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ABSTRACT
Mycobacterium tuberculosis complex causes tuberculosis (TB), one of the top 10 causes of death worldwide.
TB results in more fatalities than multi-drug resistant (MDR) HIV strain related coinfection. Vaccines play a
key role in the prevention and control of infectious diseases. Unfortunately, the only licensed preventive
vaccine against TB, bacilli Calmette-Gu�erin (BCG), is ineffective for prevention of pulmonary TB in adults.
Therefore, it is very important to develop novel vaccines for TB prevention and control. This literature
review provides an overview of the innate and adaptive immune response during M. tuberculosis infection,
and presents current developments and challenges to novel TB vaccines. A comprehensive understanding
of vaccines in preclinical and clinical studies provides extensive insight for the development of safer and
more efficient vaccines, and may inspire new ideas for TB prevention and treatment.
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Introduction

Tuberculosis (TB) is an infectious disease caused byMycobacte-
rium tuberculosis complex (MTBC) whose natural history
traces back 70,000 years ago.1 In 2016, there were an estimated
10.4 million new TB cases globally, 1.3 million TB-associated
deaths, and an additional 374,000 deaths from TB patients with
co-infection of HIV-MTBC.2 Although the number of TB
deaths decreased, TB remained one of the top 10 causes of
death worldwide. To address TB challenges, the World Health
Organization (WHO) has introduced the “End TB Strategy”,
which indicates that the phased strategy has progressed from
controlling the prevalence of TB (before 2015) to ending the
prevalence of TB (2016–2035). The target for 2035 is a 95%
reduction in TB deaths and a 90% reduction in the TB inci-
dence rate compared to levels in 2015, and the target for 2050
is less than one TB patient per million people each year.2 How-
ever, challenges of controlling TB infection and developing
more effective vaccines remain, and concerted effort will be
required to achieve the global TB control strategy formulated
by WHO.

Vaccination is the most effective way to prevent and control
TB. As early as 1890, Robert Koch proposed the first immuno-
therapy against TB.3 However, bacilli Calmette-Gu�erin (BCG)
is the only licensed preventive vaccine against TB and has
existed for 96 years.4 Although BCG vaccination can effectively
protect infants and young children from TB infection, and pre-
vent severe diseases such as disseminated TB and tuberculous
meningitis, it has variable efficacy against pulmonary TB, par-
ticularly in adults.5 Clinical trials conducted on adults in the
United Kingdom (UK) have shown that the protective effect of
BCG was 60 to 80%. However, studies performed with South

African infants have shown that BCG had no protective effect.6

Reasons for this variability could be explained by several fac-
tors, including genetic differences, environmental factors, co-
infection, production methods, the diversity of BCG strains,
and the impact of poverty and nutrition.7,8

The BCG vaccine does not effectively stimulate the T cell
mixed population (especially for CD8C T cells), and the
immuno-protective effect of BCG vaccination only persists for
10 to 15 years. Researchers worldwide have reached consensus
that the development of more effective vaccines is necessary to
compensate for the limitations of the BCG vaccine. With rapid
developments in immunology and molecular biology, some
novel TB vaccines have become available, including inactivated
vaccines, recombinant live vaccines, attenuated live vaccines,
subunit vaccines, and DNA vaccines. At present, there are 25
new TB vaccines in clinical trials, of which three vaccines (Vac-
cae in patients with latent TB infection (LTBI), Mycobacterium
indicus pranii (MIP)/Mw, and VPM1002) have reached Phase
III clinical trials.9,10 Three vaccines (Vaccae, Utilins, and BCG-
PSN) have obtained registration certificates from the China
Food and Drug Administration (CFDA, http://eng.sfda.gov.cn/
WS03/CL0755/) and have been widely used to clinically treat
TB in China. However, three vaccines (rBCG30, AERAS-422,
and H1:LTK63) have been terminated for their disappointing
issues after phase I clinical trials.11-13 Herein, we review the
developmental progress and challenges of these new TB vac-
cines, and we will also introduce five novel TB vaccines (Utilis-
ing, M. smegmatis, AEC/BC02, BCG-PSN, and GX-70) for the
first time, which may give a fresh perception into the TB vac-
cine research field.
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TB infection and immunology

According to the WHO report, almost one third of the world-
wide population has been infected byM. tuberculosis. However,
only 10% of infected individuals develop an active disease state
with the appearance of clinical symptoms, suggesting that
the immune system can control the infection and prevent active
disease in the majority of the population.8 Although the inter-
actions between the host and M. tuberculosis are still unclear, it
is generally believed that innate immunity and adaptive immu-
nity play critical roles in controllingM. tuberculosis infection in
humans.14

Innate immunity

The innate immune cell types associated with M. tuberculosis
infection are macrophages, dendritic cells (DCs), neutrophils,
and natural killer (NK) cells.15 At the portal of entry, M. tuber-
culosis is first recognized and controlled by macrophages and
DCs through pattern recognition receptors (PRR) such as Toll-
like receptor (TLR), nucleotide-binding oligomerization
domain (NOD)-like receptor (NLR), C-type lectin receptor
(CLR), and retinoic acid-inducible gene I (RIG-I)-like helicases
receptor (RLR).16 Once recognized, M. tuberculosis will be
killed by macrophages via several mechanisms, including
phagocytosis, inflammasome activation, reactive oxygen species
(ROS), autophagy, and apoptosis.17 However, instead of being
digested like other bacteria, M. tuberculosis escapes from the
killing of macrophages by interrupting the autophagy signaling
pathway, inhibiting the fusion of phagosomes and lysosomes.18

DCs have the ability to present antigens of M. tuberculosis to
prime na€ıve T cells, bridging innate and adaptive immunity.
Khan N et al. suggested that activated DCs showed a strong lib-
eration of cytokines and nitric oxide, autophagy, and improved
migration towards the lymph nodes, which consequently inhib-
ited the intracellular survival of M. tuberculosis.19 Nevertheless,
monocyte-derived DCs are not supportive of M. tuberculosis
dissemination and reproduction.15

Besides macrophages and DCs, neutrophils and NK cells are
also involved in innate responses at the early stage of M. tuber-
culosis infection through production of nonspecific cytokines
and chemokines.20,21 In the past, neutrophils had been consid-
ered as short-lived cells that were essential to eliminate extra-
cellular pathogens.22 This outdated viewpoint has been revised
recently by mounting evidence, which demonstrates that neu-
trophils can secrete cytokines and effector molecules.22 Numer-
ous studies have suggested that interleukin-17 (IL-17) and
chemokines produced by neutrophils play a vital role in inhibit-
ing M. tuberculosis H37Rv strain growth by mediating ROS
production and the migration of neutrophils in the early stages
of infection.20,23 NK cells belong to lymphocytes of the innate
immune system, and have a beneficial effect on the initial
defense against M. tuberculosis infection by producing cyto-
kines, chemokines, and perforin.24 NK cells have an innate
memory ability that is associated with the effort to develop
therapies and vaccines to improve the initial phases of the
immune response against TB.25

In addition, a growing number of studies have indicated that
pathways initiated by TB vaccines were critical for TB vaccine-

related immunity. It has been shown that vaccination with
BCG led to non-specific protective effects against unrelated
infections and mortality. BCG vaccination can instruct innate
immune cells through the Akt/mTOR (mammalian target of
rapamycin)/HIF1a (hypoxia-inducible factor 1a) pathway,26

cellular metabolism pathway,27 and NOD1 signaling pathway.28

Adaptive immunity

Adaptive immunity includes both cellular and humoral immu-
nity. Antigens of M. tuberculosis are mainly presented by
class II major histocompatibility complex (MHCII) to CD4C

T cells such as T-helper 1 (Th1), Th2, Th17, and T regulatory
cells (Tregs). MHCII molecules provide an opportunity for
these cells to activate adaptive immune responses. Th1 and
Th17 cells are the key effector CD4C T cells during TB infec-
tion.29 Our previous studies have demonstrated that Th1 cells
were critical for controlling intracellular pathogens including
M. tuberculosis by secreting interferon gamma (IFN-g) and
activating antibacterial action in macrophages.30-36 Previous
studies have indicated that Th1 cells can secrete IFN-g and
tumor necrosis factor alpha (TNF-a) to activate macrophages
to control M. tuberculosis infection. The mechanism of action
includes reactive oxygen and nitrogen intermediates, lysosomal
enzyme attack, antimicrobial peptides, and autophagy, as well
as activating downstream antimicrobial effector pathways.37,38

However, the classical paradigm of IFN-g responses has been
challenged by recent studies, which indicate that an increasing
IFN-g response in the lungs of mice was more damaging to the
host than to the pathogen.29,39 Th17 cells, a distinct lineage of
T cells, secrete several effector cytokines such as IL-17, IL-17F,
IL-21, and IL-22.40 Th17 cells are associated with M. tuberculo-
sis infection, but the role of the Th17/IL-17 responses in the
human TB protection response remains to be understood. It
has recently been documented that Th17 controlled TB infec-
tion by secreting IL-17 to recruit neutrophils and IFN-g posi-
tive CD4C T cells. This synergized the function of the Th1
immune response in the host defense against M. tuberculosis by
downregulating IL-10 and upregulating IL-12 production in
DCs.41,42 In addition, studies have shown that Th17 was also
associated with neutrophilic inflammation and histopatholog-
ical lesions.43,44 Although Th1 and Th17 cells play a central
role in host protection, additional strategies are needed to
improve protective immune responses in vaccine development.
Accumulating data have shown that inhibition of immune
responses of Th2 and Treg cells could dramatically enhance M.
tuberculosis clearance and induce superior Th1 responses in
mice and humans,45-48 which suggests that enhancing Th1
immune responses while inhibiting both Th2 and Treg immune
responses should be a useful method for developing more effec-
tive TB vaccines.

