
Double-barreled gun: Combination of PARP inhibitor with 
conventional chemotherapy

Yanxin Lu1,2,*, Yang Liu1,*, Ying Pang3, Karel Pacak3, and Chunzhang Yang1

1Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, 
Maryland 20892, USA

2Basic Medical Science Department, Zunyi Medical College-Zhuhai Campus, Zhuhai, Guangdong 
519041, P.R. China

3Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child 
Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA

Abstract

DNA repair pathways are evolutionarily conserved molecular mechanisms that maintain the 

integrity of genomic DNA. In cancer therapies, the integrity and activity of DNA repair pathways 

predict therapy resistance and disease outcome. Members of the poly (ADP-ribose) polymerase 

(PARP) family initiate and organize the biologic process of DNA repair, which counteracts many 

types of chemotherapies. Since the first development in approximately 3 decades ago, PARP 

inhibitors have greatly changed the concept of cancer therapy, leading to encouraging 

improvements in tumor suppression and disease outcomes. Here we summaries both pre-clinical 

and clinical findings of PARP inhibitors applications, particularly for combination therapies.
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1. Introduction

The integrity of the human genome is maintained by DNA repair pathways, which reverse 

the effects of DNA damage. Genomic DNA is continuously exposed to harmful factors, 

which cause sequence-independent damage to the nucleobases. Random DNA damage may 

result from endogenous causes, ranging from oxidative DNA damage to DNA replication 

errors and replication fork arrest. Exogenous damage is commonly introduced by chemical 
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mutagens, ultraviolet light, radiation, or DNA-targeting chemotherapies. DNA lesions cause 

harmful changes in cells, such as genomic instability, the accumulation of mutations, cell 

transformation, or cell death. Throughout evolution, eukaryotic cells developed a set of 

molecular mechanisms that remove DNA lesions, in order to avoid the consequences of 

genomic deterioration. The activity and expression of the DNA repair machinery is 

dynamically regulated by a damage-sensing feedback loop, which enhances DNA repair 

when confronted with acutely introduced exogenous DNA lesions.

Cancer cells exploit endogenous DNA repair mechanisms to counteract DNA-targeting 

therapies. Radio- and chemotherapies result in DNA damage to the cancer genome in the 

form of DNA adducts and strand breaks. These changes in genomic DNA are effectively 

fixed by different intrinsic DNA repair pathways. Moreover, in drug-resistant cancer cells, 

enhancement of DNA repair pathways is frequently identified as the major molecular shift 

that alters their sensitivity to anti-cancer therapies, resulting in treatment resistance, cancer 

recurrence and poor disease outcome. Inhibiting DNA repair has long been proposed as a 

reasonable sensitization approach to improve genotoxic therapy. In this review, we discuss 

the recent advancements in poly (ADP-ribose) polymerase (PARP) inhibitors for cancer 

therapy, with a focus on the combination regimens that may potentiate traditional 

chemotherapy.

2. Genotoxic agents and DNA repair: yins and yangs in cancer therapy

The central strategy in cancer therapy is to eliminate fast-proliferating, transformed cells. 

Due to the frequent cellular division in cancer cells, DNA lesions in these cells are more 

likely to be recognized by cell cycle checkpoint, and translate to cell death, thereby making 

genotoxic treatments more harmful to cancer cells than non-replicating, terminally 

differentiated cells. However, in many cases, single agent treatment may not cause sufficient 

tumor suppression to impact a patient’s survival. The doses required for a monotherapy to 

kill cancer cells are often very high causing intolerable toxicity to various non-cancerous 

cells. Thus, combination treatments that base on synergistic effect may be a better strategy to 

control cancer progression and improve toxicity and ultimately disease outcome.

Chemotherapy causes DNA damage through a variety of mechanisms. Alkylating agents are 

the most common chemotherapies and act by introducing chemical modifications to DNA at 

the base pair level. For example, alkylating agents, such as temozolomide (TMZ) and 

dacarbazine, attach alkyl groups (CnH2n+1) to the N- and O- atoms in the nucleobases. 

