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Abstract

Adult neurogenesis in mammals is a tightly regulated process where neural stem cells (NSCs), 

especially in the subgranular zone (SGZ) of the hippocampal dentate gyrus, proliferate and 

differentiate into new neurons that form new circuits or integrate into old circuits involved in 

episodic memory, pattern discrimination, and emotional responses. Recent evidence suggests that 

changes in the hyaluronan (HA)-based extracellular matrix of the SGZ may regulate neurogenesis 

by controlling NSC proliferation and early steps in neuronal differentiation. These studies raise the 

intriguing possibility that perturbations in this matrix, including HA accumulation with aging, 

could impact adult neurogenesis and cognitive functions, and that alterations to this matrix could 

be beneficial following insults to the central nervous system that impact hippocampal functions.
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Introduction

Neural stem/progenitor cells (NSCs) in both the developing and adult brain are multipotent 

self-renewing cell populations that give rise to neurons and glial cells in the mammalian 

central nervous system (CNS). During early development, NSCs reside in the neural tube 

and undergo numerous rounds of self-renewal before dividing asymmetrically, giving rise to 
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early populations of neurons and radial glial cells [1]. Later in development, NSCs that 

reside in the ventricular zone and subventricular zone differentiate predominantly into 

astrocytes, then oligodendrocytes during perinatal periods. In the adult CNS, NSCs reside in 

NSC niches including the subventricular zone lining the lateral ventricles and the 

subgranular zone (SGZ) in the dentate gyrus of the hippocampus [2]. These NSCs are 

heterogeneous with regards to their localization and their patterns of differentiation [3], and 

are capable of neurogenesis and gliogenesis throughout life in response to a variety of 

stimuli ranging from learning to injury.

A variety of extracellular signals in NSC niches, including the ligands of receptor tyrosine 

kinases, have been implicated in regulating NSC proliferation, differentiation and survival 

[4, 5]. Components of the extracellular matrix (ECM) have also been implicated in 

dynamically regulating NSC behaviors during both embryonic development and in adults. 

For example, NSC niches include a basal lamina that is enriched in collagen and laminin [6–

8]. In adult NSC niches, the basal lamina regulates the adhesion of NSCs to the ECM. 

Extracellular glycoproteins such as tenascin C also play roles in regulating NSC within NSC 

niches. Disruption of tenascin C results in increased generation of astrocytes due to altered 

responsiveness to fibroblast growth factor-2 and epidermal growth factor [9]. Finally, 

proteoglycans have been implicated in regulating a number of NSC behaviors. 

Proteoglycans consist of a core protein and covalently attached glycosaminoglycan chains. 

While they have signaling properties of their own, they also can bind other extracellular 

factors, including signaling molecules, membrane proteins, and components of the ECM to 

influence NSC migration, differentiation, and survival [10].

Another major constituent of the CNS ECM is hyaluronan (or hyaluronic acid, HA). HA is a 

large unbranched, non-sulfated glycosaminoglycan composed of repeating disaccharide 

units of N-glucuronic acid and N-acetylglucosamine. HA acts as a backbone for numerous 

proteoglycans in the CNS including neurocan, aggrecan, and versican [11, 12]. However, 

HA is also found at cell surfaces independent of proteoglycans where it binds to various 

transmembrane and extracellular receptors and HA-binding proteins. HA is synthesized at 

the inner face of the plasma membrane and secreted into the extracellular space by a family 

of transmembrane proteins known as HA synthases (HASs). In some instances, HA can 

remain tethered to synthases or to transmembrane HA receptors. Mammals have three such 

synthase genes, HAS1, HAS2 and HAS3. HA catabolism, on the other hand, is carried out 

by hyaluronidases (HYALs) and HA depolymerizing proteins that differ in their cellular 

localization and pH optima. Mammals possess multiple hyaluronidase and HA 

depolymerizing genes, including HYAL-1 through HYAL-5, PH20/SPAM1, transmembrane 

protein 2 (TMEM2), and Cell Migration-Inducing hyaluronan binding Protein (CEMIP) 

(also called HYBID and KIAA1199) [13–15]. In addition, humans carry a hyaluronidase 

pseudogene designated PHYAL-1 [13].