It is well known that CD4C T cells are a crucial component
of protective immunity against TB. However, an essential role
of CD8C T cells and B cells should be considered in the design
of new vaccines against TB infection. CD8C T cells recognize
the antigens presented by MHC Class I molecules, which con-
trol M. tuberculosis infection by releasing cytokines, causing
cytotoxicity, and inducing direct microbicidal activity.49

Although previous studies had an ingrained bias that CD8C T
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cells were dispensable and not essential for the control of M.
tuberculosis infection,49 an increasing number of studies have
indicated that CD8C T cells contribute to protective immune
responses against M. tuberculosis infection in animal models
and humans.50,51 Just as there was prejudice against the impor-
tance of CD8C T cells, the role of humoral immune responses
in host defense against TB has been considered marginal,
mostly due to the view that antibodies had a miniscule role in
eliminating intracellular pathogens. This assumption has been
changing in recent years.38,52 Growing evidence has demon-
strated that intradermal BCG vaccination can induce secretion
of IgG and IgM recognizing several mycobacterial antigens.53-55

Further, some of these antibodies could enhance both cellular
and humoral immunity against M. tuberculosis infection based
on various mechanisms, including accelerating phagolysosomal
fusion, promoting the clearance of immunomodulatory anti-
gens, and influencing the outcome of mycobacterial infection
through their ability to modulate inflammation.55

Recently, it has been shown that nontraditional T cells such
as mucosal-associated invariant T (MAIT) cells and CD1C T
cells were potentially important for TB vaccine-induced immu-
nity. MAIT cells were recently identified as a non-classical
CD8C T cell subset. They have Th1 effector capacity position-
ing them to play a critical role in the early immune response to
M. tuberculosis.56 Furthermore, CD1-restricted T cells can rec-
ognize mycobacterial lipids and glycolipid antigens derived
from M. tuberculosis. Previous studies have demonstrated that
CD1-restricted T cells from peripheral blood could be stimu-
lated by autologous immature CD1C DCs and respond at a sig-
nificant magnitude and frequency in asymptomatic M.
tuberculosis-infected donors.57

New TB vaccines

Since the BCG vaccine was first used, scientific advances have
provided understanding of the mycobacterial genetic system,
proteomics, and immunology, which have accelerated the
development of safer and more effective TB vaccines.58 TB vac-
cines were divided into therapeutic vaccines and preventive
vaccines based on function. The therapeutic vaccines were used
to treat TB patients, while the preventive vaccines were used to
prevent MTBC infection and TB development in healthy per-
son or those with LTBI. Currently, there are four strategies for
developing a new generation of TB vaccines: (1) Immunothera-
peutic vaccine: develop therapeutic vaccines that might syner-
gize with chemotherapy to shorten a treatment course for
active TB and prevent TB recurrence; (2) Immunopreventive
vaccine: prevent MTBC infection in healthy patients and those
with LTBI endogenous activation, as well as exogenous reinfec-
tion; (3) Prime-boosting vaccine: boost the limited immunity
conferred by BCG to produce stronger and more persistent
protection; 4) Priming vaccine: replace BCG with either live
recombinant BCG (rBCG) or genetically attenuated MTB vac-
cines that confer greater safety and protective efficacy.59 Com-
mon to all of these strategies is the cellular immune response,
requiring induction of Th1 cells as well as cytotoxic T lympho-
cyte (CTL) immune responses. BCG, inactivated vaccine, and
subunit vaccine tend to stimulate CD4C T cell immune
responses rather than CD8C T cell immune responses, but live

vaccine and DNA vaccine can induce both CD4C and CD8C T
cell immune responses. At present, 25 new TB vaccines have
been licensed or are being evaluated in clinical trials (Table 1),
and more TB vaccines are still in basic or preclinical research.
These TB vaccines can be divided into five categories: inacti-
vated vaccines, recombinant live vaccines (recombinant myco-
bacterium vaccines, recombinant bacterium vaccines, live virus
vaccines), attenuated live vaccines, subunit TB vaccines, and
DNA vaccines. The following sections will provide a perspec-
tive of the latest progress of new TB vaccines licensed or in clin-
ical trials as well as an overview of vaccine candidates in
preclinical studies.

Inactivated TB vaccines

Inactivated TB vaccines have long been used to prevent M.
tuberculosis infection and treat TB. The inactivated TB vaccines
are composed of whole bacteria that have been inactivated, or
their cleavage fragments prepared by physical or chemical
methods. These vaccines can induce humoral and Th1-type cel-
lular immune responses to defend against extracellular patho-
gen infection, and have a better immunotherapeutic effect at
controlling TB development.8,60,61 Inactivated vaccines have
several shortcomings, including weaker preventive protection,
inability to induce a cytotoxic T lymphocyte response, short
immunity period, multiple required inoculations, and high
dose. However, inactivated vaccines have advantages in terms
of safety, production, and administration, which has led to
extensive and rapid development of this type of vaccines. At
present, two inactivated TB vaccines (Utilins and Vaccae for
TB) have been approved for clinical use, and five inactivated
TB vaccines are in clinical trials, including M. smegmatis vac-
cine, Vaccae for LTBI, MIP/Mw, RUTI�, and DAR-901.

Utilins/Mycobacterium phlei F.U.36
Mycobacterium phlei is a fast-growing mycobacterium that
flourishes at temperatures ranging from 28�C to 52�C. Heat-
killed M. phlei (termed Utilins or M. phlei F.U.36) vaccine was
produced first by Chengdu Jinxing Jiankang Pharmaceutical
Co., Ltd. (China), and currently by Chongqing Lummy Phar-
maceutical Co., Ltd. (China). Utilins was given a new drug cer-
tificate from the CFDA (Approval No: S20040068), and was
widely used as a therapeutic vaccine or immunomodulator in
China. After deep intramuscular injections, Utilins stimulates
T lymphocytes to release a variety of cytokines such as IL-2, IL-
4, TNF-a, IFN-g, macrophage activating factor (MAF), migra-
tion inhibitory factor (MIF), and macrophage cytotoxicity fac-
tor (MCF). These cytokines induce and activate macrophages,
NK cells, and B lymphocytes to clear pathogens.62 Previous
studies suggested that Utilins could increase TLR4 expression
on CD4CCD25C cells, promote IL-10 release from
CD4CCD25C regulatory T cells, and inhibit IL-17 secretion
from Th17 cells in asthmatic mice.63,64 To date, evidence has
shown that Utilins produced efficacious therapeutic effects in
the treatment of asthma,65 atopic dermatitis,62 non-small cell
lung cancer,66 reiterative respiratory tract infections,67 malig-
nant pleural effusion,68 verruca vulgaris,69 and condyloma acu-
minatum,70 as well as pulmonary TB.71 Several studies also
indicated that the sputum negative conversion rate, foci
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absorption rate, and cavity closure rate in elderly pulmonary
TB or new smear positive pulmonary TB patients immunized
with Utilins vaccine combined with anti-TB drugs were signifi-
cantly higher than that in the control group immunized with
anti-TB drugs alone.72,73 Additionally, a Phase III trial has been
conducted by First Affiliate Hospital of Guangxi Medical Uni-
versity (#6 Shuangyong Road, Nanning 530021, China) to eval-
uate the effect of inhaled Utilins vaccine on prevention and
treatment of moderate bronchial asthma in China (Chinese
Clinical Trial Registry No: ChiCTR-TRC-11001189).

