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Powell

Combining state-of-the-art (opto)genetic,
molecular, viral transfection, imaging
and staining techniques, Gourine and
coworkers have constructed a framework
with astrocytes as brain interoceptors
particularly focusing on a putative role as
central respiratory CO2 and O2 sensors
(Gourine et al. 2005; Gourine & Kasparov,
2011; Angelova et al. 2015; Gourine & Funk,
2017; Rajani et al. 2018). In the opinion
of this author, this work does not provide
conclusive evidence for their hypothesis of
an involvement of astrocytes as central O2

sensors in the ventilatory response to hypo-
xia (HVR) especially in awake animals and
humans.

Several animal species show immediate
hypoventilation, hypercapnia and sub-
stantial reduction or entire absence of
their HVR after bilateral carotid body
denervation (CBD). Partial or complete
restoration of the HVR is observed in rat,
cat, piglet, goat and pony, all with different
rates. This results from up-regulation
of aortic bodies, release from cortical
inhibition, recruitment of accessory glomus
tissue in the trunk, neuroplastic changes
consisting of axon regeneration, building
alternative circuitries and recruiting central
(including astrocytic) O2 sensors that may
be silent in carotid body-intact conditions
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(Tenny & Ou, 1977; Martin-Body et al. 1986;
Olson et al. 1988; Roux et al. 2000; Teppema
& Dahan, 2010; Mouradian et al. 2012).
Surprisingly, Angelova et al. (2015) did not
challenge CBD animals with acute hypoxia
or NaCN infusion shortly (a few days) after
surgery; after 10 weeks, hypoxic responses
in these animals may thus be due to neuro-
plastic adaptations. In the conscious goat,
isolated central hypoxia does not lead to a
progressive increase in ventilation as occurs
during chronic carotid body (CB) hypo-
xia (Weizhen et al. 1992). The central
hypoxia-induced rise in ventilation in the
awake dog depends on peripheral chemo-
receptor integrity (Curran et al. 2000).

Up to two decades after CB removal or
carotid endarterectomy, humans show no
HVR (Wade et al. 1970; Swanson et al.
1978; Honda et al. 1979; Dahan et al.
2007). Exceptionally, on a hypercapnic
background, a small response develops that
can be ascribed to an involvement of the
aortic bodies (Swanson et al. 1978; Timmers
et al. 2003) but not to central mechanisms
(Honda et al. 1979). Gourine and Funk
(2017) propose an important stimulatory
role of mitochondrial ROS in the HVR.
To support their hypothesis involving a
role of electron flow in the mitochondria
in the HVR, they refer to patients
with a mutation in the gene encoding
succinate dehydrogenase (SDHD). These
patients, however, do indeed show increased
mitochondrial ROS (Cerecer-Gil et al. 2010)
but do not have an abnormally large HVR
but rather one at the lower end of normal
(Dahan et al. 2007). Carotid body type I
cells from SDHD+/− mice show an unaltered
response to hypoxia, and mitochondrial
complex II is not involved in oxygen sensing
in these mice (note that total SDHD gene
knockout is lethal in these mice; Piruat et al.
2004).

Utilizing barometric plethysmography,
Gourine and coworkers tested their

hypothesis in vivo. Even if air humidity
and temperature in the plethysmograph
are controlled, body temperature measured
and the inspired CO2 concentration
maintained constant, the pressure signal
may be influenced by frequency and air-
way resistance (Enhorning et al. 1998).
Percentages of oxygen in the inspired air as
the independent variable (i.e. the chamber
O2%) is not the same as the inspired PO2

(Fig. 5 in Angelova et al. 2015), and has little
predictive value as to the actual stimulus,
in this case, the PaO2 . Using arbitrary
or relative units is not meaningful and
can even be misleading. In other words,
what would be of interest is the following:
(1) to show blood gases or at least oxygen
saturation (e.g. by using a tail probe);
(2) to employ a useful index of the HVR such
as V̇A/V̇CO2 or V̇A/V̇O2 (normalized to body
weight; see also Olson et al. 1988; Morgan
et al. 2014); and (3) precise control of
the PaCO2 Useful quantitative comparisons
between groups require exposure to equal
stimulus levels that reach their final values
at equal rates. The hypoxic challenges in
Angelova et al. (2015) were poikilocapnic,
which is a confounding factor, given the
CO2 sensitivity of astrocytes (Gourine et al.
2005) and the known O2–CO2 interaction
in the rat (Wilson & Teppema, 2016).
Finally, Angelova et al. (2015) claim lower
respiratory activity in PINK1-deficient
mice, but failure of astrocytes to sense
low oxygen in these mice does not
lead to a reduced response to hypo-
xia (Fig. 7E in Angelova et al. 2015).
In conclusion, the data of Gourine and
coworkers convincingly show O2 sensitivity
of brain astrocytes and provide details of
the resulting stimulus-tranduction cascade,
involving ROS, the spread of Ca2+ waves
and a role of ATP. Concerning the role of
Ca2+, could gap-junctional Ca2+ exchange
between glial cells and retrotrapezoid (RTN)
neurons excite the latter? And what is