Changes in HA synthesis and catabolism play numerous roles in CNS development and 

homeostasis (e.g. [16–19]). In this review, we discuss recent data supporting distinct roles 

for HA in adult neurogenesis and, subsequently, in regulating neuronal function within 

perineuronal nets. We further explore the possibility that changes in the HA matrix with 
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aging or following a variety of insults to the CNS can significantly impact neuronal 

differentiation as well as learning, memory, and behavior.

Disruption of HA signaling influences hippocampal function

The hippocampal dentate gyrus contributes to the formation of episodic memories (e.g. the 

times, places, emotions and contexts associated with specific events) as well as pattern 

separation and emotional control. Each of these functions have been linked to alterations in 

adult neurogenesis in the SGZ [20]. A role for the HA-based ECM in regulating adult 

neurogenesis in the dentate gyrus is supported by the finding that HA is enriched in the SGZ 

[21, 22]. Interestingly, HA is synthesized by NSCs themselves, which express all three 

mammalian HA synthases [22] (Fig. 1). Furthermore, a major transmembrane HA receptor, 

the CD44 glycoprotein, is also expressed in the dentate gyrus especially by NSCs [22–24] 

(Fig. 1).

A functional role for HA in hippocampal activity was first demonstrated by 

Kochlamazashvili and co-workers [25] who found that disruption of HA in the hippocampus 

by intra-hippocampal injection of a hyaluronidase impaired hippocampus-dependent 

contextual fear conditioning. We subsequently found that mice lacking CD44 show 

hippocampus-dependent memory impairments [26]. Specifically, CD44 null mice 

demonstrated impaired hippocampus-dependent spatial memory retention in the probe trial 

following the first hidden-platform training day in the Morris water maze. There were no 

genotype differences in swim speeds during the water maze training sessions with the visible 

or hidden platform. However, some sensorimotor impairments were seen in other behavioral 

tests. In the inclined screen and balance beam tests, CD44 null animals moved less than wild 

type mice, while in the wire hang test, CD44 null mice fell off of the wire faster than wild 

type mice. No genotype differences were observed in tests of emotional learning and 

memory [26]. These data support an important role for CD44 in hippocampal spatial 

memory retention and in locomotor and sensorimotor functions.

More recently, Barzilay and co-workers [27] demonstrated that CD44 null mice have 

increased susceptibility to stress-induced anxiety and demonstrate increased anhedonia and 

despair compared to wild type mice. These authors also reported that CD44 null nice display 

reduced cortical serotonergic and striatal dopaminergic turnover, and that the hippocampal 

expression of another HA receptor, the receptor for HA-mediated motility (RHAMM) is 

reduced in non-stressed CD44 null mice compared with wild type animals [27]. Although 

this study did not directly examine changes in adult neurogenesis in CD44 null mice under 

these conditions, these findings, in conjunction with the previous studies discussed above, 

collectively support a role for HA and HA receptors in hippocampal neuron function and 

neurogenesis.

HA regulates NSC proliferation and neuronal differentiation in the SGZ

A study of NSCs on scaffolds made of HA and collagen indicated that HA could play a role 

in potentiating NSC differentiation [28]. Another study, using HA-laminin hydrogels, 

demonstrated that the HA-based ECM can regulate NSC migration in response to stromal 
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cell-derived factor-1-alpha (SDF1α) via the CXCR4 receptor [29]. To address the specific 

roles of HA and CD44 in hippocampal neurogenesis, we recently examined the phenotypes 

of CD44 null SGZ-derived NSCs and of NSCs treated with a hyaluronidase both in vitro and 

in vivo. We found that CD44-null NSCs or hyaluronidase-treated wild type NSCs 

demonstrate increased proliferation rates and delayed neuronal maturation in vitro [22]. 

Treatment of NSCs with high molecular weight HA (>2 MDa) correspondingly inhibited 

NSC proliferation in wild type but not CD44-null NSCs [22]. Consistent with these in vitro 
results, mice lacking CD44 and wild type mice sterotactically injected with hyaluronidase 

into the SGZ demonstrated increased NSC proliferation, as assessed by Ki-67 and 

bromodeoxyuridine labeling, and delayed neuronal differentiation. In addition, CD44-null 

mice display a significant reduction in c-fos expression throughout the dentate gyrus granule 

cell layer after spatial learning [22], consistent with the notion that these excess immature 

neurons that accumulate in the granule cell layer may lack functional connectivity. All 

together, these data indicate that HA in the SGZ signals through CD44 expressed by NSCs 

to regulate NSC proliferation and early steps in neuronal differentiation.