Mycobacterium smegmatis vaccine
Mycobacterium smegmatis is also a non-pathogenic fast-grow-
ing mycobacterium. M. smegmatis shares more than 2000
homologous genes and a peculiar cell wall structure with M.
tuberculosis.74,75 Furthermore, compared with pathogenic
mycobacterial species as well as BCG, M. smegmatis can induce
higher levels of cytokines by macrophages, activate the matura-
tion of DCs by upregulating MHC class I molecules, and pres-
ent mycobacterial antigens more efficiently via the MHC class I
pathway.75 In a previous study, an acellular M. smegmatis vac-
cine was successfully prepared and produced a protective effect
on guinea pigs infected with M. tuberculosis.76 To evaluate the
safety, tolerance, and PPD skin reactions of this vaccine, a
Phase I clinical study was performed with 55 healthy volunteers
in China.77 The results showed that mild side effects were
observed in 14 volunteers, but all volunteers tolerated this vac-
cine well, and skin reactions appeared PPD-strong.77

VaccaeTM

Mycobacterium vaccae was first isolated and obtained from the
mammary glands of cows by Boenickse R and Juhasz E in
1964.78 Four years later, Tsukamura M et al. found that this
bacterium was a fast-growing mycobacterium without pathoge-
nicity to humans and animals, and contained many protective
antigens with immunomodulating effects.79 In 1990, Stanford J
L used irradiation-killed M. vaccae as an immunotherapeutic
adjunct to chemotherapy in the treatment of pulmonary TB.80

In recent studies, heat-killed preparations of M. vaccae (MV or
SRL-172) also showed preliminary evidence of activity as an
adjunct to anti-TB chemotherapy.81-83 Whole inactivated MV
was shown to be safe and immunogenic in Phase I and II clini-
cal trials in HIV-infected adults with prior BCG vaccination in
both Finland and Zambia.84,85 A double-blind placebo-con-
trolled Phase III clinical trial in Tanzania demonstrated that
MV vaccination was safe, well-tolerated, and provided signifi-
cant protection against TB infection.10

In 1999, MV was improved by the National Institute for the
Control of Pharmaceutical and Biological Products (Beijing,
China) in collaboration with the 309th Hospital of Chinese
PLA (Beijing, China) using high-pressure air flow shearing
technology (https://www.clinicaltrials.gov/ct2/home). The
improved MV was a non-cell Mycobacterium vaccae vaccine
termed VaccaeTM for TB immunotherapy.86 VaccaeTM was
given a Chinese new drug certificate in 1999 (Certificate No:
(1999) S-03), and was later approved by the CFDA (Approval
No: S20010003) for the adjuvant treatment of TB. VaccaeTM

was first produced by Anhui Zhifei Longcom Biologic Phar-
macy Co., Ltd (now by Anhui Zhifei Biological Pharmaceutical

Co., Ltd.) (China), and played an important role in improving
immunity, promoting phagocytosis, regulating bidirectional
immunoreaction, and reducing pathological damage (Clinical-
Trials.gov Identifier: NCT01979900). It has been used for adju-
vant treatment of TB in the clinic.87,88 In addition, Sun Z. P.
et al. used VaccaeTM to treat purified protein derivative (PPD)-
strong positive patients, who were followed for 4 years.89 The
results suggested that TB incidence in the VaccaeTM treatment
group (0.30%, 2/660) or isoniazid treatment group (0.61%, 4/
660) was significantly lower than that in the control group
(3.48%, 23/660). Furthermore, the adverse reaction rate of the
VaccaeTM treatment group was significantly lower than that of
isoniazid treatment group. These results suggested that
VaccaeTM may have an immunoprophylactic effect on patients
with LTBI. Currently, a Phase III trial, including 10,000 people
aged 15–65 years with a tuberculin skin test (TST) >15 mm,
was implemented to assess VaccaeTM efficacy and safety in pre-
venting TB disease in people with LTBI in Guangxi province in
China.2 The trial was scheduled to be completed by June 2017,
but the latest results have not been published (ClinicalTrials.
gov Identifier: NCT01979900). VaccaeTM is currently the only
recommended drug in TB immunotherapy by the WHO,2

although this vaccine may produce localized rashes, induration,
or fever in very few individuals.90

MIP/Mw
Mycobacterium indicus pranii (MIP) or Mycobacterium w
(Mw) is a non-pathogenic, rapidly growing strain of non-tuber-
culous mycobacteria (NTM) classifiable in Runyons Group
IV.91 The killed MIP vaccine originally used for leprosy has
also been found to be useful in the prevention of TB in mice92

and guinea pigs.93 MIP treatment was able to activate NF-kB
via involvement of TLR-4 signaling, leading to enhanced pro-
inflammatory cytokine and NO generation in infected macro-
phages and generation of a protective immune response.94 The
protective efficacy of MIP was evaluated in a rural population
of 28,948 people belonging to 272 villages in Ghatampur, Kan-
pur (India).95 Recently, to evaluate the efficacy and safety of
MIP in TB patients, two Phase III, multi-centric clinical trials
in Category-II pulmonary TB patients were conducted by the
Department of Biotechnology, Ministry of Science and
Technology (Govt. of India), and Cadila Pharmaceuticals
Ltd., India (ClinicalTrials.gov Identifier: NCT00265226 and
NCT00341328). Both studies indicated that MIP was safe with
no adverse effects and played a role in clearance of the
mycobacterium.9

RUTI�

RUTI� vaccine, developed by Archivel Farma S.L. (Spain) in
collabration with Parexel (USA), is a non-live therapeutic vac-
cine based on fragmented and detoxifiedM. tuberculosis.96 This
vaccine provides a strong humoral and cellular immune
response against antigens from actively growing and latent
bacilli.97 It has been demonstrated that RUTI� vaccine had effi-
cacy in controlling LTBI in experimental models of mice,
guinea-pigs, goats, and mini-pigs after a short period of chemo-
therapy.98 Based on these encouraging results, a double-blind,
randomized, and placebo-controlled Phase I clinical trial was
performed to determine the tolerability, immunogenicity, and
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safe dosage range of RUTI� vaccine in healthy volunteers
(ClinicalTrials.gov Identifier: NCT00546273). The results sup-
ported the feasibility of future evaluation on subjects with
LTBI.99 In 2010, a Phase II clinical trial was performed to assess
the safety, tolerability, and immunogenicity of two doses of
RUTI� vaccine in 96 subjects (48 HIV- and 48 HIVC subjects)
in South Africa (ClinicalTrials.gov Identifier: NCT01136161).98

Currently, a Phase IIa clinical trial is being conducted by Uni-
versity Medical Center Groningen (UMCG, Hanzeplein 1, Gro-
ningen 9713 GZ, Netherlands) in collaboration with Archivel
Farma S.L. to investigate the safety and immunogenicity of
RUTI therapeutic vaccination in patients with multidrug-resis-
tant TB (MDR-TB) after successful intensive-phase treatment
(ClinicalTrials.gov Identifier: NCT02711735). So far, this study
has not been opened for participant recruitment.

DAR-901 booster vaccine
The DAR-901 booster vaccine, a whole-cell, heat inactivated,
NTM vaccine, is generated from detoxified and liposomed M.
obuense cell fragments by Dartmouth-Hitchcock Medical
Center and Aeras (USA).100 The vaccine induces a Th1
immune response as well as a quicker and stronger specific
immunity against structural and growth-related antigens that
reduced both M. tuberculosis load and pulmonary pathological
lesions.101 To determine the safety, tolerability, and immunoge-
nicity of the vaccine at different doses, a Phase I clinical trial
has been completed in BCG immunized adults with and with-
out HIV infection in the United States (ClinicalTrials.gov Iden-
tifier: NCT02063555). The results showed that DAR-901
induced cellular and humoral immunity and boosted protec-
tion from M. tuberculosis compared to a homologous BCG
boost.102 In April 2016, a randomized, placebo-controlled, dou-
ble-blind Phase II clinical trial was initiated among adolescents
who received BCG previously in the United Republic of Tanza-
nia (ClinicalTrials.gov Identifier: NCT02712424). At present,
this study is ongoing, but not recruiting participants.

Recombinant live vaccines

For this type of vaccine, live mycobacteria (such as M. bovis
BCG, M. smegmatis, and M. vaccae), live bacteria (such as Lis-
teria monocytogenes, Lactobacillus, Streptococcus mitis, and Sal-
monella), and live virus (such as Vaccinia virus Ankara,
Adenovirus, Sendai virus, and Influenza virus) were used as vec-
tors to expressM. tuberculosis protective antigens, human cyto-
kines (e.g., IFN-g, IL-2, Granulocyte-macrophage colony-
stimulating factor (GM-CSF), IL-15, IL-18),103-105 or apoptosis-
promoting factors (Bcl-2 protein family BAX gene)106 by repli-
cating bacteria or virus in the hosts. These live vaccines not
only have adjuvant and carrier functions, but also have the
properties of exogenous antigens and live vaccines. A single
inoculation can induce strong and persistent specific humoral
and cellular immune responses against TB.