Bifunctional alkylating agents, such as nitrogen mustards and chloroethylating agents 

(CCNU, BCNU), carry 2 reactive sites and introduce more complicated modifications to 

nucleobases, resulting in further DNA damage and blockage of replication forks (Kondo, 

Takahashi, Ono, & Ohnishi, 2010). Similarly, platinum-based compounds, such as cisplatin 

and carboplatin, transform into the aqueous complex cis- [PtCl(NH3)2(H2O)]+, which reacts 

with DNA base pairs. The major products include mono platinum adducts, intra-strand DNA 

crosslinks (>95% of all adducts), inter-strand DNA crosslinks, or protein–DNA crosslinks 

(Crul, van Waardenburg, Beijnen, & Schellens, 2002). These DNA nucleobase lesions may 

not cause immediate cytotoxic effects, but rather cause cell cycle arrest through disruption of 
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replication fork progression, resulting in further cellular damage, such as replication-

associated double-strand DNA breaks, mitotic catastrophe, and apoptosis.

Although chemotherapy-induced DNA lesions may be widespread, intrinsic DNA repair 

pathways are capable of detoxifying each type of DNA adduct, thereby enabling cancer cell 

survival, recurrence, and resistance. DNA lesions at the base pair level, such as alkylated 

nucleobases, platinum-associated intra-strand crosslinks, or single-strand DNA breaks, are 

effectively repaired by base-excision repair (BER), nucleotide-excision repair, and mismatch 

repair pathways. Some DNA adducts can be specifically reversed without base pair excision. 

For example, O-6-methylguanine-DNA methyltransferase (MGMT) removes the alkyl 

groups from the O6 position of guanine, thereby reducing the risk of DNA breaks and cell 

death. The DNA dioxygenases ABH2 and ABH3 remove 1-methyladenine and 3-

methylcytosine from bases. Thus, base pair level DNA lesions are rapidly repaired, likely 

within 1 hour. Large-scale DNA damage, such as double-strand DNA breaks and clustered 

lesions, requires the involvement of either the non-homologous end joining (NHEJ) or 

homologous recombination (HR) pathway. Considering the key roles of DNA repair 

pathways in cancer therapy resistance, inhibitors targeting different DNA repair pathways 

have been developed as potential sensitizers for the traditional cancer therapies. In the 

following sections, we will discuss the latest advances in PARP DNA repair inhibitors, the 

most frequently used chemo-sensitizers, and their possible applications in cancer therapy. 

Detailed reviews about other DNA repair pathway inhibitors in cancer therapy can be found 

in other publications (Aziz, et al., 2012; Gavande, et al., 2016; Helleday, Petermann, Lundin, 

Hodgson, & Sharma, 2008).

3. PARP, a key mechanism in cancer resistance

In 1963, Chambon et al. first identified a catalytic reaction that involves DNA-dependent 

NAD+ consumption (Chambon, Weill, & Mandel, 1963). Subsequent studies identified 

poly(ADP-ribosyl)ation as an important post-translational modification of nuclear proteins, 

as well as a potential link between this process and DNA damage responses and chromatin 

modifications. The β-α-loop-β-α NAD+ fold was recognized as a signature domain, which 

is evolutionarily conserved through all PARP enzymes. To date, 18 proteins have been 

identified as members of the PARP superfamily, all of which contain this highly conserved 

catalytic site across species (Ame, Spenlehauer, & de Murcia, 2004; Kraus, 2015).

Among PARP family members, PARP-1 accounts for 75% of total PARP enzyme activity; it 

is the major player in sensing DNA damage and organizing the repair machinery. Similar to 

the rapid phosphorylation of histone H2A.X, PARP-mediated poly(ADP-ribosyl)ation of 

histones and other nuclear proteins is considered one of the earliest epigenetic events 

triggered by DNA strand breakage, highlighting DNA damage foci. PARP consumes NAD+ 

to catalyze the covalent attachment of ADP-ribose to the γ-carboxyl groups of the glutamate 

residues of acceptor proteins or PARP itself. The ADP-ribose polymer consists of a linear or 

branched polyanion, and initiates DNA repair by recruiting other repair enzymes, such as 

PARP-2, XRCC1, DNA polymerase β, and DNA ligase III, to sites of DNA damage (El-

Khamisy, Masutani, Suzuki, & Caldecott, 2003; Masson, et al., 1998; Schreiber, et al., 

2002). Although it is not directly involved in nucleobase modification, PARP-1 is a key 
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spatial and temporal organizer for the entire repair process, as indicated by deficiency of the 

BER pathway when PARP-1 is genetically compromised (Dantzer, et al., 2000).