HA regulates the activities of mature neurons

The mechanisms by which HA-CD44 signaling influences hippocampal neurogenesis are 

unclear. HA binding to CD44 may be one of many signaling events in the SGZ that 

cooperate to regulate the timing, onset, and progression of neurogenesis [30]. Alternatively, 

CD44 activation by HA may directly stimulate intracellular signaling to regulate NSC 

proliferation and differentiation. Interestingly, CD44 and HA may also play direct roles in 

regulating the activities of mature neurons. For example, we found that the baseline calcium 

levels in CD44 null neurons are significantly higher than those in wild type neurons, and that 

CD44 null neurons are less sensitive to KCl stimulation than wild type cells (our own 

unpublished findings). This phenotype is reminiscent of the phenotype observed in aged 

neurons [31–32] and in neurons affected by neurodegenerative disorders [33]. These data 

suggest that HA-CD44 interactions can influence the activities of calcium channels in 

mature neurons and further change hippocampal functions [25, 34]. However, we find that 

although CD44 expression is high in NSCs, it becomes undetectable as hippocampal 

neurons differentiate [22]. Thus, an alternative possibility is that cells from CD44 null 

animals aberrantly differentiate, resulting in altered calcium levels within the cells and 

altered hippocampal activity.

Unlike HA in NSC niches, many of the functions of HA in mature neurons have been linked 

to the role of HA in perineuronal nets (PNNs), specialized structures that wrap around 

neurons and proximal dendrites, with openings where synaptic inputs contact their 

underlying cells [35]. PNNs were first described as reticular structures by Golgi in the late 

1800s [36, 37]. They are found in the CNS in a wide range of species, ranging from frogs to 

birds to mammals, including humans [37–39]. They form during development, and their 

overarching function is to stabilize synapses during adulthood and generally inhibit 

plasticity (see below). Despite their original discovery over 100 years ago, only recently has 

there been a focus on the role of PNNs in physiological brain functions, such as learning and 

memory, as well as in many pathologies, including schizophrenia, Alzheimer’s disease, 

stroke, epilepsy, autism, drug addiction, and spinal cord injury [40]. Overall, PNNs play key 
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roles in neural development, synaptogenesis, neuroprotection, and experience-dependent 

synaptic plasticity [37, 41–44]. The increased excitement about understanding the role of 

PNNs in plasticity stems from findings that the removal of PNNs restores juvenile-like states 

of plasticity, as discussed in greater detail below and outlined in several reviews [35, 45–47].

PNNs are formed by the contribution of four families of ECM molecules. (1) HA is a 

significant component of PNNs, but unlike NSC niches, HA in PNNs appears to mostly 

form a backbone onto which other PNN molecules bind [11, 48]; (2) Chondroitin sulfate 

proteoglycans (CSPGs; primarily of the lectican family, including aggrecan, brevican, and 

versican), which bind via their amino-terminus to HA [49–52]. The composition of CSPGs 

in PNNs has been distinguished from that present in the loose ECM by using extraction 

procedures employing relatively harsh treatment (6 M urea), which separates components in 

PNNs from those in the loose ECM [53]. Further, the composition of these CSPGs varies 

within different brain regions [45, 54]. (3) Tenascins, proteins that form multimers and 

cross-link the lecticans to help stabilize PNNs [55]; and (4) HA and proteoglycan link 

proteins (HAPLNs; HAPLN1, 3 and 4 are found in the CNS). These proteins bind to both 

the HA backbone and CSPGs to stabilize PNNs [49, 56–58]. PNNs are most commonly 

identified by staining them with the plant lectin, Wisteria floribunda agglutinin (WFA; Fig. 

2), which is thought to bind to terminal N-acetylgalactosamines beta 1 residues of 

glycoproteins [59], most likely on aggrecan; other methods for staining PNNs have also 

been used but probably bind to the same residues [59–62].

The HA synthesizing enzymes, HAS1, HAS2, and HAS3, are found in neurons with PNNs 

[45]. The different isoforms of HAS synthesize HA chains of different lengths [63, 64], and 

these may in turn impart PNNs with different functions that vary among brain areas. Which 

particular HAS enzymes are expressed on PNN-surrounded neurons varies dependent on the 

brain area and time point during development [45, 47]. For example, the spinal cord 

expresses HAS1 and HAS3, with only HAS3 in adult spinal cord [65]. In the mouse cortex 

and hippocampus, although all three enzymes are expressed, there is localization of HAS2 

and HAS3 predominantly on cell bodies [66].