Recombinant mycobacterial vaccines
M. bovis BCG, one of the strongest known immune adjuvants,
was widely used as an expression vector due to its advantages in
safety, cost, stability, and persistent nonspecific immune stimula-
tion. Recombinant BCG (rBCG) vaccines were designed as

priming vaccines, which were derived from different BCG strains
via expression and secretion of a foreign virus, bacterial antigens,
mycobacterial protective antigens, human cytokines, and pro-apo-
ptotic factors, or by transforming mycobacteria through stable
site-specific integration of plasmids into bacterial genomes.107

Currently, several rBCG vaccines have been developed and their
protective efficacies as well as humoral and cellular immune
responses were evaluated in animal models and humans. There
are three rBCG vaccines in clinical trials (VPM1002, rBCG30,
and AERAS-422), but two of them (rBCG30 and AERAS-422)
have been stopped because of unsatisfactory results.11,12 Other
novel rBCG vaccines have been constructed and their safety and
immunogenicity were tested in animal models, including
rBCG-AE (rBCG::Ag85B-ESAT6),108 rBCG-AEI (rBCG::Ag85B-
ESAT-6-IFN-g),103 rBCG::RD1-2F9,109 rBCG::Ag85B-ESAT6-
TNF-a,110 rBCG::Ag85B-ESAT6-Rv2608,111 and rBCG::Ag85B-
ESAT6-Rv3620c.112 It was found that these vaccines could induce
higher antibody titers and elicit stronger and more enduring
Th1-type cellular immune responses than the parental BCG
strain, which itself conferred similar or even better protective
efficacy against M. tuberculosis infection than the BCG
vaccine.103,108-112 In addition, some other recombinant mycobac-
terial vaccines were also constructed to protect against M. tuber-
culosis infection. M. smegmatis has been engineered as a
recombinant vaccine vector expressing major M. tuberculosis-spe-
cific antigenic proteins, such as Ag85C-MPT51-HspX,113 Ag85B
epitopes,114 esx-3,115 ESAT6-CFP10,116 Ag85B-ESAT-6,117

HBHA, and hlL-12,118 to evaluate the immunogenicity as well as
protective efficiency in animal models. This immunological
vaccine not only induced specific Th1 responses against M. tuber-
culosis, but also was not distinctly harmful to the mice or cattle
hosts.113-117 This provided experimental evidence for the develop-
ment of novel M. smegmatis-based vaccines against TB. M. vaccae
was also used as a recombinant vaccine vector expressing M.
tuberculosis-specific MPT64 protein. The results showed that it
could induce high levels of specific IgG antibody, Th1-type cyto-
kines, and a CTL effect, which resulted in an ideal protective effi-
cacy against TB in mice.119

VPM1002 (rBCG DureC::hly). Recombinant BCG DureC::hly
vaccine (BCG Danish parental strain), licensed to Vakzine Pro-
jekt Management GmbH (Mellendorfer Str. 9, Hannover
30625, Germany) and named “VPM1002”, is manufactured by
submersed fermentation in minimal medium, and the final
product is a lyophilized cake of live bacteria.120 VPM1002 is a
rBCG vaccine in which the urease C gene has been substituted
by membrane perforating listeriolysin O (LLO) encoding
gene (hly) from Listeria monocytogenes.121 This vaccine can
secrete LLO to promote mycobacterial antigens and DNA into
the cytosol. This enhances the production of antigen-specific
CD4C and CD8C T cells and induces autophagy, inflamma-
some activation, and apoptosis.120 Originally, VPM1002 was
developed to enhance MHC-I-related immune responses by
cytosolic egression of mycobacterial proteins to improve induc-
tion of CD8C T cells.122 Previous studies have demonstrated
that VPM1002 vaccine could induce Th1- and Th17-type
immune responses, and was more effective and safer than BCG
in M. tuberculosis aerosol-challenged mice, immune-deficient
mice, guinea pigs, rabbits, and non-human primates (NHP).120
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Furthermore, this vaccine has been used as an immunotherapy
alternative to BCG in treating non-muscle invasive bladder
cancer.123 In several Phase I open-label randomized clinical tri-
als conducted by Vakzine Projekt Management GmbH, the
safety and immunogenicity of VPM1002 were assessed in
adults and infants in South Africa (ClinicalTrials.gov Identifier:
NCT01113281) and Germany (ClinicalTrials.gov Identifier:
NCT00749034). The results indicated that VPM1002 could
stimulate multifunctional T cells producing IFN-g or B cells
producing antibodies.124 This conclusion is being confirmed in
two Phase II clinical trials. One was carried out by Serum Insti-
tute of India Pvt. Ltd in infants in South Africa (ClinicalTrials.
gov Identifier: NCT02391415),125 and the other is being per-
formed by Swiss Group for Clinical Cancer Research in adults
in Germany (ClinicalTrials.gov Identifier: NCT02371447). In
May 2017, the Serum Institute of India Pvt. Ltd designed a
phase II/III clinical trial in pulmonary TB patients to calculate
the efficacy of this vaccine against TB recurrence (Clinical-
Trials.gov Identifier: NCT03152903). This trial is not yet open
for participant recruitment. Based on VPM1002, several novel
rBCG DureC::hlyC vaccines were developed to improve the
protective efficacy or safety by enhancing specific T cell
responses or reducing colony forming units (CFUs). These
include rBCG DureC::hly_hIL7 or rBCG DureC::hly_hIL18,126

rBCG DureC::hlyCDsecA2,127 rBCG DureC::hlyCDnuoG,127

rBCG DureC::hlyCRv2659c-Rv3407-Rv1733c,128 and rBCG
DureC::hlyCDpdx1.129

rBCG30
rBCG30 (BCG Tice or Conn parental strain) overexpresses the
M. tuberculosis 30-kDa major secretory protein antigen 85B
(Ag85B). It was the first rBCG vaccine shown to induce signifi-
cantly greater protection against TB in animals.130 At present,
rBCG30 has completed Phase I clinical trials. The results indi-
cated that this vaccine improved the immunogenicity of healthy
adults, and no serious adverse reactions were observed.131

However, the vaccine has been restricted and stopped due to
government regulations, because the vaccine contains an anti-
biotic resistance gene.11

AERAS-422 (rBCG::Ag85A-Ag85B-Rv3407)
AERAS-422 is a rBCG derived from the Danish 1331 strain of
BCG.132 It contains a plasmid encoding three selectedM. tuber-
culosis immunodominant antigens (Ag85A, Ag85B, and
Rv3407), and carries a modified pfoA gene coding for the pro-
tein perfringolysin O (PFO) from Clostridium perfringens.121

The vaccine induced a better immune response in CD8C T cells
in humans, which could inhibit the growth of the TB
pathogen.12 A randomized, active-controlled, Phase I clinical
trial was performed in healthy BCG-na€ıve adults to assess the
safety and immunogenicity of AERAS-422 (ClinicalTrials.gov
Identifier: NCT01340820). Although this vaccine could
induce antigen-specific lymphoproliferative responses and
reduce mycobacterial activity, the development of AERAS-422
vaccine has been discontinued due to very painful skin herpes
that appeared in two adult volunteers.12 This may have been
caused by latently infected herpes zoster virus that was acti-
vated by PfoA lysozyme.

