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From metagenomic data to personalized in silico microbiotas:
predicting dietary supplements for Crohn’s disease

Eugen Bauer' and Ines Thiele'

Crohn'’s disease (CD) is associated with an ecological imbalance of the intestinal microbiota, consisting of hundreds of species. The
underlying complexity as well as individual differences between patients contributes to the difficulty to define a standardized
treatment. Computational modeling can systematically investigate metabolic interactions between gut microbes to unravel
mechanistic insights. In this study, we integrated metagenomic data of CD patients and healthy controls with genome-scale
metabolic models into personalized in silico microbiotas. We predicted short chain fatty acid (SFCA) levels for patients and controls,
which were overall congruent with experimental findings. As an emergent property, low concentrations of SCFA were predicted for
CD patients and the SCFA signatures were unique to each patient. Consequently, we suggest personalized dietary treatments that
could improve each patient’s SCFA levels. The underlying modeling approach could aid clinical practice to find dietary treatment

and guide recovery by rationally proposing food aliments.
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INTRODUCTION

The human gut microbiota is composed of thousand different
bacterial species with a large functional diversity that surpasses
the human gene pool.! Health promoting functions of the gut
microbiota include the breakdown of indigestible dietary fibers
and production of short chain fatty acids (SCFA) utilized by the
human host.??

Various human diseases, including inflammatory bowel
disease (IBD), are associated with a loss of functional and
taxonomic diversity of the gut microbiota." The main symptom
of IBD is inflammation of the gut epithelium.* IBD can be
grouped into ulcerative colitis, primarily affecting the colon, and
Crohn’s disease (CD), affecting various gastrointestinal sites.
Non-invasive treatments for CD include the intake of antibiotics®
and steroid therapies.® In addition, defined diet formulas are
used to ease the symptoms of the disease.” However, the
success of these treatments varies between patients.® Addition-
ally, after remission, patients have difficulties in finding an
appropriate diet and often experience relapse. Considering the
human gut metabolism, it has been suggested that the diet
reshapes the microbiota.” Overall, the microbial diversity is
decreased in CD patients. A shortage of SCFAs'® coincides with a
decrease of fermenting Firmicutes bacteria."' Microbial SCFAs
have been recognized as important modulators of the immune
system and as a nutrition source.'> Butyrate, for example, is
taken up as an additional energy source by the host,'>
contributes to epithelial barrier integrity,'* and stimulates the
immune system.'”> CD patients suffer from a low butyrate
concentration,'® but its dietary supplementation can revert
many of the IBD symptoms,'” highlighting the relevance of this
particular SCFA in CD.

Given that the human gut microbiota is a complex microbial
community with many different microbes that have varying
metabolic potentials and substrate affinities,'® it becomes difficult

to track the ecological interactions differing between CD patients
and healthy individuals. Meta-omics approaches are generally
used to characterize the microbiota and its metabolic potential.’
However, these top-down approaches do not provide mechanistic
insights on the resilience of the microbiota and how perturba-
tions, such as diets, may affect the system as a whole.

Bottom-up systems biology approaches can mechanistically
describe biological systems and make relevant predictions. In
particular, constraint-based reconstruction and analysis (COBRA)
has been successfully applied to model the metabolism of
different species and predict how perturbations affect the
metabolic phenotype.?>?' Briefly, genome-scale metabolic recon-
structions are represented by the complete set of biochemical
reactions derived from a genome annotation and organism-
specific literature in a stoichiometric accurate manner.”?> Such
high-quality manually-curated metabolic reconstructions are
available for organisms from all three domains of life, such as
Escherichia coli® yeast?* and human (e.g.”>*°). Through the
application of specific constraints (e.g., nutrient availability), the
metabolic reconstructions can be converted into condition-
specific models, which predict the reaction flux rates and growth
yield under a given objective that is optimized using flux balance
analysis (FBA).?® In a recent publication,?” we combined FBA with
agent based modeling to simulate the ecology of microbial
communities through the BacArena framework. Metabolic inter-
actions emerge from the exchange of metabolites between
species and the environment. These interactions can influence
the metabolite concentration and the microbial community by
inducing cross-feeding or resource competition. Such COBRA-
based approaches provide a powerful mean to investigate
mechanistic links in complex biological systems, such as the
human gut microbiota.?®