The mechanisms by which PNNs are attached to their underlying neurons has been 

examined in detail in the cerebellum [49]. Three HA receptors located in the CNS, CD44, 

RHAMM, and LYVE-1 [67], were examined, but none of these receptors was found in the 

PNNs of the cerebellum. The authors concluded that, of the three isoforms of HAS in 

mammals [68], neurons surrounded by PNNs have HA attached to their synthesizing 

enzyme, in this case, HAS2 and HAS3, as HAS1 was not found in PNNs in the cerebellum. 

The attachment of PNNs to their underlying cells via membrane HAS enzymes is supported 

by the observation that HEK cells can be transfected to generate HA and aggrecan, and these 

HEK cells in turn produce PNNs [56].

The removal of PNNs is accomplished most commonly by treatment with the bacterial 

enzyme called chondroitinase ABC (Ch-ABC; EC 4.2.2.4) from Proteus vulgaris NCTC 
4636. This enzyme acts on CSs and CSPGs, and it also removes HA, HA binding proteins, 

and N-acetylgalactosamine [69, 70] as well as the HA binding region that binds proteins in 

the PNN [69]. The effects of Ch-ABC on PNNs are known to be long lasting: the enzyme 
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remains active for several days [71]. At 4 weeks post-Ch-ABC treatment, some PNNs re-

appear but their normal appearance does not occur for 5 months [69]. It remains unknown 

whether PNNs reappear on the same neurons or with the same composition. Hyaluronidase 

treatment also reduces PNN staining by WFA, consistent with its removal of two key 

components, aggrecan and link proteins [72]. However, the effects are much shorter lasting, 

with reappearance after several days [73]. While hyaluronidase treatment reduces the 

intensity of PNN staining by WFA, it does not influence the ECM that wraps around the 

initial segment of axons [74].

The role of HA in PNNs may depend on the cell type and the contents of the 

ECM

In many brain regions, PNNs are found mostly around fast-spiking, parvalbumin (PV)-

containing GABAergic interneurons [75–78]. However, an increasing number of studies 

demonstrate that PNNs also surround glycinergic neurons [79] as well as glutamatergic 

neurons [49, 80–84], which can be both parvalbumin positive or negative [80, 81]. PNNs are 

located throughout the brain and spinal cord, but are unevenly distributed [85]. They form 

during development at different rates across the brain and spinal cord [86, 87] and are 

completed by early adulthood in the cortex of rodents [88], with differences in 

developmental rates among cortical subregions. Neural activity promotes PNN development, 

which occurs through changes in potassium and calcium conductance and through activation 

of glutamate receptors (N-methyl-D-aspartate receptors and calcium-permeable AMPA 

receptors) [77, 86, 89].

Interestingly, the development of PNNs occurs precisely at the time when critical period 

plasticity ends and when brain plasticity is greatly reduced. The core components of PNNs 

(detailed below) increase during this critical window of development [90]. PNNs have been 

heavily studied for their contributions to critical period plasticity within the visual system, 

motor system, and somatosensory system [88, 91–93]. PNNs limit plasticity in adulthood, 

but they can be degraded to reinstate juvenile-like states of plasticity, allowing for axon 

sprouting and regeneration of function in damaged neurons.

Several knockout (KO) mouse models have been generated to determine the contribution of 

the various HA-containing lecticans to PNNs. Versican V2 (a splice variant), neurocan, or 

brevican KO mice have largely normal PNNs [94], whereas aggrecan KO mice do not stain 

for WFA, indicating that aggrecan is a key contributor to PNN formation [62]. Given that 

these proteoglycans are absent during development, it is difficult to know how compensatory 

changes might preserve PNN structure. Overall though, the diversity of lecticans (e.g., [95]) 

and other components of PNNs, such as link proteins that are critical for PNN formation 

[58] and the length of the HA chain, are expected to confer different functions of PNNs 

across different regions of the brain and spinal cord, although exactly what these functions 

are remain unknown. In addition, other features of PNNs allow for further complexity. For 

example, the lecticans contain chondroitin sulfate (CS) chains that are sulfated at different 

positions during development, and this is believed to regulate plasticity in terms of axonal 

growth and guidance [96–99]. In addition, the sulfation pattern of CS chains continues to 
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change in old age, conferring an even greater inhibitory function to PNNs than is found in 

younger adults [100].