Recombinant bacterial vaccines
Recently, some other recombinant bacterial vaccines were also
constructed to protect against M. tuberculosis infection.
Pnz8149-ag85a/NZ3900 vaccine is a live recombinant Lactococ-
cus lactis vaccine expressing M. tuberculosis antigen Ag85A.133

After immunization of mice with intragastric administration,
this vaccine induced a local mucosa immune response, result-
ing in a higher level of specific SIgA antibody.133 Daifalla N
et al. constructed a stable recombinant Streptococcus mitis vac-
cine expressing M. tuberculosis protein Ag85B by homologous
recombination, which resulted in efficient oral colonization
and production of oral and systemic anti-Ag85B specific IgA
and IgG antibodies in gnotobiotic piglets.134

Recombinant live virus vaccines
Recombinant live virus vaccine uses a chemically weakened
virus to transport target genes of the pathogen to stimulate an
immune response. Compared with other genetic engineering
vaccines, virus-vectored vaccines can carry large gene frag-
ments and has advantages in safety, ease of production, and
cost. However, virus-vectored vaccines have some shortcom-
ings, such as virulence recovery and foreign gene expression
instability.135 At present, the main viral vectors for TB vaccine
are modified vaccinia virus Ankara (MVA), Adenovirus-Ad5,
Ad35, simian adenovirus, Influenza virus, Hemagglutinating
virus, and Sendai virus. Recently, Hansen. et al. reported a novel
cytomegalovirus-based vaccine termed RhCMV/TB that could
induce CD4C and CD8C memory T cell responses, and reduce
the load of M. tuberculosis in pulmonary and extrapulmonary
TB.136

MVA85A (AERAS-485)
MVA85A vaccine, created by Aeras and Oxford University, is a
recombinant strain of modified MVA expressing antigen 85A
from M. tuberculosis.137 Previous studies suggested that
MVA85A could stimulate humoral and cell-mediated immune
responses in animal models,138,139 and induce protection
against M. tuberculosis in mice, guinea pigs, cattle, and rhesus
macaques.140 Further, its protective efficacy and tolerability
were evaluated by several phase I and II trials in healthy volun-
teers in South Africa,137 healthy BCG-vaccinated adults in the
UK,141,142 HIV-infected healthy adults in the UK (Clinical-
Trials.gov Identifier: NCT00395720), adult volunteers latently
infected with TB in the UK,143 and BCG-vaccinated African
adolescents (ClinicalTrials.gov Identifier: NCT02178748).
These trials demonstrated that MVA85A was a safe and feasible
vaccine that produced a strong CD4C T cell response.137,
141,142,144 In a randomized, placebo-controlled Phase IIb trial in
two-month-old infants who had been vaccinated with BCG,
the results suggested that MVA85A was well tolerated and
modestly immunogenic. However, adverse events and efficacy
against TB or M. tuberculosis infection after two years of
enhanced immunization showed no significant difference
between the BCGCMVA85A immunization group and the sin-
gle BCG immunization group.145 The possible reasons for
MVA85A lacking protective efficacy in this clinical trial are: (1)
The protective effect of BCG vaccine was better and could last
10–15 years, such that the boosted protection of MVA85A in
two-month old newborns could not be observed in a short 2-
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year period; (2) Vaccinia virus vector vaccine is only effective
for a single inoculation, and is not amenable to booster immu-
nization. In this case, the immunogenicity induced by
MVA85A was not sufficient to produce significant protective
efficiency in infants; 3) Due to immature immune systems in
two-month-old newborns, their immune responses induced by
MVA85A vaccine were not the same as those of adults; 4) The
case size of this clinical trial was too small to meet the statistical
requirements, because M. tuberculosis infection rates and TB
incidences in the infants and children were much lower than
those of adults. Therefore, the main reasons for the failure of
this clinical trial are unreasonable design, inappropriate study
subjects, and too short an observation time. It is suggested that
a strengthened vaccine should be administered during the ado-
lescent period with BCG-induced immunity in obvious decline,
which might result in more significant protective efficacy. This
speculation may be confirmed in a forthcoming clinical study
in latently infected healthy adult volunteers in the UK (Clinical-
Trials.gov Identifier: NCT02532036).

Ad35/AERAS-402
AERAS-402 is a replication-defective recombinant adenovirus
(rAd) type 35 vaccine. It expresses a fusion protein of Ag85A,
Ag85B, and TB10.4.100 Darrah PA et al. used an aerosol vacci-
nation strategy to administer AERAS-402 in BCG-primed or
unprimed rhesus macaques. They found that this vaccine could
induce robust IFN-g, TNF-a, and IL-2 expression, rather than
protect against high-dose M. tuberculosis challenge.146 Several
Phase I studies have been conducted in HIV-negative, BCG-
vaccinated healthy adults in India,147 BCG-vaccinated healthy
adults in the UK,142 healthy adult volunteers in the USA (Clini-
calTrials.gov Identifier: NCT02375256), and BCG-vaccinated
healthy adults in Kenya (ClinicalTrials.gov Identifier:
NCT02430506). These Phase I clinical trials have come to a
consistent conclusion that AERAS-402 could significantly
enhance both CD4C and CD8C T cell responses after BCG
priming, and had acceptable safety parameters.142,147 This con-
clusion has been further validated by two Phase II trials of
AERAS-402 conducted in healthy infants in sub-Saharan
Africa148 and HIV-infected South African adults.149 A Phase II
trial in adults recently treated for pulmonary TB suggested that
AERAS-402 vaccine induced a strong CD8C and moderate
CD4C T-cell response, and was not associated with clinically
significant pulmonary complications.150

Ad5Ag85A
Ad5Ag85A, developed by McMaster University, is a human
adenovirus serotype 5 vaccine expressing the mycobacterial
secreted antigen Ag85A.100 In previous studies, the safety and
immunogenicity have been assessed in animal models.151-153

An open-label Phase I clinical trial for this vaccine was con-
ducted by McMaster University Medical Centre (MUMC, 1200
Main St. West, Hamilton L8N 3Z5, Canada), and the results
showed that it was safe, well tolerated, and immunogenic in
HIV-negative healthy adults.154 Furthermore, another Phase I
clinical trial is being performed by McMaster University to
determine the safety and immune responses of Ad5Ag85A in
healthy volunteers. This study is currently recruiting partici-
pants (ClinicalTrials.gov Identifier: NCT02337270).

ChAdOx1.85A
ChAdOx1.85A is a simian adenovirus vaccine expressing M.
tuberculosis protein Ag85A, which was studied at the Univer-
sity of Oxford (England).155 In a preclinical study, its immuno-
genicity and protective efficacy against M. tuberculosis
challenge were assessed in a mouse model, which demonstrated
that intranasally administered ChAdOx1.85A induced stronger
CD8C than CD4C T cell immune responses in both lungs and
spleens, but failed to protect the mice against aerosol M. tuber-
culosis infection.155 In contrast, a further boost with MVA85A
could potentially improve its immunogenicity and protective
efficacy.155 Currently, this vaccine is being evaluated in a Phase
I clinical trial in BCG-vaccinated adults (ClinicalTrials.gov
Identifier: NCT01829490).

TB/FLU-04L
TB/FLU-04L, developed by the Research Institute for Biological
Safety Problems (RIBSP, Kazakhstan) in collaboration with
Research Institute on Influenza (RII, Russia), is a live recombi-
nant influenza A virus (A/Puerto Rico/8/34(H1N1)) vaccine
expressing M. tuberculosis antigens Ag85A and ESAT-6.2 Pro-
tective efficacy of TB/FLU-04L has been investigated in mice,
and the results suggested that the protective efficacy induced by
BCG was significantly improved by one intranasal booster
immunization with this vaccine.156 Additionally, a single cen-
ter, Phase I, double-blind, randomized, placebo-controlled clin-
ical trial was performed in BCG-vaccinated healthy adults to
explore the safety and immunogenicity of this vaccine (Clini-
calTrials.gov Identifier: NCT02501421). This Phase I trial was
completed in February 2015, but the results were not disclosed.
According to a WHO report in 2017, a Phase IIa clinical trial is
being implemented in patients with LTBI.2

Attenuated live vaccines

The development of attenuated live M. tuberculosis mutants
provides a possibility for discovering novel potential vaccine
candidates against TB. In previous studies, some amino acid
biosynthesis-related genes (e.g. cysH,157 panC,158 and panD158),
virulence-related genes (e.g. lpqS,159 sapM,160 mptpA,160 and
mptpB160), and long-term survival in macrophages-related
genes (e.g. bioA,161 phoP,162 and sigE163) of M. tuberculosis
were knocked out, mutated by random mutagenesis, or targeted
for homologous recombination to construct live attenuated M.
tuberculosis vaccine that could reduce the virulence but main-
tain viability of the mycobacterium. Compared with inactivated
TB vaccines, attenuated TB vaccines have several significant
benefits, including a broad immune response, low cost, and
ease of transport and administration. On the contrary, attenu-
ated live vaccines also suffer from a number of drawbacks,
including the potential risk of virulence recovery and complica-
tions for immunocompromised patients.164

To date, only one attenuated TB vaccine (MTBVAC) is in a
clinical trial. There are others in preclinical research in animal
models, including M. tuberculosis MT103 phoP strain (replicat-
ing in vivo),162 M. tuberculosis H37Rv DleuD DpanCD
strain,165 M. tuberculosis H37Rv DlysA DpanCD strain
(mc26020, non-replicating in vivo) as well as M. tuberculosis
H37Rv DRD1 DpanCD strain (mc26030, replicating in
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vivo).158,166,167 The safety and efficacy of mc26020 vaccine were
better than those of mc26030 vaccine.