PARP-1 activity is critical for the establishment of resistance to genotoxic agents. Early 

studies showed that DNA lesions are more likely to accumulate in cells with genetically 

compromised PARP-1, which further translates into cell cycle arrest and loss of cell viability 

(de Murcia, et al., 1997; Trucco, Oliver, de Murcia, & Menissier-de Murcia, 1998). The role 

of PARP-mediated DNA repair in cancer resistance has been confirmed in cancer cell lines 

and xenografts. In 1996, Bernges and Zeller discovered that suppressing PARP activity with 

3-aminobenzamide (3-AB), an NAD+ analog, reduced the resistance of ovarian cancer cell 

lines to genotoxic therapy (Bernges & Zeller, 1996). Further studies in pancreatic cancers 

similarly reached the conclusion that decreased PARP activity leads to better responses to 

genotoxic agents (Jacob, et al., 2007). Moreover, several clinical studies showed that 

hyperactivation of the PARP DNA repair pathway predicts therapeutic resistance in 

advanced tumors. For example, non-small cell lung carcinoma cells with high PARP-1 

expression exhibit poor responses to cisplatin treatment (Michels, Vitale, Galluzzi, et al., 

2013). In glioma, TMZ establishes N3-methyladnine and N7-methylguanine adducts to 

DNA, which are mainly repaired by the PARP/BER pathway. In glioblastoma-initiating 

cells, constitutive activity of PARP1 is essential for cancer resistance and progression 

(Sarkaria, et al., 2008; Venere, et al., 2014).

4. Combination treatment with PARP inhibitors and traditional 

chemotherapy

Upon understanding the critical role of PARP in cancer resistance approximately 3 decades 

ago, researchers began to develop specific PARP inhibitors. Nicotinamide, the first known 

PARP inhibitor, naturally exists in the cell (Rankin, Jacobson, Benjamin, Moss, & Jacobson, 

1989). Nicotinamide establishes a core pharmacophore that anchors in the nicotinamide-

binding pocket of PARP-1 (Ruf, de Murcia, & Schulz, 1998; Ruf, Mennissier de Murcia, de 

Murcia, & Schulz, 1996). The first synthetic PARP inhibitor, 3-AB, was designed to mimic 

the chemical structure of nicotinamide and showed promising synergistic effects with 

genotoxic agents (Chen & Zeller, 1992; Kehe, et al., 2008). However, the low potency 

(IC50=30 µM) and selectivity of 3-AB greatly limited its clinical application. Several 

generations of PARP inhibitors have been designed and tested, aiming to improve the 

chemical structure to facilitate better potency and selectivity.

To date, the Food and Drug Administration has approved 3 PARP inhibitors for clinical 

application: niraparib, rucaparib, and olaparib. Additional candidates, such as veliparib, 

talazoparib, and iniparib, are currently being evaluated in preclinical studies and clinical 

trials (Figure 1).

Olaparib (AZD2281) is a potent PARP inhibitor, which contains a fluorine atom to improve 

its stability and potency. Olaparib was firstly tested in BRCA mutant cells as a single agent 

treatment, which successfully induce PARP inhibition and apoptotic changes (Farmer, et al., 

2005). Several follow up studies examined the effect of a combination regimen including 

olaparib and traditional chemotherapeutic agents such as TMZ and platinum in BRCA-
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related and non-related cancer treatment. In Phase II study NCT00494442, olaparib was 

given as monotherapy at 400 mg twice daily does, which exhibitted antitumor activity in 

recurrent BRCA1 or BRCA2 mutated ovarian cancer. However, dose interruptions and 

reductions occurred due to adverse events caused by high doses of olaparib. (Audeh, et al., 

2010; Yang, et al., 2011). In the metastatic prostate cancer that rarely respond to standard 

treatment, combination with olaparib synergized with intrinsic DNA-repair deficiency, 

resulting in high response rate to the treatment (Mateo, et al., 2015). With the outstanding 

efficacy and safety, olaparib has been included in more preclinical or clinical studies, 

including glioblastoma, melanoma, and Ewing's sarcoma (Brenner, et al., 2012; Krumm, et 

al., 2016; Ning, Wakimoto, Peters, Martuza, & Rabkin, 2017).