To date, the best studies examining the function of HA in PNNs have relied on 

hyaluronidase digestion of the ECM. Each of these studies provide clues about potential 

roles for HA in PNNs and associated ECM. An early study found that chronic exposure to 

hyaluronidase caused severe neurological dysfunction, such as rigidity, unresponsiveness 

and grand mal seizures [101]. The underlying mechanism of these phenomena is unclear due 

to the complex nature of the neuronal networks involved. However, more recent studies with 

better controlled delivery of hyaluronidases have revealed more specific roles linked to 

changes in the PNN ECM. For example, hyaluronidase treatment in the auditory cortex 

promotes cognitive flexibility in an auditory learning task in gerbils [102]. Hyaluronidase 

also decreased calcium influx through L-type channels in hippocampal dendrites and 

abolished long-term potentiation (LTP) in hippocampal (CA1 and CA3) synapses [25]. 

Addition of HA to hyaluronidase-treated hippocampal neuron cultures restored LTP, 

indicating that HA acts through L-type calcium channels to modulate synaptic function in 

the CA1/CA3 regions of the hippocampus. Digestion of HA also increases hippocampal 

sharp wave ripples observed during slow wave sleep [103], and a combination of Ch-ABC 

with hyaluronidase impairs fear memory when infused into the medial prefrontal cortex or 

dorsal hippocampus [104].

One area where HA in PNNs may play a critical role is in limiting the mobility of AMPA 

receptors (AMPARs) in the postsynaptic membrane. The rapid movement of AMPARs 

between junctional and extrajunctional sites allows desensitized receptors to be replaced by 

“fresh” responsive receptors. Treatment of mature PNN with hyaluronidase restored 

mobility of the AMPAR and synaptic plasticity [105]. This same study reported that PNN 

degradation did not affect the migration of NMDA receptors. However, there is evidence that 

the functional properties of NMDA receptors are affected by disruption of PNNs. Schweitzer 

and co-workers [106] reported that the PNN regulated the composition of NMDAR subunits, 

designated as GluN2A and GluN2B. During the development of the visual cortex and 

hippocampus, NMDARs are composed of the more adaptable GluN2B but after the end of 

the critical period the less plastic GluN2A predominates. In dissociated hippocampal culture 

the expression of GluN2A and GluN2B follow a similar time course (GluN2B being 

replaced by GluN2A). The dominant expression of GluN2A in mature cultures can be 

reversed treating the cells with hyaluronidase.

Each of these studies suggests that HA and HA-associated proteoglycans within PNNs could 

impact different aspects of neuronal activity. However, with the exception of knockout mice 

deficient in CSPGs or link protein, all studies to date have used hyaluronidase or Ch-ABC to 

assess the function of PNNs. A drawback to this approach is that the loose ECM is also 

digested, bringing into question whether damage to the loose ECM contributes to the neural 

plasticity effects. In addition, in studies that rely entirely on hyaluronidases, it is unclear if 

the physiological effects of hyaluronidases are due to loss of high molecular weight HA 

within PNNs or associated loose ECM, physiological effects of specific sizes of HA 

digestion products, or more generalized disruption of HA-associated proteoglycans. Future 

studies will need to develop more advanced methods to manipulate PNNs and their 
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component, including HA, by targeting their removal in a cell- and brain region-specific 

manner.

How changes in the HA-based ECM can impact neurogenesis and neuronal 

functions

The manipulation of HA and HA receptors in the SGZ and in PNNs could have a number of 

therapeutic benefits following different insults to the CNS that lead to altered neurogenesis 

or neuronal function. For example, there is a dramatic increase in NSC proliferation and an 

accumulation of immature neurons in the SGZ following seizures [107–109]. These changes 

are remarkably similar to the phenotypes observed in CD44 null mice and in wild type mice 

in which HA was disrupted in the SGZ [22]. Animals with seizure-induced increases in NSC 

proliferation are prone to subsequent seizures and associated cognitive difficulties [19, 27, 

107, 110–113]. Furthermore, HA and levels of hyaluronan synthase-3 are altered in the 

hippocampus following seizures in rats [108] while degradation of HA with a hyaluronidase 

or treatment with CD44 function-blocking antibodies altered seizure-induced mossy fiber 

sprouting [109]. Recent studies support the notion that the cells demonstrating aberrant 

mossy fiber sprouting are aberrant adult-born dentate granule cells [114]. It is possible, 

therefore, that altering HA digestion or CD44 expression on in the SGZ or on mossy fibers 

following seizures could help limit seizure-associated cognitive deficits.