MTBVAC is a new live TB vaccine based on a genetically
attenuated phoP-fadD26-deletion mutant of M. tuberculosis.168

phoP is essential for the growth of M. tuberculosis isolate
MT103 in macrophages. It encodes transcription factors that
can regulate a variety of virulence factors (such as ESAT-6).
fadD26 is necessary for the synthesis of M. tuberculosis phthio-
cerol dimycocerosates, which is a main component of the cell
wall and a virulence factor that protects M. tuberculosis from
host defenses. This vaccine was developed by the Biofabri, S.L
(Spain) and Aeras (USA) in collaboration with the University
of Zaragoza (Spain), Centre Hospitalier Universitaire Vaudois
(Switzerland), and the TB Vaccine Initiative (Netherlands)
according to the ClinicalTrials.gov database. The primary target
population is neonates (BCG replacement vaccine), with a sec-
ondary target being adolescents and adults (booster vaccine).
MTBVAC is the first live-attenuated M. tuberculosis vaccine to
be in clinical trials, and to date has shown a safety profile com-
parable to BCG. As early as 2013, a Phase I clinical trial was
conducted by Biofabri, S.L and other collaborators to evaluate
the safety and immunogenicity of MTBVAC in comparison
with BCG in HIV-negative volunteers in Switzerland (Clinical-
Trials.gov Identifier: NCT02013245). The results of this Phase I
clinical trial showed that the safety of vaccination with
MTBVAC at all doses was similar to that of BCG vaccine, and
vaccination did not induce any serious adverse events.169

Recently, two Phase Ib/IIa clinical trials were performed by
Aeras and Biofabri, S.L in adults and/or infants in South Africa
(ClinicalTrials.gov Identifier: NCT02933281 and
NCT02729571, respectively). Both trials are in progress.

TB subunit vaccines

TB subunit vaccines usually consist of some immunoactive
ingredients (e.g. proteins, polypeptides, myolic acids, glycoli-
pids, etc.) isolated and purified from M. tuberculosis.170 This
vaccine can induce immune protection or immunotherapy
with the help of an adjuvant. Therefore, the subunit vaccine is
usually used as a therapeutic vaccine or an enhanced vaccine.
The features of the TB subunit vaccine include low cost, easy
preparation, high yield, high purity, safety, repeated use, and
persistent immune memory of effector T cells by enhanced vac-
cination. These make it an ideal vaccine for defending people
against TB infection. However, compared with BCG vaccine,
TB subunit vaccine faces some challenges, including shorter
duration of immunogenicity, poor memory immunity, and
requiring the assistance of adjuvants. Fortunately, some prog-
ress has been made to solve these drawbacks. Previous studies
have shown that TB subunit vaccines composed of multiple
protein mixtures, recombinant fusion protein, chimeric pro-
tein, or epitope-tandem protein of dominant antigens could
induce stronger CD4C T cell responses and more protective
efficacy than single protein subunit vaccines.8,61,171-176 Further-
more, several novel adjuvants or delivery systems, such as bio-
degradable polymer microspheres,177 liposomes,178 emulsions,
and virosomes179 were developed to enhance the immunoge-
nicity and protective efficacy of TB subunit vaccine. At present,
although plenty of subunit vaccines have been identified and

studied in animal models, only seven candidates are being eval-
uated in clinical trials.

AEC/BC02
AEC/BC02 vaccine is composed of a recombinant fusion pro-
tein Ag85B-ESAT6-CFP10 (AEC) and adjuvant BC02 that is
based on BCG-derived cytosine-phosphate-guanine (CpG) and
aluminum salt.180 This vaccine was developed by the National
Institutes for Food and Drug Control (Beijing, China) and
manufactured by Anhui Zhifei Longcom Biologic Pharmacy
Co., Ltd. (Anhui, China). Previous studies have demonstrated
that this vaccine could induce long-term antigen-specific cellu-
lar immune responses in mice, produce a therapeutic effect,
and reduce the risk of causing Koch phenomenon in a MTB
latent infection guinea pig LTBI model.181 Moreover, an
increasing number of studies noted that the vaccine induced
type I hypersensitivity in guinea pigs.180, 181 Currently, a Phase
I clinical trial of AEC/BC02 in healthy volunteers is in progress
in Shanghai, China (ClinicalTrials.gov Identifier:
NCT03026972), but this study is not yet open for participant
recruitment.

BCG polysaccharide and nucleic acid injection (BCG-PSN)
BCG Polysaccharide and Nucleic Acid Injection (BCG-PSN,
alternative name SIQIKANG) is an immunomodulator pro-
duced by Jiuzhitang Co., Ltd. (China) and approved by the
CFDA (Approval No: S20020019). It was prepared from the
BCG Danish strain using hot-phenol to remove bacterial pro-
teins and ethanol to extract polysaccharide as well as nucleic
acid.182 BCG-PSN can protect against TB infection by
regulating cellular and humoral immunity, stimulating the
reticuloendothelial system, and activating monocytes and
macrophages.183 A recent study suggested that BCG-PSN
could induce high levels of IFN-g and TNF-a in peripheral
blood CD4CT cells from mice receiving BCG-PSN powder
delivered via microneedle patch. Treatment improved patho-
logical changes in their lungs and spleens compared to the con-
trol group.182 With a growing number of BCG-PSN
applications in the clinic, this immunomodulator has been
widely used for adjuvant chemotherapy for TB as well as pre-
vention and therapy for chronic bronchitis, colds, erosive oral
lichen planus, nasopharyngeal carcinoma cells, and asthma for
years in China.184 However, some defects of BCG-PSN should
not be ignored, such as long treatment cycles, nodules, rash,
and slight fever.185

Mtb72F
Mtb72F vaccine (alternative names GSK-M72, M72: AS01E/
AS02A, GSK-692342, and Mtb72F/AS02A) was originally
developed by Glaxo-SmithKline Biologicals (GSK, USA).100

This vaccine is a 72 kDa chimeric protein composed of two
highly immunogenic proteins (Mtb32 and Mtb39, encoded by
rv0125 and rv1996, respectively), which is delivered with GSK
adjuvants AS01E or AS02A.186 It has been determined that
Mtb72F could induce more efficient immune responses in ani-
mal models than either Mtb32 or Mtb39 alone,187 and more
efficient protection than BCG alone in mice, guinea pigs, and
NHP animal models.186, 187 Further, Mtb72F has also been
shown to stimulate T cell proliferation and IFN-g secretion in
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PPD positive healthy individuals.187,188 Currently, the safety
and immunogenicity of Mtb72F vaccine have been evaluated in
some Phase II clinical studies performed in healthy PPD-posi-
tive adults in the Philippines,189 in healthy HIV-negative ado-
lescents in South Africa,190 and in adults in Taiwan and
Estonia.191 All three Phase II clinical trials showed similar
safety profiles and antibody responses, and indicated that this
vaccine could induce strong CD4C T cell immune responses,
rather than CD8C T cell responses.

H1:IC31, H1:CAF01, and H1:LTK63
Hybrid 1 (H1), developed by Statens Serum Institute (SSI),
Denmark, and Valneva (a fully integrated vaccine company), is
a subunit vaccine composed of the fusion proteins Ag85B and
ESAT-6, both of which were secreted in the acute phase of M.
tuberculosis infection.100 H1 was designed to improve the effi-
cacy of BCG, but was not designed to prevent reactivation from
LTBI.192 Previous studies have indicated that the H1 subunit
vaccine had the ability to induce protective immune responses
in mice,174 guinea pigs173 and NHP,193 suggesting that H1 was
a strong candidate for further clinical evaluation. To enhance
its protective efficiency, H1 has been tested in combination
with various adjuvants such as IC31 (the combination of an
immunostimulatory oligodeoxynucleotide containing deoxy-
Inosine/deoxy-Cytosine and the cationic polyamine acid KLK),
CAF01 (composed of a cationic liposome vehicle dimethyldioc-
tadecyl-ammonium and a glycolipid immunomodulator treha-
lose 6,6’-dibehenate), and LTK63 (the mutant of Escherichia
coli heat-labile enterotoxin). A Phase I clinical trial of H1/IC31
showed that this vaccine promoted strong and long-lived M.
tuberculosis specific T cell responses in na€ıve human
volunteers,194 which was consistent with a following Phase II
clinical trial in HIV-infected adults.195 An open label, single-
center, non-randomized Phase I exploratory trial of H1:CAF01
in mycobacteria-na€ıve individuals demonstrated that H1:
CAF01 was a safe TB vaccine resulting in high levels of IL-2
and TNF-a secretion.196 Furthermore, a Phase I clinical trial of
H1:LTK63 nasal TB vaccine was also conducted by St George’s,
University of London to determine the safety, as well as cell
mediated and humoral immunogenicity profiles in healthy
adults (ClinicalTrials.gov Identifier: NCT00440544). However,
this clinical trial has been terminated for a safety issue because
two healthy subjects experienced transient peripheral facial
nerve palsies 44 and 60 days after passive nasal instillation of
LTK63.13