A recent study on pediatric CD sequenced the metagenomes of
a North American cohort consisting of 26 healthy controls and 85
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Computational framework used to create personalized metabolic models of gut microbial communities. Published metagenomic data

were integrated into an in silico microbiota model for each CD patient and healthy control to simulate emergent metabolite concentrations

patients newly diagnosed with CD.?° In their study, the authors
could distinguish two clusters of patients: A cluster of 57 patients,
which had a microbiota composition similar to the healthy
controls, and a cluster of 28 patients that had a distinguished
dysbiotic microbiota. Compared to controls, these dysbiotic
patients had a strongly differing functional and microbial
abundance profile.

Here, we retrieved the original metagenomic data of the 26
healthy controls and 28 dysbiotic patients®® to simulate persona-
lized in silico microbiotas with BacArena. We demonstrate that the
simulated metabolic differences between patients and controls
are congruent with experimental findings. We further show that
predicted individual specific SCFA signatures are unique to each
patient. Based on these results, we then predict personalized
dietary treatments that would improve the SCFA concentrations of
each patient. With this work, we demonstrate the added value of
performing computational with integrating high-throughput data
of individual microbiotas to predict mechanism-based persona-
lized dietary intervention strategies for CD patients.

RESULTS

The aim of the present study was to predict in silico personalized
dietary treatments for CD and investigate individual differences.
We simulated personalized in silico microbiotas consisting of
hundreds microbial metabolic models as defined by published
metagenomic data of healthy controls and CD patients*® using a
hybrid computational modeling approach,?” in which we com-
bined FBA with agent based modeling to simulate the ecology of
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microbial communities through the BacArena framework. The
predicted interactions can be used to gain further insight into
metabolic differences that may contribute to CD and to propose
modeling-assisted dietary intervention strategies for CD patients
(Fig. 1). We describe differences between healthy controls and CD
patients based on SCFAs as well as microbial abundances, which
we validated with existing experimental knowledge. Individual
differences within patients and controls were assessed to find
individual specific SCFA signatures. Based on the individual
microbiotas, personalized dietary treatments, such as supplemen-
tation of pectin and different glycans, were predicted to
equilibrate the SCFA concentrations and promote healthier SCFA
concentrations. Taken together, our work demonstrates the use of
computational modeling to integrate existing high-throughput
data of individual microbiotas and mechanistically predict
personalized dietary treatments for CD.

Microbial differences between healthy controls and CD patients

We ensured that our computational workflow (Fig. 1) would not
alter the reported microbial differences between healthy controls
and of dysbiotic CD patients.?® The workflow mapped the
published metagenomic data of healthy controls and CD patients
onto the genome sequences of the 773 gut microbial strains, for
which metabolic reconstructions were available° On average,
283 4/— 240 of the 773 microbial strains were covered in the in
silico microbiotas (Figure S1). Notably, the smallest microbiota
contained only eight microbes, while the biggest had 713 of the
773 microbial strains. There were seven out of 54 in silico
microbiotas that had less than 40 of the 773 microbes. While CD
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patients had generally less microbes, there were also some
healthy controls with less than 40 microbes as well as CD patients
with more than 600 microbes (Figure S1). Overall, the personalized
in silico microbiota captured 73.5+/—16% of the relative
microbial abundance from the original metagenomic reads. We
could observe a clear separation of the healthy controls and CD
patients based on microbial abundances (Fig. 2a), which was
independent of the used similarity metrics (Figure S2). The most
pronounced differences between healthy and CD individuals were
due to significantly higher abundance of Bacilli and Gammapro-
teobacteria (p <0.05, Wilcoxon rank-sum test) and significantly
lower abundance of Bacteroidia and Clostridia (p <0.001,
Wilcoxon rank-sum test) in CD patients (Fig. 2d).