C© 2018 The Authors. The Journal of Physiology C© 2018 The Physiological Society DOI: 10.1113/JP275708

http://orcid.org/0000-0002-6816-5755


2940 CrossTalk J Physiol 596.15

the effect of glial depolarization (pre-
viously qualified as ‘glial impairment’ by
Holleran et al. 2000) and ATP on the
release of H+ by glia? Whether the reported
increase in respiratory activity in CBD
animals (10 weeks after surgery) is due
to O2 sensing by astrocytes remains to be
determined, as is the case with an astrocytic
role in the normal poikilocapnic (and
consequently hypocapnic) and isocapnic
HVR.

The human poikilocapnic response to mild
acute hypoxemia (saturation �80%) is
biphasic, consisting of an initial increase
in ventilation, followed by a secondary
fall and a rise in cerebral blood flow
(CBF; Steinback & Poulin, 2007, 2016).
The modest rise in CB activity will induce
little central depression other than that
caused by a local fall in PCO2 and may
account entirely for the small sustained rise
in ventilation. Consequently, astrocytes are
unlikely to be involved in maintaining an
appropriate minute ventilation. If a modest
decrease in brainstem PO2 (which is smaller
than in the arterial blood) would result
in astrocytic release of ATP, then, apart
from directly impacting RTN neurons, the
lower PCO2 would tend to reduce it. If, as
claimed by Gourine et al. (2005) and Rajani
et al. (2018), a prolonged astrocytic ATP
release in the anaesthetized rat maintains
phrenic activity in the depressing phase,
why then is a similar release after CBD
not able to augment respiratory activity
(Gourine et al. 2005)? The data from the
poikilocapnic studies in Angelova et al.
(2015) were collected in the last 5 min of
a 10 min lasting exposure, but the time
courses of both stimuli and responses are
not shown, so it is unclear to what extent
these data include those from the depressing
phase.

In the laboratory setting the HVR is often
measured isocapnically to quantitatively
estimate hypoxic sensitivity and O2–CO2

interaction effects. The isocapnic HVR
is also biphasic, and the secondary fall
(HVD) is related to a rise in cerebral blood
flow combined with central depression
(Teppema & Dahan, 2010). During HVD
ventilation reaches a level �30% above
control, maintained by the carotid bodies
that operate at lower gain but do not show
a biphasic response (Teppema & Dahan,
2010). In anaesthesia, however, HVD is
uncoupled from carotid body activity (see
Teppema & Dahan, 2010) and may involve
a different role of ATP, as suggested in the
rat (Rajani et al. 2018).

If the O2 sensitivity of astrocytes is of less
relevance to the awake ventilatory response
to mild hypoxia, what then is its physio-
logical significance? In the event of local
brain hypoxia or ischaemia, an increase in
ventilation would be counterproductive: the
resulting fall in PaCO2 would cause vaso-
constriction and thus impede blood flow to
the affected areas and other brain regions.
A crucial role of astrocytes is sensing (and
adapting) neural activity and metabolism,
and translating this also into an adaptation
of local vasomotor activity to defend the
supply of oxygen and nutrients (Gordon
et al. 2016; Mukandala et al. 2016). That O2

sensitivity is a general property of astrocytes,
rather than a distinctive feature of those
located in the ventral medullary surface
may suggest that although the latter are
located in close association with the RTN,
their primary role is to guard the supply of
oxygen and nutrients by other means than
by stimulating ventilation.

Call for comments

Readers are invited to give their views on this
and the accompanying CrossTalk articles in
this issue by submitting a brief (250 word)
comment. Comments may be submitted up
to 6 weeks after publication of the article, at
which point the discussion will close and the
CrossTalk authors will be invited to submit
a ‘Last Word’. Please email your comment,
including a title and a declaration of inter-
est, to jphysiol@physoc.org. Comments will
be moderated and accepted comments will
be published online only as ‘supporting
information’ to the original debate articles
once discussion has closed.
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