mine the relationship between disease progres-

sion and sequence images changes.

Supporting information

S1 File. Temporal sequence data of the slit-lamp images.

(ZIP)

Fig 6. The convergence analysis of the TempSeq-Net model. The blue and red curves represent the changing trends

of the loss function value and accuracy with iterations, respectively.

https://doi.org/10.1371/journal.pone.0201142.g006
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