Excess accumulation of HA and CD44 overexpression could also influence changes in adult 

neurogenesis with aging. Neurogenesis in the SGZ decreases with aging, possibly 

contributing to age-related cognitive decline [115–120]. Decreased neurogenesis with aging 

is at least partly linked to reduced NSC proliferation. A number of studies have suggested 

that age-related changes in the NSC microenvironment could limit adult neurogenesis in old 

age [120–123]. Several studies have demonstrated that HA accumulates in the CNS with 

aging and in individuals suffering from age-related cognitive dysfunction [22, 124–126]. 

Importantly, we find that HA accumulates in the SGZ and the rest of the dentate gyrus with 

aging in mice [22]. This accumulation may, therefore, contribute to reductions in NSC 

proliferation and affect new neuron maturation, leading to age-related changes in 

hippocampal function. Developing strategies to prevent HA accumulation or excessive 

activation of CD44 in the SGZ could therefore be interesting approaches to prevent age-

related declines in neurogenesis and associated cognitive disturbances.

Interestingly, the controlled regulation of HA and other components within PNNs may have 

the potential to influence conditions whose underlying cause is aberrant neuronal function. 

Consistent with the ability of PNNs to restrict plasticity in adulthood, their removal with 

either Ch-ABC or hyaluronidase restores several types of plasticity. Ch-ABC treatment 

restores ocular dominance plasticity in the visual cortex of adult animals [88], enhances 

object recognition memory [127], enhances reversal learning in the auditory cortex [102], 

promotes recovery of motor learning after spinal cord injury [128] and cortical ischemia 

[129], and influences extinction of fear conditioning [130]. However, removal of PNNs has 

also been shown to prevent certain types of plasticity imposed by strong stimuli, including 
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shock used for fear conditioning and drugs of abuse. Removal of PNNs prevents fear 

conditioning in the medial prefrontal cortex or dorsal hippocampus [104].

The removal of PNNs also prevents the effects of drugs of abuse, including the 

consolidation/reconsolidation of drug-associated memories and the erasure of memories 

[131–133]. We hypothesize that removal of PNNs is effective at both promoting or 

preventing plasticity depending on the type of stimuli used to induce plasticity. When 

relatively weak, physiological stimuli such as light or training of motor pathways are used to 

activate neurons, PNN removal allows for new synapse formation onto the underlying cells 

that restores function (e.g, ocular dominance plasticity). On the other hand, PNN removal 

may block the effects of stronger stimuli, including shock used in fear conditioning or drugs 

of abuse. Drugs of abuse induce metaplasticity [134], and this metaplasticity alters the 

ability of natural stimuli to further alter plasticity. In this case, PNN removal may prevent 

the drug-induced changes to restore the excitatory:inhibitory balance, likely by altering cell 

firing [135] and/or other molecules that bind to PNNs to regulate homeostatic plasticity [74].

PNNs are highly dynamic even during adulthood. For example, environmental enrichment in 

animals, in which rodents are housed together and given novel toys and exercise wheels, has 

been shown to either reduce or increase the number and/or the intensity of PNN staining by 

WFA [136–137]. Several different drugs of abuse have demonstrated increases or decreases 

in the intensity of PNN staining, depending on treatment and brain area [138–40]. The Sorg 

lab, (unpublished) and others [141] have even observed diurnal/circadian changes in the 

intensity of PNNs, suggesting a highly dynamic regulation of these structures. In some 

cases, some of the PNN components have been measured for what underlies these dynamic 

changes after exposure to drugs of abuse [139, 142], but multiple mechanisms may regulate 

the staining intensity of PNNs, including how tightly condensed the PNNs are, the sulfation 

patterns of the CSPGs, and the ability to capture inhibitory molecules or those that promote 

plasticity (e.g., BDNF). Regulation of HAS1-3 on neurons bearing PNNs produce HA that 

serves as the critical backbone structure of PNNs, but these have not yet been explored in the 

context of these dynamic changes. Future studies will need to dissect the contribution of 

these enzymes and the mechanisms by which they may be regulated, and in turn, how the 

properties of PNN-enwrapped neurons are altered.