H4:IC31 (AERAS-404)
H4:IC31 (AERAS-404) vaccine, developed by SSI, Sanofi Pas-
teur, and Valneva and Aeras, consists of a recombinant fusion
protein Ag85B-TB10.4 (H4) and an IC31 adjuvant.197 H4-IC31
has been shown to protect animals against pulmonary TB,198

and induces antigen-specific CD4C T cells secreting IFN-g,
TNF-a, and IL-2 in humans.199 Several Phase I clinical trials
have been conducted to evaluate the safety and immunogenic-
ity of H4:IC31 in healthy adolescents in South Africa (Clinical-
Trials.gov Identifier: NCT02378207), in HIV-negative, TB-
negative, BCG-na€ıve adults in Switzerland (ClinicalTrials.gov
Identifier: NCT02420444), in HIV-negative BCG-vaccinated
adults in Sweden (ClinicalTrials.gov Identifier: NCT02066428),

and in adults in Finland (ClinicalTrials.gov Identifier:
NCT02074956). These clinical trials yielded similar results, in
that H4:IC31 had an acceptable safety profile in human beings
and induced IFN-g production and a multifunctional CD4C

Th1 response.188,197 Additionally, a Phase II clinical trial has
been completed by Aeras in healthy adolescents in South Africa
(ClinicalTrials.gov Identifier: NCT02075203). The results dem-
onstrated that this vaccine was safe and immunogenic, and
indicated that a 15 mg dose induced the optimal immune
response.200 At present, the safety, immunogenicity, and dose-
range of H4:IC31 are also being evaluated in a Phase I/II study
(Desmond Tutu HIV Foundation, Cape Town, South Africa)
in HIV-uninfected, HIV-unexposed, and BCG-primed infants
(ClinicalTrials.gov Identifier: NCT02378207).

H56:IC31 (AERAS-456)
H56:IC31 vaccine, developed by the SSI in collaboration with
Valneva and Aeras, combines three M. tuberculosis antigens
(Ag85B, ESAT-6, and Rv2660c) with IC31 adjuvant.201 H56:
IC31 vaccine is based upon the H1:IC31 vaccine with LTBI-
related antigen Rv2660c added. It has been demonstrated that
H56:IC31 vaccination after exposure could prevent reactivation
and significantly decrease the bacterial load compared with
adjuvant control group or BCG group in mouse or NHP mod-
els with LTBI or active TB.202 A Phase I clinical trial evaluated
its safety and immunogenicity in HIV-negative adults in South
Africa. The results showed that H56:IC31 vaccine was safe and
induced antigen-specific IgG responses and Th1-type cytokine-
expressing CD4C T cells.201 Furthermore, a Phase IIa clinical
trial (Aurum Institute, Klerksdorp, South Africa) evaluating the
safety, immunogenicity, and efficacy of H56:IC31 in remotely
BCG-vaccinated adolescents is currently in progress (Clinical-
Trials.gov Identifier: NCT03265977).

ID93CGLA-SE
ID93CGLA-SE vaccine, created by the Infectious Disease
Research Institute in collaboration with Aeras (USA), is a
recombinant fusion protein of three M. tuberculosis virulence-
associated antigens (Rv2608, Rv3619, and Rv3620), one
latency-associated antigen (Rv1813), and adjuvant GLA-SE.203

This vaccine was shown to stimulate CD4C T cells secreting
high level of Th1 cytokines, which resulted in protection
against TB in both BCG-vaccinated and non-BCG-vaccinated
mice and guinea pigs.204,205 Interestingly, this vaccine was able
to cause a delayed type hypersensitivity (DTH) response to the
vaccine antigen, but did not compromise the PPD reaction,
which did not interfere with the auxiliary diagnosis of a PPD
skin test.206 Further study also suggested that ID93CGLA-SE
vaccine could elicit protection against W-Beijing strain (M.
tuberculosis HN878) infection by decreasing bacterial burden,
reducing lung pathology, and increasing survival by inducing
long-lived Th1 immunity.203 Two Phase I clinical trials in
healthy adults (ClinicalTrials.gov Identifiers: NCT01599897
and NCT01927159) were completed in the United States and
South Africa, respectively. The results showed that this vaccine
had an acceptable safety profile.207 Additionally, a Phase IIa
clinical trial in HIV-na€ıve TB patients has also been completed
in South Africa to evaluate its safety and immunogenicity
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(ClinicalTrials.gov Identifier: NCT02465216), but the results
have not yet been published.

DNA vaccines

DNA vaccines protect against disease by injecting genetically
engineered DNA that results in production of a target
antigen.208 It is generally accepted that TB DNA vaccines can
express M. tuberculosis protective protein antigens that will be
recognized by MHC class I or class II molecules. Based on this,
DNA vaccines can induce a comprehensive immune response,
especially the ability to stimulate specific CTL to recognize and
kill infected host cells, and remove intracellular pathogenic M.
tuberculosis.35,209-211 TB DNA vaccines, including therapeutic
DNA vaccines and enhanced preventive DNA vaccines, have
potential merits over conventional vaccines. They are generally
safer, more effective, and bear lower production cost.209,212

However, there are a number of obstacles that DNA vaccines
must overcome in clinical trials and subsequent manufacturing
applications: (1) The microproteins expressed by DNA vaccines
in vivo can induce immune responses in vaccinated individuals,
but their intensity is usually weaker than that of live vaccine.
The possible reason for this might be inefficient conversion or
the inability to replicate itself as efficiently as live vaccine; (2)
The protective efficiency of DNA vaccines should be optimized
and improved as current research showed that it was not supe-
rior to BCG; (3) DNA vaccines can induce inoculators to pro-
duce anti-DNA IgG, which may increase the risk of developing
autoimmune diseases.2

Currently, most TB DNA vaccines in preclinical studies are
focused on immunogenicity, protective, or therapeutic effects
in animal models. These include heat shock protein 65 (hsp65)
DNA vaccine,210 hsp70 DNA vaccine,213 ag85a DNA
vaccine,214 ag85b DNA vaccine,215 ag85a/TB10.4 chimeric
DNA vaccine,216 phosphate-specific transport system (pstS)
DNA vaccine,211 mpt64 DNA vaccine,217 and pIRES-IL-21-
ag85a-esat-6 DNA vaccine.218

In our previous studies, 11 DNA vaccines have been con-
structed to evaluate their immunogenicity, protective, or
immunotherapeutic efficacies in mice, including esat6 DNA
vaccine,219 mpt64 DNA vaccine,220 hsp65 DNA vaccine,221

ag85a DNA vaccine,222 ag85b DNA vaccine,219 ag85a/b chime-
ric DNA vaccine,223 ag85a/esat6 chimeric DNA vaccine,224

rv2190c DNA vaccine,209 rv1419 DNA vaccine,35 and IFN-g
and IL-12 DNA vaccine.219 After decades of study on these
DNA vaccines, we summarize several observations and sugges-
tions that might be quite useful for future DNA vaccine design:
(1) These vaccines mainly induced Th1-type immune
responses212,223,224; (2) The level of specific antibodies produced
by these DNA vaccines generally increased after the second
immunization, peaked after the third or fourth immunization,
and then decreased three months after the last immunization;
(3) The ag85a/b chimeric DNA vaccine had the best immuno-
protective efficacy among these 11 DNA vaccines. Pilot-scale
studies for ag85a/b chimeric DNA vaccine have been com-
pleted, and three batches of samples have been produced to
establish a quality control system to evaluate its stability and
safety176,219; (4) The codelivery of genes encoding cytokines
IFN-g or IL-12 could increase the effectiveness of DNA

vaccines, especially IFN-g219; (5) Different DNA vaccines pro-
duced different protective effects in a mouse TB model. The
lungs in the mice showed various pathological changes, espe-
cially from esat6 DNA vaccine and ag85a DNA vaccine, which
showed proliferative lesions. Meanwhile, mpt64 DNA vaccine
and ag85b DNA vaccine both showed proliferative and exuda-
tive damages; (6) The optimal doses of DNA vaccines were
100 mg in mice or 1 mg in NHP, as immunizations of less than
this dose could induce humoral immune responses rather than
enough cellular immune responses to protect the individual
against TB219,223; (7) The use of electroporation could decrease
the dose from 100 mg to 50 mg without affecting the immuno-
protection or immunotherapy of the DNA vaccine, which not
only weakened the side effects but also reduced DNA vaccine
costs225; (8) The effects of DNA vaccines against TB were not
affected by MDR-TB,224 possibly because the DNA vaccine
could induce the immune system to kill MDR-MTB. This indi-
cates a potential use as a new adjuvant therapy for MDR-TB;
(9) The ag85a/esat6 chimeric DNA vaccine not only could not
improve the therapeutic effect of ag85a DNA vaccine, but also
caused the death of mice infected by MTBC.226 A likely reason
was that overexpressed ESAT6 could cause a hypersensitivity
response or anchor on the pneumocyte cell membrane via its
laminin domain to form a channel, leading to dissolution as
well as necrosis of pulmonary surface epithelial cells and mac-
rophages.227 Therefore, we caution against the use of esat6
DNA or ESAT6 protein as a candidate component of TB thera-
peutic vaccine. Interestingly, ag85a/esat6 chimeric DNA com-
bined with effective anti-TB drugs could inhibit the occurrence
of hypersensitivity response and decrease the death of mice.