Rucaparib (AGO14699) is a potent, small molecule PARP inhibitor, which sensitizes cancer 

cells by suppressing phosphorylated signal transducer and transcription 3 activation (Ekblad, 

Camaioni, Schuler, & Macchiarulo, 2013). Compared with its lead compound AG14361, 

Rucaparib showed remarkably improved solubility and chemosensitization effect (Thomas, 

et al., 2007). Rucaparib was used as a stand-alone treatment for advanced ovarian and breast 

cancer patients with BRCA mutation. Strikingly, over 80% clinical cases responded 

completely/partially or stayed stably under rucaparib therapy (Drew, et al., 2016). Rucaparib 

shows stronger cytotoxicity than most of other PARP inhibitors, which may due to its effect 

to induce vasodilation and increase perfusion and drug aggregation in tumor tissue (Syed, 

2017).

Niraparib (MK-4827) is a potent orally taken PARP1/2 inhibitor, which showed improved 

pharmacokinetic properties and selectivity on BRCA1/2 deficient cells (Jones, et al., 2009). 

Although niraparib exhibits modest suppression to PARP catalytic activity, it showed 

stronger PARP trapping effects, as compared to olaparib and veliparib (Murai, et al., 2012). 

Additional studies have demonstrated niraparib sensitized other solid tumors, such as 

ovarian cancer and colorectal cancer, to chemo- and radio-therapies (Genther Williams, et 

al., 2015; Kanjanapan, Lheureux, & Oza, 2017). However, in some patient-derived xenograft 

(PDX) models, niraparib failed to augment the effect of carboplatin/paclitaxel regimen in 

either homologous recombination (HR) deficient or proficient ovarian carcinoma (AlHilli, et 

al., 2016), indicating more assays are essential to guide the performance of PARP inhibitor, 

except HR status.

Besides the currently approved PARP inhibitor, many of the latest candidate compounds are 

currently tested in clinical trials. For examples, Veliparib (ABT-888) is a potent oral 

PARP1/2 inhibitor that has broad spectrum to sensitize tumor cells to radio-and 

chemotherapy (Donawho, et al., 2007). Despite comparable capability to suppress PARP 

catalytic activity, veliparib results in modest tumor suppressive effect as a single agent 

therapy, which was probably resulted from less effective in stabilizing PARP-DNA complex 

to impair DNA repair (Wagner, 2015). On the other hand, due to the superior blood-brain 

barrier permeability, veliparib was utilized in CNS tumors, such as glioblastoma as well (Su, 

et al., 2014).

Talazoparib (BMN 673) is another newly discovered PARP inhibitor that is effective to 

homologous recombination deficiency tumors (Murai, et al., 2014; Shen, et al., 2013). Murai 
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et al., found that talazoparib had analogous effect on suppressing PARP catalytic activity, 

however, it showed 100-fold more cytotoxicity than olaparib and rucaparib, by trapping 

more PARP-DNA complexes (Murai, et al., 2014). Despite some cell lines showed resistant 

to talazoparib, more preclinical studies proved its tumor suppressive effects on Ewing’s 

sarcoma and chronic lymphocytic leukemia (Herriott, et al., 2015; Smith, et al., 2015).

Iniparib (BSI-201) is an irreversible PARP1 inhibitor with relatively smaller molecular 

weight (292.03 g/mol v.s. 435.08 g/mol for olaparib). As the first PARP inhibitor that reach 

the phase III clinical trial, iniparib was observed encouraging results in patients with solid 

tumors, including blioblastoma, non-small cell lung cancer and metastatic triple- negative 

breast cancer (Liang & Tan, 2010; Maxmen, 2010). Iniparib was originally considered as a 

non-competitive PARP inhibitor, however, it was later discovered as a modifier of cysteine-

containing proteins, rather than a bona fide inhibitor of PARP (X. Liu, et al., 2012; Patel, De 

Lorenzo, Flatten, Poirier, & Kaufmann, 2012). However, a recent study showed that unlike 

other PARP inhibitors, BSI-201 showed minimal effect on enhancing DNA damage or 

pADPR formation, which raised the question the application of this compound (Chuang, 

Kapuriya, Kulp, Chen, & Shapiro, 2012). Moreover, a latest late stage clinical trial showed 

that BSI-201 did not meet predesignated criteria of primary endpoints of progression-free 

and overall survival, which highlight the requirement of a thorough understand in the 

mechanism of action in this PARP inhibitor (O'Shaughnessy, et al., 2014; O'Shaughnessy, et 

al., 2011).