Conclusions and Future Research Directions

Studies to date have demonstrated that HA, HA-associated ECM (including proteoglycans) 

and HA receptors each play roles in neurogenesis and in regulating the activities of mature 

neurons (Fig. 3). These roles are distinct depending on the point in neuronal differentiation, 

the location of the cells, and on age. For NSCs, HA appears to play a crucial role in 

regulating NSC expansion and early stages of neuronal differentiation and maturation. In 

mature neurons, HA is a component of PNNs where it contributes to the regulation of 

neuronal activity predominantly as a component of proteoglycans within PNNs. The 

growing evidence that HA is altered or elevated following CNS insults and during normative 

aging implicate HA and HA receptors as important players in CNS disease pathogenesis and 

injury responses.
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It is intriguing to speculate that HA synthesis and catabolism are dynamically regulated 

during the course of normal CNS activity. For example, given that HA restricts NSC 

proliferation in the SGZ and prevents neurogenesis [22], it is possible that hyaluronidases or 

other mechanisms transiently digest the HA in NSC niches in an activity-dependent manner 

to promote NSC expansion and subsequent differentiation during learning or in response to 

other stimuli. What remains unclear is how and which hyaluronidases may be involved in 

such dynamic regulation. One candidate is CEMIP, which is expressed in the brain and has 

been linked to hippocampal learning and memory functions [143]. It is also unclear if the 

effects of HA or HA digestion in either the SGZ or in PNNs is due entirely to high 

molecular weight forms of HA, the disruption of such HA, or the accumulation of specific 

sizes of HA digestion products. Indeed, HA breakdown products that can signal through 

Toll-like receptors have been implicated in regulating the maturation of oligodendrocyte 

progenitors in CNS white matter [144, 145]. Finally, it will be important to understand 

which receptors regulate the activities of HA in both NSC niches and in PNNs. While CD44 

appears to be crucial for regulating NSC proliferation in the SGZ, roles for other receptors in 

subsequent stages of neuronal differenation and in mature neurons have not been fully 

investigated. Future studies that address these issues will provides insights into the precise 

mechanisms by which the HA-based ECM influences neurogenesis and neuron activity. 

Understanding these mechanisms will also make HA and HA receptors excellent candidates 

for a variety of therapeutic interventions aimed at restoring neurogenesis and neuronal 

functions in the damaged CNS.
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Highlights

• The glycosaminoglycan hyaluronan (HA) regulates neural stem cell 

proliferation and differentiation as well as neuronal activity in mature neurons

• The HA-based extracelluar matrix is dynamically regulated and can be 

influenced by a variety of stimuli and insults to the central nervous system

• HA and HA receptors may be effective targets for restoring neurogenesis and 

neuronal function in the injured brain or spinal cord.
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Fig. 1. 
A whole-mount mouse SGZ-derived neurosphere labeled with HA (red, using a biotinylated 

HA-binding protein), CD44 (green) and DAPI (blue; to stain cell nuclei). As shown here, 

some of the outermost cells in neurospheres, which are undifferentiated NSCs, express both 

CD44 and HA (yellow staining). The degree to which this co-localization occurs varies from 

one neurosphere to another.
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Fig. 2. 
Neurons in a section from mouse prefrontal cortex labeled with Wisteria floribunda 
agglutinin (WFA; green; arrows) to label PNNs and DAPI (blue; to stain cell nuclei). This 

image demonstrates the extent to which PNNs surround both neuron cell bodies (green 

staining surrounding DAPI-labeling) and processes.
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Fig. 3. 
Distinct roles for HA in adult hippocampal neurogenesis and in mature neurons. HA (red) in 

the SGZ is believed to typically exist as a high molecular weight (HMW) molecule that 

keeps NSCs (green) in a quiescent state through signaling by CD44 expressed by NSCs. 

When NSCs need to expand in number, HA is digested, possibly by hyaluronidases like 

CEMIP, either relieving NSCs from the quiescence signals generated by HMW HA or by 

inducing proliferation in response to HA digestion products (small red dots). These NSCs 

migrate into the granule cell layer and differentiate into new neurons (yellow cell) that 

assemble PNNs with HA (red color surrounding the new neuron) around themselves. HA 

within these PNNs is also likely to be dynamically regulated to influence neuronal activity.
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