At present, GX-70 is the only DNA vaccine in clinical trial.
It consists of the four antigen plasmids (data is not yet avail-
able) from M. tuberculosis together with recombinant Flt3
ligand according to the ClinicalTrials.gov database. An open-
label, dose escalation, Phase I clinical trial was conducted by
Yonsei University (South Korea) to evaluate the tolerability,
safety, and immunogenicity of GX-70 in pulmonary TB
patients with high risk factors for treatment failure or relapse
(ClinicalTrials.gov Identifier: NCT03159975). The clinical trial
will be divided into two steps. First, GX-70 will be administered
in three does levels (0.26 mg, 1 mg, and 4 mg) by electropora-
tion in the deltoid muscles every four weeks, five times to deter-
mine the maximum tolerated dose. Then, antigen-specific IFN-
g ELISPOT (enzyme-linked immunospot assay) responses and
Flt3L concentration will be measured every eight weeks up to
24 weeks. This study is not yet open for participant recruit-
ment, and the estimated study completion date is August 20,
2018.

Future challenges and conclusion

TB is an infectious chronic respiratory disease which is full of
contradictions and challenges in M. tuberculosis infection,
immunization, prevention, and treatment. Although there has
been some progress in the pipeline for new TB vaccine develop-
ment, these exciting advances are counterbalanced by ongoing
challenges and remaining questions, as described below.

1. The pathogenesis and immune protection mechanisms
of M. tuberculosis need to be further clarified. With
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developments in technology and vaccinology, many new
generation TB vaccines have been developed. Their
immunogenicity, protection, and therapeutic effects have
been evaluated in animal models and humans. However,
neither BCG nor any other novel TB vaccines induced a
comprehensive immune response to completely clear the
pathogen,2,6 which means that there are still many draw-
backs to these vaccines. Puzzlingly, the fact that 90% of
people with LTBI have no clinical symptoms indicates
that the immune response induced by M. tuberculosis
infection can provide effective protection for most M.
tuberculosis-infected people.2,8 There is no doubt that the
confusion comes from our ignorance of the pathogenesis
and immunoprotection mechanisms of M. tuberculosis.
Given a clear understanding of the pathogenesis and bio-
logical characteristics of M. tuberculosis as well as the
transcriptional and metabolic pathways, it may be possi-
ble to design an ideal vaccine to prevent M. tuberculosis
infection and development.

2. The vaccine design and immunization strategies need to
be further studied. TB vaccine design should not only
consider proliferation-related antigens (such as Ag85A
and Ag85B), but also consider the dormant-related anti-
gens. It is urgent that antigens should be chosen to con-
struct a more effective vaccine. It has been suggested that
the TB vaccine constructed by both proliferation-related
antigens and dormant-related antigens could induce
more broad and stronger responses which would provide
more effective protection against M. tuberculosis infec-
tion. In addition, the immune responses induced by sub-
unit vaccines were always weaker than those induced by
live vaccines. Therefore, it is crucial to find a suitable
immune adjuvant to enhance its immunocompetence.
At present, it is not only vaccine design that is suffering
from enormous challenges, but vaccination strategies are
also beset with difficulties because new vaccine evalua-
tion requires a large population and long-term follow-up
observations. Even worse, it is very difficult to choose a
large enough sample to conduct a field assessment in
some high TB prevalence countries where BCG was
widely administered. Based on the above facts, we sug-
gest that future research priorities should be more
focused on immunization strategies such as the type of
new vaccine, immunization order, immunization inter-
val, and immunization times.

3. The interaction between human host and M. tuberculosis
is very complex, but the mechanism is not clear. There-
fore, the following questions need to be solved in the
development and application of new TB vaccines: (1)
Does incidence of TB depend on the virulence of M.
tuberculosis, the quantity of bacteria, the susceptibility of
the individual, the immune system affected, or by other
adverse factors? (2) Which criterion should be used to
evaluate vaccine effectiveness? General status improve-
ment, sputum bacterium-negative conversion, cellular
immune function enhancement, or extended survival?
(3) In areas with a high prevalence of TB, most people
have been infected by M. tuberculosis. If they receive a
strong immunogen (new vaccine), will the subsequent

host immune response clear the immunized vaccine?
Will it trigger latent TB infections and then develop seri-
ous disease? (4) Some people have been infected by
NTM. How might this affect future vaccine
development?

4. We also need to explore the mechanism of immunother-
apy. Immunotherapy using TB vaccine is a new field of
exploration. Several inactivated vaccines have been
applied in clinic. Their treatment efficacies were dis-
puted, which did not achieve the goal of “ultrashort
course chemotherapy”. The possible reasons are: (1) The
inactivated bacterial components can only induce a
momentary Th1-type cellular immune response, and not
the specific CTL response; (2) The clinical application of
inactivated vaccines was not standardized for the dosage,
application time, treatment course, or immune status of
TB patients. The effects of vaccines on the immunity of
TB patients still lack in-depth study; (3) Some TB
patients improperly administered (such as once a week)
may induce immune tolerance. TB is an infectious dis-
ease and an immune disease, but the immunoregulatory
mechanism of TB has not been fully elucidated. The
immune response to TB is a double-edged sword. How
can immunoregulatory means and intervention link M.
tuberculosis antigen sensitization, the host immune
response, and the host’s physiological response to inhibit
pathological changes? Further studies are necessary to
understand and address these relationships.

5. The emergence of MDR-TB and prevalence of HIV-TB
co-infection are new challenges for vaccine research.2

MDR-TB and HIV-TB co-infection have become a crit-
ical threat to TB control and global public health. In
2016, there were an estimated 490,000 new cases of
MDR-TB, and 88,200 (7%) of all new TB cases are liv-
ing with HIV.2 Without timely diagnosis and treatment,
the mortality rate range of patients with MDR-TB and
HIV-TB co-infection will be as high as 100%.228 There-
fore, both MDR-TB and HIV-TB co-infection should
be given sufficient attention with respect to their poten-
tial possibility to inhibit the End TB Strategy, and novel
multivalent vaccines need to be developed as quickly as
possible.

6. Increasing costs have become an obstacle to the fight
against TB in developing countries. According to a
WHO report, the cost of prevention and treatment is as
high as 9.2 billion dollars worldwide in 2017, and this
figure is expected to grow to 12.3 billion in 2020.2 The
main reason may be an increasing number of MDR-TB
and HIV-TB co-infection patients, whose cost is ten
times than that of a common TB patient.2 Unfortunately,
available funds are not enough to address these needs.
The BRICS countries (Brazil, the Russian Federation,
India, China, and South Africa) collectively account for
about half of the world’s TB cases. However, only 5% of
the funding was supported by international donor fund-
ing in these countries.2 In other words, domestic funding
for the TB-specific budgets in these countries accounts
for the largest single share of funding, which is likely to
cause a vicious circle in low-income countries.
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In summary, our review shows the fact that the challenges of
TB are increasing while the strategies are limited. Although more
than 20 vaccines are currently in clinical trials, we urgently need to
screen more TB vaccine candidates to develop more effective and
safer TB vaccines to defend against TB infection, especially MDR-
TB and HIV-TB co-infection. Furthermore, the interaction
between immune activation, inflammation, and TB pathogenesis
should be understood, which could possibly provide insights into
developing a better TB vaccine. There is also a need to further
increase funding for TB prevention, diagnosis, and treatment in
developing countries, which is necessary to achieve the End TB
strategy milestones for reductions in TB cases and deaths set for
2020 and 2025.229We should remember the principle that without
improved TB vaccines, without controlled TB prevalence.
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