Despite the original goal for use as a sensitizer, the first successful PARP inhibitor was used 

as a monotherapy. Certain cancers exhibit intrinsic deficiencies in DNA repair pathways that 

render them vulnerable to further DNA repair pathway suppression. Based on this concept, 

later known as “synthetic lethal therapy,” a PARP inhibitor was applied for the treatment of 

BRCA1/2-deficient ovarian and breast cancers. BRCA1/2-deficient cancers exhibit 

compromised HR DNA repair due to the loss of key repair enzymes. Application of a PARP 

inhibitor further diminishes DNA repair in those cancer cells, which effectively suppresses 

cancer cell proliferation, as the cells are likely to experience cell cycle arrest upon an 

overload of DNA damage (Ashworth, 2008).

Combining PARP inhibitor with traditional chemotherapy has long been proposed in tissue 

culture studies as well as preclinical animal models. Mechanistically, PARP inhibition limits 

the capability of scavenging DNA lesions, and therefore leads to cytotoxicity and apoptotic 

changes (Figure 2). Fast proliferating cancer cells are more vulnerable to the combination 

regimen compared with normal cells, as frequent cell division ease translation from DNA 

lesions to cell death. However, the development of a PARP inhibitor combination therapy 

has been relatively slow, possibly due to the complicated nature of combination regimens, 

unexpected side effects, and difficulty establishing biologically appropriate dosages. In the 

following section, we will introduce the 2 most commonly used PARP inhibitor combination 

regimens used in recent clinical trials. We will also discuss the molecular mechanism of the 

synergy in these approaches.
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TMZ/PARP inhibitor

TMZ is an oral DNA-alkylating agent that has been used in several types of cancer, most 

notably malignant gliomas. It was developed in the mid-1990s, through the modification on 

the chemical structure of mitozolomide and 5-(3-methyltriazen-1-yl)imidazole-4-

carboxamide (MTIC) (Newlands, Stevens, Wedge, Wheelhouse, & Brock, 1997). TMZ is a 

monofunctional alkylating agent with good tissue distribution, including the ability to cross 

the blood-brain barrier. (O'Reilly, et al., 1993).

TMZ is extremely stable in solid form. In an aqueous environment, TMZ spontaneously 

undergoes hydrolysis into MTIC, which breaks down and releases reactive methyldiazonium 

ion. This eventually results in the formation of adducts to nucleobases in the form of N7-

methylguanine (N7-MeG), O6-methylguanine (O6-MeG), and N3-methyladenine (N3-MeA). 

O6-MeG adducts can be reversed by MGMT, therefore MGMT-expressing tumors tend to be 

less responsive to genotoxic agents (Everhard, et al., 2006; Hegi, et al., 2005). Other types of 

DNA adducts are repaired through the PARP/BER DNA repair pathway. In fact, N7-MeG 

and N3-MeA comprise over 90% of DNA lesions that result from TMZ (Sarkaria, et al., 

2008). However, these DNA adducts rarely translate into cytotoxicity and cancer 

suppression, presumably due to efficient detoxification through the PARP/BER DNA repair 

pathway. Pharmacologic inhibition of PARP has long been proposed as a rational strategy to 

sensitize cancer cells for TMZ treatment, considering the critical role of the PARP/BER 

pathway in counteracting the development of N7-MeG and N3-MeA lesions,

Several attempts have been made to evaluate the combined effects of TMZ and PARP 

inhibitors in cancer therapy. An early study showed that the PARP inhibitor 3-AB reverses 

the TMZ resistance of malignant glioma xenografts (C. L. Cheng, et al., 2005; Wedge, 

Porteous, & Newlands, 1996). In a preclinical model of primary central nervous system 

lymphoma, the combination of the PARP inhibitor NU1025 with TMZ improved overall 

survival and markedly reduced tumor growth in an animal model (Tentori, et al., 2002). The 

concept was later evaluated with more potent and specific PARP inhibitors. The combination 

of veliparib and TMZ has been evaluated in murine melanoma xenografts, and was found to 

delay tumor onset compared to monotherapy (Palma, et al., 2008). The combination of 

veliparib with radiation- or chemotherapy improved disease outcomes in glioblastoma-

xenografted mice, whereas pre-exposure to TMZ ameliorated the sensitization effects of the 

PARP inhibitor (Clarke, et al., 2009). A recent finding showed that talazoparib synergizes 

with TMZ against Ewing sarcoma xenografts, implying a broader utility for a combination 

regimen in pediatric oncology (Smith, et al., 2015).

