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Abstract Mammals must continuously regulate the levels of O2 and CO2, which is particularly
important for the brain. Failure to maintain adequate O2/CO2 homeostasis has been associated
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with numerous disorders including sleep apnoea, Rett syndrome and sudden infant death
syndrome. But, O2/CO2 homeostasis poses major regulatory challenges, even in the healthy
brain. Neuronal activities change in a differentiated, spatially and temporally complex manner,
which is reflected in equally complex changes in O2 demand. This raises important questions:
is oxygen sensing an emergent property, locally generated within all active neuronal networks,
and/or the property of specialized O2-sensitive CNS regions? Increasing evidence suggests that
the regulation of the brain’s redox state involves properties that are intrinsic to many networks,
but that specialized regions in the brainstem orchestrate the integrated control of respiratory
and cardiovascular functions. Although the levels of O2 in arterial blood and the CNS are very
different, neuro-glial interactions and purinergic signalling are critical for both peripheral and
CNS chemosensation. Indeed, the specificity of neuroglial interactions seems to determine the
differential responses to O2, CO2 and the changes in pH.
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Abstract figure legend Chemoreceptors that detect changes in arterial oxygen supply are located in the glomeruli of
the carotid bodies at the bifurcation of the carotid artery and in the ventral respiratory column located in the medulla.
Cells in these areas utilize similar mechanisms to detect alterations in arterial oxygen content, and release modulators
that lead to an increase in intracellular calcium. Modulators also bind to various receptors on nerve terminals that alter
activity to ensure adequate oxygenation of the brain.

Introduction

Endothermy gave mammals and birds distinct
evolutionary advantages. It allowed them to move
quickly and over long distances irrespective of their
surrounding environmental temperatures. This
enabled them to conquer novel ecological niches.
However, endothermy came with a substantially
higher metabolic demand (Clarke & Pörtner, 2010).
This demand is best met by aerobic metabolism,
since oxygen releases substantial energy per electron
transfer (Ramirez et al. 2007). Aerobic metabolism is
particularly important to maintain the brain’s state of
persistent activity (Raichle et al. 2001; Raichle, 2015;
Mitra & Raichle, 2016).

The dependency on aerobic metabolism is challenging
for two important reasons. Firstly, O2 cannot effectively
be stored; consequently, mammals and birds cannot
survive a prolonged cessation of breathing and heartbeat.
Secondly, the dependency on the molecule with the largest
energy release per electron transfer poses major regulatory
challenges because too little oxygen is as detrimental as
too much oxygen, a topic of great clinical significance
(Semenza & Prabhakar, 1985; Haddad & Jiang, 1997;
D’Agostino et al. 2007; Huang et al. 2012; Popa-Wagner
et al. 2013; Igbal & Eftekharpour, 2017). Indeed, the
PO2 within the CNS is maintained within a narrow
range of approximately 1–4% O2 (Mulkey et al. 2001).
This suggests that neuronal microcircuits in the brain
must maintain persistent activity in an oxidative micro-

environment that is only slightly higher than the threshold
for aerobic metabolism, which lies around 1% O2

(Clemens et al. 2001; Hill et al. 2011). Thus, maintaining
a stable redox state requires precise and dynamic O2

sensing and response mechanisms, which is achieved
through neurovascular coupling involving neurons,
smooth muscle cells, astrocytes (Filosa & Blanco, 2007;
Ndunuizu & LaManna, 2007; Kim et al. 2016; Iadecola,
2017; Kisler et al. 2017) and possibly oligodendrocytes
(Roth & Núñez, 2016).

The neuronal responses to hypoxia are differentiated,
and involve various mechanisms (Haddad & Jiang, 1994;
Bickler & Donohoe, 2002; Björklund et al. 2008). In
general, acute exposure to hypoxia leads to a rapid decrease
in neuronal activity and synaptic depression in many
regions of the brain (Garcia et al. 2010a,b; Mukandala et al.
2016). While this may be protective, it also leads to the loss
of synaptic plasticity (Lyubkin et al. 1997) and learning
deficits (Row et al. 2003). During anoxia this homeo-
static response breaks down as neurons depolarize within
minutes until they lose their ionic gradients across the
membranes (Haddad & Jiang, 1993; Fung & Haddad, 1997;
Folklow et al. 2008). Interestingly, diving mammals have
developed specialized neuroglial adaptations to withstand
prolonged periods of anoxia (Folklow et al. 2008; Mitz
et al. 2009; Ramirez et al. 2011; Czech-Damal et al.
2014).

