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Induction of spontaneous curvature and endocytosis: Unwanted consequences
of cholesterol extraction using methyl-b-Cyclodextrin
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ABSTRACT
Membrane curvature is a property of biological membranes essential for organelle morphology and
the formation of tubulovesicular carriers. Curvature generation is influenced by the lipid
composition of the membrane and protein-mediated processes. Lipids with small headgroups, such
as phosphatidic acid, are conical and impose negative curvature on a monolayer. Conversely, lipids
with large headgroups relative to the hydrophobic tail(s), such as lysophosphatidylcholine, have an
inverted conical shape and impose positive curvature. Due to its abundance and high rates of
spontaneous flip-flop between membrane leaflets cholesterol is proposed to buffer the formation
of membrane curvature. Recently, we demonstrated that cholesterol is also crucial for maintaining
the proper spacing of anionic phospholipids. Upon extraction of cholesterol with cyclodextrin there
is a sharp increase in the negative surface charge density of the plasma membrane, which promotes
electrostatic repulsion between anionic headgroups, the generation of spontaneous positive
curvature and rapid membrane internalization.
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The plasma membrane (PM) is comprised of a lipid
bilayer that serves as not only a barrier but also a site for
cellular transactions including endocytosis, exocytosis,
and signal transduction. An intriguing feature of the PM
is the asymmetric distribution of lipids between the cyto-
solic and exofacial leaflets [1]. Anionic glycerophospholi-
pids, including phosphatidic acid, phosphatidylinositol
and its phosphorylated derivatives, and phosphatidylser-
ine (PtdSer) are primarily restricted to the cytosolic leaf-
let of the PM in resting cells. Thus, the inner leaflet of
the PM possesses a significant and biologically relevant
negative surface charge [2]. Conversely, the lipids in the
exofacial leaflet are mainly uncharged or zwitterionic
and thus the surface of this leaflet of the bilayer is close
to zero. In addition to phospholipids, sterols, predomi-
nantly cholesterol in mammalian cells, are essential com-
ponents of the PM and required to maintain its
biophysical properties such as fluidity, thickness, and
spontaneous curvature [3].

Curiously, PtdSer and cholesterol display a mirrored
distribution within cells; both are synthesized in the
endoplasmic reticulum (ER), yet are enriched in the PM

[4]. While at the nanoscale level Chol-PtdSer rich
domains have been described to influence K-Ras signal-
ing [5]. Additionally, both lipids are enriched in and
required for caveola formation or stability [6,7]. We
recently reported that PtdSer containing of stearate and
oleate as its acyl chains interacts with Chol in giant unila-
mellar vesicles and cholesterol oxidase protection assays
[8]. While at the cellular level PtdSer is required to retain
cholesterol in the cytosolic leaflet of PM [8]. Despite the
growing number of studies indicating a requirement for
PtdSer to maintain Chol in the inner leaflet of the PM
the relationship between PtdSer and Chol is not well
understood. Importantly, it has been unclear if Chol
impacts the distribution of PtdSer.

On a per mole basis, Chol and glycerophospholi-
pids are estimated to be roughly equivalent and
together comprise about 80 mol% of the plasmalem-
mal lipids [9]. Therefore, the rapid extraction of Chol
using high concentrations of methyl-b-cyclodextrin
allowed us to examine the role of Chol in maintaining
the distribution of PtdSer. Using a genetically
encoded biosensor for PtdSer as well as PM isolation
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and lipid determination we found that within minutes
of extracting the plasmalemmal Chol a significant
fraction of the PtdSer was internalized to endosomal
compartments [10]. As Chol constitutes a significant
fraction of the PM lipids, we suspected that its
removal would cause increased lateral packing of
PtdSer and other lipids in the PM. In a resting cell,
�20% of the cytosolic leaflet lipids possess negative
charge and this has been estimated to be increased to
�30% following Chol extraction see (Fig. 1) [10].
Based on the notion, we proposed that the close

packing of negatively charged headgroups would have
a consequence of increasing electrostatic repulsion of
the negatively charged headgroups in the inner leaflet
and promote spontaneous membrane inward curva-
ture (Fig. 1a) [10]. Indeed, theoretical calculations
support the notion that even subtle increases in nega-
tive charge density could have a substantial impact
on the degree of spontaneous curvature (Fig. 1b, c)
[10]. At the cellular level, the generation of spontane-
ous membrane curvature can be recognized and stabi-
lized by BAR domain proteins such as endophilin.