Given its success in preclinical models, the TMZ/PARP inhibitor combination regimen has 

been extensively evaluated in clinical trials. In the phase I/II trial NCT03212742, patients 

with unresectable, high-grade gliomas are receiving concomitant radiotherapy with a 

combination of olaparib and TMZ. In trial NCT01085422, veliparib has been used to 

sensitize patients with metastatic, castration-resistant prostate cancer to TMZ. The results 

indicated that combination regimen is well tolerated, with modest antitumor activity, 

decreasing circulating tumor cells, and tumor biomarker carcinoembryonic antigen (Hussain, 

et al., 2014). Lately, the therapeutic effect of veliparib and TMZ combination in the disease 

outcome of newly diagnosed glioblastoma was evaluated through a randomized Phase II/III 
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study NCT02152982. The results indicated that the combination therapy significantly 

improved disease outcome in MGMT-hypermethylated GBM PDX models compared with 

TMZ alone. Interestingly, the combination was ineffective in MGMT-unmethylated lines, 

indicating MGMT promoter methylation status predicts the drug responding for TMZ/

veliparib combination therapy (Gupta, et al., 2016). The veliparib/TMZ combination therapy 

is also being tested in metastatic breast cancer and BRCA1/2 breast cancer in the phase II 

study NCT01009788. In the phase II trial NCT01638546, the combination of veliparib with 

TMZ improved the response rate in relapsed/refractory small cell lung cancer patients, 

although an improvement in progression-free survival was not observed (Pietanza, et al., 

2016).

Platinum/PARP inhibitor

Platinum compounds are established chemotherapies for a broad range of malignancies, 

such as testicular, ovarian, and breast cancers. Platinum compounds introduce prevalent 

intra-strand DNA adducts, leading to the collapse of replication forks and single- and 

double-strand DNA breaks. The major type of platinum-induced DNA lesions, intra-strand 

DNA crosslinks, are mainly removed via the PARP/BER DNA repair pathway (Burkle, 

Chen, Kupper, Grube, & Zeller, 1993; Zamble, Mu, Reardon, Sancar, & Lippard, 1996). 

Moreover, platinum resistance closely correlates with the activity of DNA repair pathways 

(Eastman, Schulte, Sheibani, & Sorenson, 1988). The combination of a PARP inhibitor with 

platinum therapy has been evaluated in preclinical studies for different types of cancers. An 

early study showed that the introduction of 3-AB overcame cisplatin resistance, resulting in 

enhanced cell cycle arrest and apoptosis (Nguewa, et al., 2006). Similarly, combination 

treatment with the PARP inhibitor PJ34 suppressed triple-negative breast cancer and 

hepatocellular carcinoma in vitro and in vivo (Hastak, Alli, & Ford, 2010; Huang, et al., 

2008). Combination treatment with olaparib also improves the therapeutic effect of cisplatin 

in non-small cell lung cancer cells (H. Cheng, et al., 2013; Michels, Vitale, Senovilla, et al., 

2013).

Based on the encouraging findings in preclinical models, the combination of a PARP 

inhibitor and platinum therapy has been evaluated in clinical trials. In the phase II study 

NCT01081951, patients with platinum-sensitive, recurrent, high-grade serous ovarian cancer 

underwent combination therapy with olaparib. This treatment improved progression-free 

survival from 9.6 months to 12.2 months compared with the paclitaxel and platinum agent 

alone. However, the benefit did not translate into improvements in overall survival, which 

might due to an imbalance in early censoring of the study (Oza, et al., 2012). A similar 

combination regimen was tested in the phase II/III trial NCT03150576, in which the 

combination of olaparib with paclitaxel and carboplatin was evaluated in 527 patients with 

triple-negative breast cancer and/or germline BRCA-positive breast cancers. Additionally, in 

the phase I/II trials NCT02855697 and NCT02489006, a combination regimen including 

olaparib and platinum-based chemotherapy is being evaluated in patients with progressive, 

high-grade serous/endometrioid ovarian cancer, or fallopian tumors. In a latest phase III 

study NCT02032277, six hundred and thirty-four triple-negative breast cancer patients was 

recruited to evaluate the sensitizing effect of PARP inhibitor veliparib in combination with 

carboplatin and paclitaxel, followed by doxorubicin and cyclophosphamide. The 
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combination regimen improved the proportion of patients with triple-negative breast cancer 

who achieved a pathological complete response, although the progression free survival or 

overall survival was not conclusive in this study. The inclusion of veliparib in the treatment 

did not benefit for triple-negative breast cancer at the does used in this trial suggesting a 

higher does or using greater PARP trapping efficiency inhibitor such as olaparib and 

talazoparib might have been possible. (Loibl, et al., 2018).