The neuronal responses to hyperoxia are as
differentiated (Garcia et al. 2010a,b). The reactive
oxygen species (ROS) superoxide anion and H2O2 serve
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neuromodulatory functions. In midbrain dopaminergic
neurons, H2O2 activates KATP channels to reduce
neuronal excitability (Avshalumov et al. 2005). At the
neuromuscular junction, H2O2 differentially modulates
presynaptic Ca2+ entry (Giniatullin & Giniatullin, 2003).
The superoxide anion facilitates phrenic and hypoglossal
motor outputs (MacFarlane & Mitchell, 2008; MacFarlane
et al. 2008), and can induce plasticity (Kamsler & Segal,
2003; MacFarlane & Mitchell, 2008). Similar modulatory
effects have been described for the carotid body (CB) (Peng
et al. 2003, 2009).

The response to changes in oxygen is of critical
importance in areas that are responsible for controlling
O2 supply. The preBötzinger complex (preBötC) is a
microcircuit critical for different forms of inspiration
that range from normal breathing to sighing and gasping
(Smith et al. 1991; Lieske et al. 2000; Hayes et al. 2012;
Wang et al. 2014). This network is located within the
medulla (Smith et al. 1991; Schwarzacher et al. 2011) and
is essential for breathing (Ramirez, 1998; Gray et al. 2001;
Tan et al. 2008) (Fig. 1). Neuronal and glial functions
within this network are responsive to hypoxia even when
the network is isolated in a slice preparation (Peña &
Ramirez, 2004; Peña et al. 2004; Tryba et al. 2006; Gourine
et al. 2010; Huckstepp et al. 2010a; Hill et al. 2011;
Nieto-Posadas et al. 2014; Rivera-Angula & Peña-Ortega,
2014; Angelova et al. 2015; Lorea-Hernandez et al. 2016;
Peña-Ortega, 2017). Hypoxia evokes a biphasic response:
a rapid augmentation with the generation of sighs is
followed by a respiratory depression (Fig. 2; Wilken
et al. 1998; Ramirez et al. 1998bb; Telgkamp & Ramirez,
1999; Lieske et al. 2000; Thoby-Brisson & Ramirez, 2000;
Telgkamp et al. 2002; Peña & Ramirez, 2005). This hypoxic
sensitivity of the preBötC neurons was also demonstrated
in vivo (Solomon et al. 2000). Hypoxia also evokes
increased activity in hypoglossal (XII) neurons (Donnelly
et al. 1992, 2009; Jiang et al. 1992; Jiang & Haddad,
1994; Telgkamp & Ramirez, 1999) and in pre-sympathetic
neurons of the rostral ventrolateral medulla (RVLM)
(Sun et al. 1992; Sun & Reis, 1994), while hypoxia
hyperpolarizes the dorsal vagal motor nucleus (Trapp &
Ballanyi, 1995; Kulik et al. 2002; Ballanyi, 2004; Balfour
& Trapp, 2007). The central responses to hypoxia within
the preBötC, XII, presympathetic and parasympathetic
neurons will likely contribute to an increased respiratory
and sympathetic drive and a decreased parasympathetic
drive (Dyavanapalli et al. 2014). These examples of
sensitivity to hypoxia within brainstem respiratory circuits
illustrate that central oxygen-sensitive mechanisms exist
and locally regulate the activity of microcircuits in an
adaptive manner.