We then simulated the personalized in silico microbiota,
inoculated with 500 microbes on a grid with 10,000 cells for
24h, in the BacArena framework and analyzed whether the
microbial abundances changed compared to the initial (metage-
nomic data driven) abundances. At the end of the simulation, the
grid was populated by an average of 5902 -+/— 1743 microbes
(with an average grid occupation of 59 4+/— 17%). Overall, the
simulated abundances recapitulated the initial microbial differ-
ences, demonstrating that the in silico microbiotas were stable in
BacArena (Fig. 2b). However, the abundance ratios of four out of
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28 genera were higher in CD patients based on the simulated
abundance, but lower based on the mapped data (Fig. 3a). In
contrast, the mapped abundance data showed good agreement
with the abundances reported in the original study (Fig. 3a, Figure
S3). This discrepancy can be explained by the CD patients having a
lower diversity of microbes, which led to a higher predicted
abundance for the present genera.

Taken together, our workflow recapitulates the reported
microbial differences between controls and CD patients.”
Furthermore, the simulation results of the personalized in silico
microbiota in BacArena illustrate that these microbes can co-exist
as stable microbial communities in silico.

Emergent metabolic differences between healthy controls and CD
patients

We investigated whether the difference in microbial abundance in
the personalized in silico microbiotas also corresponded to
differences in reaction content. In average, each personalized in
silico microbiota consisted of 3,332,957 ++/— 285,848 belonging to
3036 +/— 424 unique reactions. The presence and absence
pattern of the unique reactions in the in silico microbiotas varied
between individuals as well as between the two groups (Fig. 2¢).
Based on the reaction content, the first two principal components
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Fig. 3 Qualitative comparison of S|mulat|on results with experimental values. Experimental relative abundances of microbial genera a were
retrieved from the original study®® and compared with the abundances based on the mapped reads and simulations (t =24 h). b Metabolite

concentrations were retrieved from an independent experimental study®"

concentration ratios of healthy controls and CD patients

explained almost 80% of the variation in the data (Fig. 2¢), and
were mainly driven by the presence of transport reactions for
fibers (Table S1). The observed reaction based separation is
consistent with the aforementioned differences in microbial
classes (Fig. 2d) and the distinct fiber metabolizing properties of
Bacteroides.

SCFAs are important energy precursors and interact with the
human immune system.'® We analyzed the secretion of SCFAs
after 24 h by each personalized in silico microbiota to establish
whether known microbiota-level differences in SCFA production
could be reproduced by our modeling approach. The SCFAs
butyrate, propionate, isobutyrate, and acetate were significantly
lower in CD patients (p < 0.05, Wilcoxon rank-sum test, Fig. 2e).
Only L-lactate levels were slightly higher in CD patients. To check
for the validity of the simulated metabolite concentrations, we
compared our results with an independent experimental study.®'
The qualitative difference between CD patients and healthy
controls were consistent with our simulations (Fig. 3b). However,
the predicted concentrations of butyrate and propionate were
three times higher in controls than in CD patients (Fig. 3b), which
is much higher than the reported difference, likely due to the
absence of the host cells in our model setup that can take up
butyrate and propionate produced by the microbiota.>* Overall,
our results confirm that the personalized in silico microbiotas
recapitulate known differences in SCFA production levels in
healthy and CD individuals.

An advantage of using computational modeling is that we can
determine which microbes in the in silico microbiota caused the
predicted differences in SCFA production. Therefore, we analyzed
the summed uptake and secretion fluxes of each microbial class.
We found that Clostridia were responsible for the production of
50% of the total butyrate, Bacteroidia produced almost 100% of
the total propionate and about 10% of the total isobutyrate, Bacilli
produced small quantities (<5% of the total concentration) of L-
lactate, and Gammaproteobacteria produced almost 50% of the
total acetate (Fig. 2f). Notably, in healthy controls, acetate was
taken up by Clostridia illustrating cross-feeding between Gamma-
proteobacteria and Clostridia. These results demonstrated how
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and compared with the simulations (t =24 h) based on the mean

changes in representatives of the main microbial classes can result
in differences in SCFA production capabilities that differ sig-
nificantly between healthy controls and CD patients.