5. Future directions for PARP inhibitor combination therapies

Explore the molecular basis of synergy

Combining PARP inhibitors with anti-cancer therapies is a promising strategy in many 

preclinical studies. Numerous clinical studies have been designed and executed to determine 

if adding PARP inhibitor leads to superior therapeutic effects over monotherapy. In addition 

to the well-accepted combination regimen involving a PARP inhibitor and genotoxic therapy, 

the application of PARP inhibitors has been expanded to combinations with non-genotoxic 

therapies. For example, in a study in patients with BRCA1-deficient cancer, the combination 

of ABT-888 with CTLA-4 blockade, an immune checkpoint therapy, resulted in immune-

mediated tumor clearance and improved long-term survival (Higuchi, et al., 2015). This 

concept is currently being evaluated in the phase I/II clinical trial NCT02571725, in which 

the dosage and objective response rate will be analyzed upon treatment with a combination 

of olaparib and tremelimumab. Similarly, in the phase I/II study NCT02953457, the 

combination of olaparib, durvalumab, and tremelimumab will be evaluated for the treatment 

of patients with ovarian, fallopian tube, or peritoneal cancer. PARP inhibitors are also 

frequently combined with growth factor receptor inhibitors. For example, the phase II study 

NCT01116648 showed that combining olaparib with cediranib, a VEGFR inhibitor, 

improved progression-free survival in recurrent, platinum-sensitive, high-grade serous or 

endometrioid ovarian cancer (J. F. Liu, et al., 2014). The same combination regimen is 

currently being tested in the phase III study NCT03278717 and the clinical study 

NCT02681237 for ovarian cancer patients.

Overall, these novel combination regimens appear to improve disease outcome and suppress 

tumor expansion. However, rather than synergy, the improvements may result from the 

additive effects of combining different types of anti-tumor compounds. Each of the 

therapeutic agents may function according to its designated molecular mechanism, but 

minimally influence the other agents in the combination regimen. More research is required 

to explore the possible molecular mechanisms of synergy between the different types of anti-

tumor compounds. Investigating drug synergy in preclinical models may provide important 

data to justify and guide future combinations, recognizing that additive effects are likely to 

provide limited benefit to patients. However, combination therapies increase toxicities such 

as myelosuppression, and fatigue, compounding the side effects associated with each of the 

therapeutic compounds.

Investigate baseline DNA repair mechanisms in different tumors

Understanding the intrinsic DNA repair activity in each type of tumor is another important 

consideration in PARP combination therapy. Expectedly, different types of tumors exhibit 
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varied baseline DNA repair activity. However, even histologically identical tumors may have 

developed through completely different oncogenic routes, thereby imprinting them with a 

distinct spectrum of drug sensitivity and resistance mechanisms. For example, in BRCA1/2-

deficient breast or ovarian cancers, the HR pathway deficiency creates a distinctive 

vulnerability to PARP inhibition (known as “BRCAness”) (Farmer, et al., 2005; McCabe, et 

al., 2006). In the case of PARP combination therapy, tumors with deficient DNA repair 

pathways may acquire “BRCAness”, and exhibit sensitivity to PARP combination therapy 

(Lord & Ashworth, 2016). Sporadic tumors may develop “BRCAness” through epigenetic 

silencing of key HR modules, such as members of the FANC-BRCA complex, and the 

establishment of sensitivity to PARP inhibition (Lyakhovich & Surralles, 2006; Marsit, et 

al., 2004; Turner, Tutt, & Ashworth, 2004). A recent finding showed that, in IDH1-mutated 

cancers, although no direct genetic abnormalities affect DNA repair pathways, the 

accumulated oncometabolite 2-hydroxyglutarate serves as an endogenous inhibitor of HR. 

The loss of functional HR enzymes establishes “BRCAness”, which predisposes tumors to 

sensitivity to PARP inhibition (Sulkowski, et al., 2017). Some anti-cancer therapies, such as 

bortezomib, may also induce “BRCAness” (Neri, et al., 2011). Exploring intrinsic 

deficiencies in DNA repair pathways may provide useful information to predict drug 

sensitivities and guide therapy strategies.