This raises an important question: are these neuronal
responses controlled by discrete central oxygen sensors,
such as the specialized cellular interactions within the CB

(Prabhakhar, 2013; Nurse, 2014; Nanduri et al. 2015a;
Prabhakhar & Peng, 2017; Rakoczy & Wyatt, 2018), or do
these responses emerge from multiple oxygen sensitivities
intrinsic to the networks themselves? Here we propose
that the hypoxic response involves both emergent network
properties and specialized chemosensitive neuroglial
interactions. From a functional perspective the responses
to changes in O2, CO2 and pH must be different. Indeed,
there is increasing evidence that different networks seem
to specialize in sensing primarily hypoxia or hypercapnia.
Yet, the strikingly different network responses seem to
rely on neuroglial interactions in which astrocytes are
instrumental in differentiating chemosensory responses
into specific O2 as well as CO2 sensitivities. Thus, although
this review focuses on oxygen homeostasis and the hypo-
xic response of the CNS, we will consider the differential
O2 and CO2 sensitivities when discussing the neuroglial
interactions. Ultimately, the organism needs to respond to
changes in both blood gases in a synergistic and adaptive
manner.

Unravelling the network mechanisms underlying
peripheral and central O2 sensing

To mount an effective response to changes in blood
gases, O2 sensing mechanisms within the CNS must
be tightly coordinated with inputs derived from peri-
pheral chemosensory mechanisms (Basting et al. 2016;
Wilson & Teppema, 2016; Guyenet et al. 2018). Exactly
how these peripheral mechanisms are integrated within
the central neuronal networks in the brainstem is not
fully understood, and is a source of controversy (as
reviewed in Smith et al. 2010). At the organismal level, the
hypoxic ventilatory response (HVR) is biphasic
(Bissonnette, 2000): an initial augmentation is followed by
a ventilatory depression (Moss, 2000). The augmentation
has been associated with an excitatory drive from the CB,
the depression with central regulatory activity (Teppema
& Dahan, 2010; Rajani et al. 2018). However, it is not
quite this simple. Some experiments suggest that CB
denervation eliminates the augmentation phase (Bureau
et al. 1985; Wang et al. 1996; Izumizaki et al. 2004; Hill et al.
2011), while others suggest that the initial augmentation
during hypoxia is preserved in peripherally chemoreceptor
denervated animals (Moyer & Beecher, 1942; Miller &
Tenney, 1975; Richter et al. 1991). Indeed elegant studies
have convincingly demonstrated that specific CNS hypo-
xia stimulates ventilation during wakefulness and sleep
(Engwall et al. 1985; Smith et al. 1993; Curran et al.
2000). This is consistent with surgical CB denervation,
which does not lead to obvious catastrophic physio-
logical consequences. Thus, CB denervation became a
procedure performed on patients in instances of carotid
sinus syndrome, asthma or pulmonary disease. (For
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more details on benefits and risks see Holton & Wood,
1965; Marschke et al. 1965; Wood et al. 1965; Toorop
et al. 2010; Fitzgerald, 2014; Gourine & Funk, 2017;
Iturriaga, 2018).

Limitations and caveats associated with studying
hypoxic response

The discussion in the previous section is represents
the challenges faced when exploring oxygen homeostasis
and the neuronal response: O2 supply and delivery
depend on experimental conditions that vary widely
and any experimental manipulation can have complex
ramifications that are difficult to control and often difficult
to interpret. This is not only the case for in vivo studies,
but also for studies that are performed in reduced pre-
parations in which oxygen-depth profiles differ, e.g. in the
working heart–brainstem preparation (Wilson et al. 2001),
the isolated brainstem spinal cord preparation (Brockhaus
et al. 1993; Okada et al. 1993), as well as brain slices
(Bingmann & Kolde, 1982; Mulkey et al. 2001; Garcia et al.
2010a; Hill et al. 2011). Oxygen profiles even differ within
a given preparation, because oxygen levels depend on
neuronal activity that varies between different regions of a
slice (Bingmann & Kolde, 1982). Brain slices are typically
studied at cooler temperatures. By decreasing metabolic

consumption tissue oxygenation increases within the core,
but the superficial layers are rendered hyperoxic. Thus,
the neuronal networks will be exposed concurrently to
hyperoxic and hypoxic conditions that will affect neuro-
nal activity. Oxygenation is also influenced by the rate
and method of superfusion, the exact composition of
the artificial cerebrospinal fluid, as well as the ambient
barometric pressure (Jiang et al. 1991; Mulkey et al.
2001; Fong et al. 2008). Experimental conditions also
depend on the research questions. Studying the post-
natal development of a network will be complicated by
the fact that mature and neonatal slices vary in their
oxygenation profile (Jiang et al. 1991; Mulkey et al. 2001;
Hill et al. 2011). Characterizing network interactions
between different regions also require slices to be cut
in different thicknesses (D’Agostino et al. 2007; Ballanyi
& Ruangkittisakul, 2009; Hill et al. 2011; Gourevitch &
Mellen, 2014; Anderson & Ramirez, 2017).