SCFA production profiles are patient-specific

The original metagenomic study?® reported the most distinct
microbial differences between the healthy controls and the CD
patients but also individual variability. Accordingly, the simulated
relative microbial abundance also varied between the individuals
(Fig. 4, left). We next investigated how much the predicted SFCA
production varied between CD patients. Two (CD10, CD11) out of
28 CD patients had butyrate levels that were comparable to the
mean of controls (mean concentration of 7.5 and 25.8 mM for CD
and controls respectively). This could be explained by the higher
activity of Clostridia species in these patients (Fig. 4, right). In three
cases (CD2, CD4, CD22), the concentration of isobutyrate was
higher in CD patients (Fig. 4) compared to the controls (mean
concentration of 4.9 and 7.1 mM for CD and controls respectively).
Two of these patients (CD2, CD22) had propionate levels
comparable to the controls (mean concentration of 25 and
87.9mM for CD and controls respectively), which is congruent
with the high activity Bacteroides species (Fig. 4, right). Twelve out
of the 28 patients showed increased L-lactate concentrations
(mean concentration of 0.7 and 0.3mM for CD and controls
respectively), which can be attributed to the activity of Bacilli and
other taxa (Fig. 4). Five patients (CD11, CD16, CD17, CD19, and
CD25) showed acetate levels that were comparable to the controls
(mean concentration of 21.1 and 32.2mM for CD and controls
respectively). This can be mostly attributed to the activity of Bacilli
and Gammaproteobacteria (Fig. 4, right). Overall, these results
indicated that every patient has a specific SCFA signature. This
observation can be explained by the metabolic activity of the
present microbiota, indicating that metabolic stimulation of the
native CD microbiota may be able to revert some of the patient
specific differences.
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Individual variability between CD patients and healthy controls. The presence of different microbes is indicated by a gray color and the

relative abundance by a blue color scale. Microbial taxa are based on the class level. Predicted metabolite concentrations are based on
simulations. The microbial contribution to the concentrations are based on metabolic fluxes

Personalized dietary intervention strategies to normalize SCFA
production capabilities of the personalized in silico microbiota

Defined dietary regimes are one possible treatment strategy for
CD patients.” However, the success of this treatment varies
between CD patients.? We investigated whether we could design
personalized dietary interventions that would restore the SCFA
production to levels commonly reported in healthy individuals.
We approached this problem by predicting first whether
increasing each dietary compound, present in the in silico rich
diet, could individually lead to a healthier level of each of the five
SCFAs in any microbial model present in a given patient (Fig. 5a).
Interestingly, the number of the predicted dietary metabolites to
be supplemented was specific for each patient and ranged
between 1 and 55 metabolites (median of 19 metabolites) (Fig.
5b). For four out of the 28 CD patients, our described prediction
approach did not identify any treatment. These four patients had a
higher abundance of Gammaproteobacteria and Bacilli, while
major SCFA producers were largely absent. For the remaining 24
CD patients, the most prominent category of the predicted
metabolites were mucus glycans and glycosaminoglycans (Fig.
5b). In particular, pectin supplementation was predicted to be a
good dietary supplement for 17 out of 24 CD patients (Figure S4).
Other prevalent metabolites included various specific human
produced mucus glycans and hepan/hyaluronan proteoglycan
degradation products as well as plant-derived larch arabinoga-
lactan, lavanbiose, and amylose.