Figure 1. Increased charge density enhances spontaneous membrane curvature. a) A diagram depicting a model plasma membrane
before (left) and after (right) cholesterol extraction. The color of the headgroup corresponds to each phospholipid, and the arrows indi-
cate headgroup charge repulsion. b) Spontaneous bilayer curvature predicted theoretically. JB, a spontaneous curvature of a bilayer
(nm); F in, the fraction of charged lipids in the inner monolayer and F out, the fraction of charged lipids in the outer monolayer. c) Cal-
culated spontaneous preferred cylinder radius of a bilayer (RB) with varying fraction of negatively charged lipids in the inner monolayer.
d) HeLa cells expressing the PtdSer probe, GFP-LactC2, were incubated with 10 mM mbCD or supplemented with 30 mM didecanoyl
PtdSer (DDPS) 15min and imaged using confocal microscopy. e) Quantitation of the ratio of PM to cytoplasmic GFP-LactC2 signal in con-
trol cells, mbCD- or DDPS-treated cells. Values represent means§ s.e.m., n = 32 ���p< 0.005 and ����p < 0.001.
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To verify the generation of spontaneous curvature as a
consequence of electrostatic repulsion, we presented four
lines of evidience [10]. First, red blood cell ghosts were
used as these are biologically relevant membranes that
possess phospholipid asymmetry and are abundant in
cholesterol. Upon rapid removal of cholesterol from the
ghosts, the negative surface charge density of the inner
surface showed a marked increase in the negative charge
density as monitored with a fluorescently tagged polyba-
sic peptide. Second, the internalization of PtdSer could
be reduced by increasing the ionic strength of cytosol. In
these experiments, the increase of cytosolic cations effi-
ciently shield the negatively charged headgroups of the
anionic phospholipids and thus limit the repulsive forces.
Third, cells were subjected to low osmolarity conditions
to produce a sustained mild stretching of the PM. This
maneuver increased lateral tension and limited the inter-
nalization of PtdSer. Finally, the addition of exogenous
PtdSer to cells also stimulated the internalization of
PtdSer in the absence of any other signals. Taken
together these results suggest that cholesterol depletion
induces an increase in negative charge density, resulting
in enhanced headgroup repulsion and spontaneous
membrane curvature.

While the use of cyclodextrin is rather extreme, the
experiments reveal essential biophysical properties of the
PM. Specifically, charge repulsion by anionic headgroups
is an important contributor to spontaneous curvature. It
is worth noting that a variety of enzymes that can
increase localized negative charge density are reported to
positively regulate endocytosis such as lipid kinases,
phospholipase D and PtdSer flippases [11-13]. Other
recent publications have demonstrated that reducing
membrane tension can promote membrane deformation
and promote endocytosis [14, 15]. In the Zhi et al., study
the authors demonstrated in vitro that a reduction in
membrane tension in giant liposomes promoted mem-
brane curvature [14]. They concluded that cellular mem-
brane shapes and dynamics could be controlled by
interacting with curvature-coupling proteins and
through the regulation of membrane tension and lipid
shape. The concept of altered membrane tension and flu-
idity was also examined in the context of increasing poly-
unsaturated fatty acyl chains. The study of Pinot et al.
demonstrated that increasing docosahexaenoic acid (22:6
fatty acid) could overcome biophysical barriers and pro-
mote membrane tubulation and vesiculation mediated
by endophilin and dynamin [15]. Finally, the delivery of
membrane via exocytosis could provide “slack” and
thereby decrease membrane tension. This concept would
also help to explain the ultrafast endocytosis recently
described to occur in the mouse hippocampal synapses
[16]. Indeed, Watanabe and colleagues suggested that

exocytosis leads to the concomitant internalization of
roughly the same amount of membrane via ultrafast
endocytosis. Overall, we suspect that nano- or microscale
changes in biophysical properties may well influence a
variety of naturally occurring vesicular transport process.

Our study demonstrated that increasing the negative
charge density causes the electrostatic repulsion of the
anionic headgroups which in turn promote spontaneous
curvature. Similarly, several recent studies have
highlighted the interplay between membrane tension
and curvature. The generation of spontaneous curvature
could be a significant contributor to many endocytic pro-
cesses especially ultrafast endocytosis seen in the
synapse.
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