Yet, to achieve a complete understanding of the central
hypoxic response, different preparations and approaches
have to be combined. The introduction of modern trans-
genic, optogenetic and molecular biological methods
significantly increased the experimental repertoire
and allows for more specific manipulations and
characterizations of identified neuron classes in pre-
parations that range from brain slices to alert and freely
behaving animals (Angelova et al. 2015; Burke et al. 2015;
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Figure 1. Anatomical schematic representation of medullary network involved in chemosensitivity
Sagittal view of ventral medullary respiratory group and the raphe nucleus (RN). The respiratory group consists of
the retrotrapezoid nucleus (RTN)–parafacial respiratory group (pFRG) complex (RTN/pFRG), the Bötzinger complex
(BötC), the postinspiratory complex (PiCo) and the pre-Bötzinger complex (preBötC). Structures in red have been
extensively studied and mentioned in this review contributing to chemosensitivity in the CNS. Black arrows suggest
communication between medullary network, RTN/pFRG and RN signal the preBötC ultimately leading to changes
in breathing.
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Guyenet & Bayliss, 2015; Guyenet et al. 2016; Rajani et al.
2018).

Reconfiguration of the respiratory network during
hypoxia

Much has been learned about the hypoxic response of
the preBötC. The respiratory rhythm in this micro-
circuit depends on glutamatergic neurons that are
primarily derived from progenitor cells characterized by
the transcription factor Dbx1 (Bouvier et al. 2010; Gray
et al. 2010; Cui et al. 2016), and inhibitory neurons
that can be subdivided into glycinergic and GABAergic
neurons (Ramirez et al. 1997; Janczewski et al. 2013;
Sherman et al. 2015). These neurons possess a variety
of intrinsic membrane properties. Upon synaptic iso-
lation respiratory neurons are silent, tonically active or
possess intrinsic bursting properties (Viemari & Ramirez,
2006; Carroll & Agarwal, 2010; Morgado-Valle et al.
2010). These bursting properties are mediated by two
principal inward currents: the persistent sodium current
(INap) and the calcium-dependent non-specific cation
current (ICAN) (Thoby-Brisson & Ramirez, 2001; Peña

& Ramirez, 2004; Crowder et al. 2007; Rubin et al.
2009; Del Negro et al. 2011; Dunmyre et al. 2011).
Early during hypoxia, ICAN-dependent bursting ceases
but bursting persists in neurons that depend on INap

(Fig. 2). This differential sensitivity impacts the network’s
dependency on these two properties. Rhythmogenesis
persists when INap is blocked with riluzole in control,
but it ceases when INap is blocked during hypoxia (Peña
et al. 2004). At the concentration used, riluzole specifically
blocked bursting, but not action potential generation
(Peña et al. 2004), suggesting that the ‘bursting property’
is critical for rhythmogenesis in hypoxia. However, these
pharmacological experiments cannot exclude that riluzole
also altered other properties, such as synaptic trans-
mission. Yet, modulators unrelated to riluzole had similar
effects: blocking 5-HT2A or α2-adrenergic receptors
blocked INap and respiratory activity during hypoxia,
but not in controls (Tryba et al. 2006; Viemari et al.
2011). These data imply that the respiratory network
changes from a ‘normoxic’ state that depends on multiple,
heterogeneous membrane properties to a ‘hypoxic’ (i.e.
gasping) state that is particularly sensitive to the blockade
of INap (Peña & Ramirez, 2004; Paton et al. 2006). This
hypoxic network state is characterized not only by an
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Figure 2. The effect of hypoxia on the preBötC in medullary slice recording (population and single cell
recordings)
A, the respiratory network shows a biphasic response: an initial augmentation during which the respiratory
frequency is enhanced and sighs are generated is followed by a depression during which the network reconfigures
into gasping. B, synaptic changes occur during the hypoxia-induced reconfiguration as exemplified by transient
changes in synaptic excitation and a suppression of synaptic inhibition. C, hypoxia alters bursting properties: it
inhibits bursting properties that depend on the Ca2+-activated non-specific cation current (ICAN), while bursting
mechanisms that depend on the persistent sodium current (INap) remain relatively unaffected.
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increased dependency on INap, but also by weakened
connectivity between respiratory neurons (Nieto-Posadas
et al. 2014).