We then added all of these identified metabolites to each of the
personalized in silico microbiota to ensure that the community
could also produce healthier SCFA levels. Each in silico microbiota
was simulated for 24 h in the supplemented diets. The success of
the in silico dietary interventions varied between patients (Fig. 5¢).
Overall, the most successful metabolite level restoration was
obtained for butyrate, propionate, and acetate, whereas the in
silico treatment was less successful for isobutyrate and L-lactate
(Fig. 5¢, €). The in silico treatments had only small effects on the
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relative species abundances (Fig. 5d) due to the dysbiotic patients
lacking the relevant microbes found in healthy individuals.
Therefore, our results showed quantitatively improved levels of
SCFAs on the individual patient level as well as on the differences
between patients and healthy controls.

DISCUSSION

We created personalized in silico microbiota of healthy controls
and CD patients by integrating metagenomic data into a bottom-
up systems biology framework (Fig. 1). Recent approaches have
successfully integrated metagenomic data to model the ecological
dynamics of the human gut microbiota®® but lack the metabolic
aspect, which plays an important role for human health and
disease.>® Therefore, the added benefit of our modeling approach
is combining metabolism with ecology to investigate the
metabolic activity of the gut microbiota.

To find strong differences between CD patients and healthy
controls, we selected data of dysbiotic patients, defined by their
microbial distance to healthy controls.”® Expectedly, we could
reproduce the microbial differences originally reported in the
study (Fig. 2a). Moreover, our reference based assessment was
consistent with the reference independent analysis in the original
study (Fig. 3a), which further demonstrates that the set of 773
AGORA microbes capture the most common human gut
microbes.>® When comparing the abundance of specific genera
(Fig. 3a), the community simulations predict differing ratios for
four out of 28 genera, indicating a minor variability in the
simulations that did not affect the overall differences (Fig. 2b). The
main microbial differences between CD patients and healthy
controls can be attributed to a decreased abundance of
Bacteroidia and Clostridia as well as an increased abundance of
Bacilli and Gammaproteobacteria in CD patients (Fig. 2d), which
was in accordance with an independent experimental study>”> and
characteristic for a dysbiotic microbiota, as a specific case of CD.*

npj Systems Biology and Applications (2018) 27
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This approach thus allows us to address fundamental questions in
CD dysbiosis and how the microbiota can shape metabolite
concentrations, which is less understood so far.

The simulated SCFA concentrations represent emergent proper-
ties of our models that could not be achieved by the
metagenomic data alone. As shown in our previous study,? the
modeling approach can aid in the understanding of SCFA
production of gut microbes as validated by experimentally
determined in vitro concentrations. Therefore, we could simulate
clinical relevant metabolite concentrations, known to be differen-
tially regulated in CD.2' Interestingly, we could detect higher
concentrations of acetate, propionate, butyrate, and isobutyrate as
well as a lower concentration of L-Lactate in controls (Fig. 2e).
Based on the quantitative ratios between controls and patients,
butyrate and propionate were higher in our simulations than in
the experimental literature®' (Fig. 3b). This apparent discrepancy
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could be explained by the uptake of butyrate and propionate by
the host,> which we did not include, highlighting a limitation of
our current modeling approach. SCFAs, in general, have been
associated with healthy gut functions, such as energy conversion
of the host as well as immune stimulation.'? Butyrate, in particular,
mediates the immune system'” and influences the tight junctions
between epithelial cells." Moreover, butyrate, as well as
propionate, are carbon sources for colonocytes.>**” Taken
together, the added value of our modeling approach is that we
can predict these qualitative changes in SCFA levels, which we can
attribute to specific microbial metabolic activity.

We identified which microbes are responsible for the production
of the SCFA (Fig. 2f). Clostridia produced mainly butyrate explaining
its lower concentration in CD patients (Fig. 2e), who had generally
lower Clostridia abundances (Fig. 2d). The Clostridia, Faecalibacter-
ium, and Roseburia, are known to be the main butyrate producers,®®

Published in partnership with the Systems Biology Institute



which were decreased in abundance in CD patients (Fig. 3b). We
identified new metabolic interaction patterns, such as the con-
sumption of acetate by Clostridia (Fig. 2f). In vitro experiments have
demonstrated cross-feeding interactions between Clostridia and
Bifidobacterium species3® These metabolic interactions link
microbes with metabolites and demonstrate that we capture in
silico the gut microbiota as a whole.