Several recent studies showed that alteration in intrinsic DNA repair pathway may shift the 

therapeutic effect of PARP inhibitors. For example, tumors with secondary mutation in 

BRCA2 acquire resistance to olaparib, which may due to the restoring homologous 

recombination through BRCA2 re-expression (Barber, et al., 2013). In mouse mammary 

tumor model, deficiency of 53BP1 was discovered to introduce resistance to PARP inhibitor 

(Jiao, et al., 2012), indicating more genetic and molecular changes involved in DNA 

damage/repair pathways should be considered when applies PARP inhibitor clinically.

Understanding the correlation between tumor-distinctive metabolism and PARP DNA 
repair

Metabolic reprogramming is a hallmark event during oncogenesis. The tumor-specific 

metabolic signature may influence DNA repair and therapy resistance. For example, hypoxic 

and acidic tumor microenvironments have lower DNA repair capacities (Bristow & Hill, 

2008; Yuan, Narayanan, Rockwell, & Glazer, 2000). Therefore, the metabolic signature 

could be used to predict responses to PARP combination therapies. For PARP DNA repair, 

the catalytic activity of the enzyme relies on ATP and NAD+ to allow PAR formation and on 

DNA repair enzyme recruitment. Fluctuations in NAD+ metabolism is likely to influence the 

efficiency of PARP DNA repair by changing the availability of the key substrate NAD+ 

(Wang, et al., 2011). Several lines of evidence showed that, in the setting of compromised 

NAD+ metabolism, cancer cells exhibited extreme vulnerability to NAD+ depletion and 

PARP inhibitor treatment (Lu, et al., 2017; Tateishi, et al., 2015). The development of the 

NAMPT inhibitor FK866 confirmed the importance of the abundance of NAD+ in PARP-

related chemoresistance. FK866 synergizes with intrinsic PARP deficiency or the presence 

of a PARP inhibitor, leading to a greater cytotoxic effect (Bajrami, et al., 2012; Tateishi, et 

al., 2015). Additional research into the relationship between cancer metabolism and DNA 

Lu et al. Page 10

Pharmacol Ther. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



repair pathways, which will provide insight into possible combination regimens to improve 

upon traditional therapies, is warranted.

6. Conclusion and Future Directions

DNA repair pathways compromise the therapeutic effects of traditional anti-cancer 

therapies. The potential of DNA repair inhibitors in future of cancer therapy is becoming 

apparent. Since the first discovery of 3-AB around three decades ago, small molecular 

compound inhibitors targeting PARP/BER DNA repair pathway have become an effective 

sensitizing approach to genotoxic therapies, which lead to a large body of laboratory studies 

and clinical trials. Understanding the distinctive alterations in tumor biology, especially their 

intrinsic deficiency in DNA repair enzymes, as well as the signature metabolic pattern, 

would facilitate the development of PARP inhibitor combination regimen. With the 

expanding knowledge of drug synergy, we are poised for a rapid expansion of DNA repair 

inhibitors that move from based research to clinical application.
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PARP poly (ADP-ribose) polymerase

TMZ temozolomide

BER base-excision repair

MGMT O-6-methylguanine-DNA methyltransferase

NHEJ non-homologous end joining

HR homologous recombination

3-AB 3-aminobenzamide

MTIC 5-(3-methyltriazen-1-yl)imidazole-4-carboxamide

N7-MeG N7-methylguanine

O6-MeG O6-methylguanine

N3-MeA N3-methyladenine
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Figure 1. The evolution of PARP inhibitors
Schematic illustration for the chemical structures of PARP inhibitors. The nicotinamide 

pharmacophore is highlighted in blue.
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Figure 2. PARP inhibitor sensitizes traditional chemotherapy
Schematic illustration for the molecular mechanism of combination therapy involving PARP 

inhibitor and genotoxic agent. Traditional chemotherapy introduces DNA lesions and 

cytotoxicity to cancer cells. PARP plays an important role in forming poly (ADP-

ribosyl)ation branches through consuming NAD+. DNA repair enzymes are recruited to the 

DNA lesion foci and remove adducts from nucleobases. Introducing PARP inhibitor 

compromises the scavenging of DNA adducts, resulting in more cell death with traditional 

chemotherapy.
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