Our personalized in silico microbiota modeling approach
permitted the investigation of individual differences between CD
patients and healthy controls (Fig. 4). Overall, we found that
healthy controls have a higher microbial diversity than CD
patients, which is also confirmed by experimental knowledge."
Consequently, controls have more comparable SCFA levels (Fig. 4),
indicating metabolic consistency through functional redun-
dancy.®® Based on the individual SCFA variability, one could
speculate that the microbiota of CD patients can compensate
some metabolic differences but lacked functional redundancy and
diversity to consistently establish a healthy SCFA signature (Fig. 4).
This observation further underlines the importance of a diverse
microbiota, which can complement potential metabolic short-
comings between microbes. Further studies could investigate the
importance of keystone species in this context, which have a low
abundance but high metabolic activity and thus ecological
relevance.’

In our in silico treatment predictions, we take the individual
factors into account by designing dietary supplements compen-
sating individual differences (Fig. 5a). Most of the predicted
treatment metabolites were mucus glycans, glycosaminoglycans,
and plant polysaccharides (Fig. 5b), further indicating that fibers
are relevant in shaping the gut microbiota metabolism.****
Particularly, pectin was predicted as a potential treatment for
the majority of patients, which further underlines the dietary
relevance of this compound.*? Plant fibers and host glycans
influence the gut microbiota by stimulating Clostridia and
Bacteroidia species,* which produce butyrate and propionate,
respectively (Fig. 2f). Interestingly, the predicted metabolite
cocktails were different for each patient (Fig. 5b, Figure S4). In
clinical practice, a standard dietary formula in form of exclusive
enteral nutrition is used to treat patients with CD.” However, not
every patient responds equally well to different diet formulations,
which vary in their fiber content.*® Current knowledge is limited
when defining personalized diets because of the complexity of the
human gut microbiota and its intricate response to different diets.
Some patients suffer from relapse when switching to a normal diet
after successful remission.*® In such cases, our modeling-based
predictions could give new directions on aliments based on a
patient’s microbiota. Furthermore, using computational modeling
in conjunction with metagenomic data, the dietary treatment
could be readily redefined and adjusted to match the patient’s
need. To our knowledge, such modeling-guided dietary treatment
approach is not available yet for CD patients. As a next step, our
predictions need to be validated in a nutritional trial. Then, our
systematic approach to defining personalized nutrition therapies
could guide clinicians and nutritionists in designing new,
personalized diet-based treatments.

Testing our in silico dietary treatments on each patient'’s’
microbiota, we found an improvement in SCFA levels. Butyrate,
propionate, and acetate showed an overall success in shifting
levels, while isobutyrate and L-lactate were less successful (Fig. 5c,
e), since these SCFAs only had a minor difference between
controls and patients (Fig. 2e). The overall microbe abundance did
also not shift significantly in the treatment condition (Fig. 5d),
because patients had a lower diversity from the start (Fig. 4, Figure
S5) and could not acquire the necessary microbes to compensate
their abundance profile. In this context, the integrated microbial
abundances might have been in an ecological steady state while
sampling and therefore, they did not respond in the population
dynamics analysis. Further studies could simulate the effect of
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adding specific microbe models as a treatment, which could be
integrated in our framework. Furthermore, human metabolism
could be integrated with the in silico microbiota to investigate the
reciprocal effect on the host, and, for instance, the effect of
colorectal cancer cells that might be affected by butyrate
concentrations.””

Several studies emphasize the need for computational models
to discover mechanisms for microbiota associated diseases.?®*¢™>"
Our approach introduces metabolism as an additional emergent
property of the microbiota yielding new mechanistic insight of
SCFA production by microbial communities. Our results indicate
an individual specific dietary response of the gut microbiota,
which is not generalizable for all CD patients. In subsequent
studies, one could integrate further patient metagenomic data
with our modeling framework to predict potential dietary
treatments, which yet have to be validated in a clinical setting.
An extension for possible treatment strategies includes the
simulation of probiotics and fecal transplantation. In fact, our
model could be used as an additional workflow for donor
optimization of fecal transplantation.>® Furthermore, the compu-
tational modeling approach that we presented is not limited to
the application of CD but can be applied to any metagenomic
data set. Taken together, we present a powerful, expandable,
versatile computational modeling approach that permits to yield
insight into metabolic interactions emerging from personalized
metagenomic data.

METHODS
Retrieval of metagenomic data and pre-processing

Paired-end lllumina raw reads of a study on early onset CD patients and
healthy controls of a North American cohort*® were retrieved from NCBI
SRA under the accession: SRP057027. Based on the studies’ definition of
healthy and dysbiotic individual microbiotas,”® the samples were selected
to a smaller subset of 26 healthy controls and 28 CD patients to capture
the most pronounced differences in the individual microbial communities.
Furthermore, only the first measured time point was selected to represent
newly diagnosed and yet untreated microbiotas. The reads were quality
trimmed using Trimmomatic®® with default parameters for paired-end
lllumina sequences. To remove human contaminant sequences, the reads
which were still paired were mapped with default parameters using the
software BWA>* to the human genome version 38 (http://www.ncbi.nlm.
nih.gov/projects/genome/assembly/grc/).

Metagenomic mapping and abundance estimation

Using BWA>* the pre-processed reads were mapped with default
parameters onto a reference set of 773 genomes, which were selected
according to a previous s'cudy.30 Before mapping, the reference genomes
of these organisms were combined into one file where each genome is
represented as a chromosome. To filter out cross-mapped reads (reads
mapped to multiple positions), samtools®> was used to discard mapped
reads with a low-quality score. The coverage per genome (number of
mapped reads normalized by genome size) was calculated using samtools.
To reduce the number of false positives, we set a threshold of at least 1%
genome coverage for each microbe in each human individual. In
accordance to another pipeline,*® the resulting coverages were normalized
for each individual to obtain the relative microbe abundances.

Microbial metabolic reconstructions

We retrieved published gut microbial metabolic reconstruction®® from
http://vmh.life. These microbes have been chosen according to their
prevalence in the human gut and the availability of a genome sequences,
and they have been extensively curated based on available physiological
and biochemical data.*®

Analysis of mapped abundance and reaction differences

The mapped microbial abundances for each individual were compared by
computing the Bray-Curtis similarity and subsequent visualization with
principal coordinate analysis (PCoA) using the R package vegan.’” The
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unique reaction set of personalized in silico microbiotas was determined
by taking the union of all present microbe reactions retrieved from the
corresponding metabolic model® of each microbe. PCoA was performed
onstt)he metabolic distance between each individual's reaction set similar
to.

Setup, integration, and simulation of the personalized microbiota
models

The next step is to integrate the abundance information into a
personalized in silico microbiota for each person. Therefore, we used a
previously established R package for community modeling,?” which
represents bacteria as individuals in a grid environment that can exchange
metabolites by secretion and uptake. Individual optimizations were carried
out using the microbial biomass as an objective. Consequently, the
observed concentrations of metabolites, in particular SCFA, are a product
of the individual microbial energy metabolism. The dimensions of the two-
dimensional quadratic environment were set 0.025 cm? with 100 grid cells
per side length. This resulted in 10,000 grid cells that could be potentially
occupied by the microbes. To allow space for the in silico microbial
community to grow, 500 microbes were initially added to the grid
environment. The relative microbial abundances were used to scale the
number of microbes to be added per species (e.g., if one species has a
relative abundance of 0.01, 5 microbes were added for this species). In case
the calculated number of microbes resulted in decimal places, we rounded
the final number to the next highest integer. Hence, all microbes that were
detected as present in the samples, were included and had an initial
microbiota size ranging between 505 and 1109 microbe individuals. All
possible metabolites (union of metabolites that can be taken up by each
microbe) were added to the environment with a minimal concentration of
0.2 uM to provide a rich medium that is consistent between individuals.
Therefore, metabolite concentrations that emerge from the simulations
can be specifically attributed to the microbiota of each individual.

Once the in silico microbiota for each CD patient and healthy control
have been setup in BacArena, the growth of each microbial model in the
microbiota was sequentially for each time step. A total of 24 time steps
were simulated, one per hour, corresponding to an overall simulation time
of 24 h. To reduce the complexity of the model, we simulated a well-mixed
environment in which metabolite concentrations are uniformly distributed
and microbes move randomly.

The R package Sybil*® was used for constraint-based modeling with
ILOG CPLEX as a linear programming solver.

Analysis of simulation results

After the simulation, each personalized in silico microbiota was primarily
analyzed in terms of the microbe abundance and metabolite concentra-
tions. Since the simulations include temporal dynamics with different time
points, we chose the last time point (24 h) for our analysis and comparison
between individuals. This allowed the in silico microbial communities
enough time to consume and produce metabolites, and to reach a steady
state. The microbial abundances were determined by assessing the
number of microbes in each personalized in silico microbiota. The vector of
microbial abundances was then compared by computing the Bray-Curtis
similarity with PCoA visualization. Abundances of specific taxa were
calculated by summing up the relative abundances of each corresponding
representative. The abundances of the most differing taxa were tested for
significant differences between healthy controls and CD patients with the
Wilcoxon rank-sum test® (26 controls and 28 CD patients) implemented in
R.

Metabolite concentrations were determined by their molar concentra-
tion in the environment at the end of the simulation (t=24h). The
concentration of the most relevant metabolites, butyrate, propionate,
isobutyrate, L-lactate, and acetate, were assessed and tested for significant
differences between the personalized in silico microbiota of healthy
controls and of CD patients using the Wilcoxon rank-sum test. To
investigate the influence of each microbial taxa on the metabolite
concentrations, we further evaluated the metabolic fluxes of each microbe
in the personalized in silico microbiota. For each taxa, the reaction fluxes in
all corresponding microbes were summed up.

Definition of personalized dietary treatments

After identifying the metabolic signatures influencing the differences
between healthy controls and CD patients, we predicted metabolites that
could revert these differences:
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According to their presence in each personalized in silico microbiota, the
set of microbes was selectively analyzed for every individual. Each
personalized in silico microbiota was then simulated in a rich medium
containing all possible metabolite with flux uptake constraints of 1 mmol
gDW " h™" and the biomass as well as the production of SCFAs (butyrate,
propionate, isobutyrate, L-lactate, acetate) were optimized separately. To
enhance the growth of beneficial bacteria, we selected metabolites based
on the ability of the CD low abundant microbes (e.g., Clostridia,
Bacteroides) to uptake these nutrients over the CD high abundant
microbes (e.g., Gammaproteobacteria, Bacilli). We then added the selected
metabolites iteratively to the in silico medium with a maximal flux uptake
constraint of 1000 mmolgDW™'h™" to investigate whether the SCFAs
increased or decreased. Based on these simulations, the added metabolites
which had a positive effect (recovering metabolite production to healthy
levels) were then collected and used as the personalized dietary treatment
for each individual.

We tested the effect of the treatment on the personalized in silico
microbiota of CD patients by adding a 100 times higher concentration of
the predicted treatment metabolites to the in silico rich diet containing 0.2
UM for each metabolite. The personalized in silico microbiota simulations
and analyses were then carried out as described above.

Data availability

The scripts to construct and simulate the individual specific microbiota
models as well as the analysis scripts are available on GitHub: https://
github.com/ThieleLab/CodeBase
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