The selective dependency of the hypoxic state on the
activation of the 5-HT2A receptor subtype is interesting
in the context of sudden infant death syndrome (SIDS).
Children that die from SIDS breathe normally under
normoxic conditions, but fail to gasp during hypoxia
(Poets et al. 1999; Garcia et al. 2013). Various studies also
demonstrated dysregulation of 5-HT in SIDS (Broadbelt
et al. 2012; Massey et al. 2013; Rognum et al. 2014; Haynes
et al. 2016, 2017; Bright et al. 2017). Thus, infants with
disturbed 5-HT mechanisms might be protected under
normal oxygenated conditions, but become vulnerable to
genetic mutations that affect serotonergic neurons when
the network transitions into a hypoxic state (Tryba et al.
2006; Garcia et al. 2013).

Importantly, the reconfiguration of the preBötC can
only describe a small aspect of a wider network
reconfiguration that will include additional micro-
circuits located rostral to the preBötC. This includes
the retrotrapezoid nucleus (RTN)/parafacial respiratory
group (pFRG), which is critical for the generation of active
expiration (Janczewski & Feldman, 2006; Pagliardini et al.
2011; Huckstepp et al. 2016), and the postinspiratory
complex (PiCo), which is critical for generating post-
inspiration (Anderson et al. 2016); since postinspiratory
neurons lose their inhibitory input during the inspiratory
phase, we suggest these neurons might synchronize with
inspiratory activity (Schmidt et al. 1995; Ramirez et al.
1998a; Richter & Smith, 2014). This synchronization
of the network can be an acute endogenous survival
response to extreme environmental changes, such as hypo-
xia (Michiels, 2004; Peña-Ortega, 2017).

The effect of intermittent hypoxia on the
cardiorespiratory network and implications for
obstructive sleep apnoea

Hypoxic conditions are often experienced in the form of
intermittent hypoxia. It is a characteristic condition in
patients suffering from obstructive sleep apnoea, familial
dysautonomia (Weese-Mayer et al. 2008a,b; Carroll et al.
2012), Rett syndrome (Weese-Mayer et al. 2006; Schüle
et al. 2008; Janc et al. 2016), mitochondrial disease
(Brown & Squier, 1996; Quintana et al. 2012; Herst
et al. 2017), epilepsy (Cohen-Gadol et al. 2004; Farrell
et al. 2016) and many other disorders characterized as
‘dysautonomia’. These disorders are often associated with
breathing disturbances, increased heart rate, decreased
heart rate variability and other forms of disturbed cardio-
respiratory coupling.

Chronic exposure to intermittent hypoxia (CIH) results
in increased levels of hypoxia-inducible factor (HIF)

1α and decreased HIF2, which cause an imbalance
between the hypoxic and antioxidant system and a
build-up of reactive oxygen species (Semenza & Prabhakar,
2007; Nanduri et al. 2008; Nanduri et al. 2015b). CIH
seems to act directly on the CB, which then affects
CNS networks through the release of neurogenic ROS.
This conclusion is based on the observation that CB
lesioning abolishes many of the detrimental consequences
associated with obstructive sleep apnoea (Semenza &
Prabhakar, 1985; Prabhakhar & Semenza, 2016). CIH
leads to an upregulation of haem oxygenase 1 (Sunderram
et al. 2016) and to an increased desynchronization of the
inspiratory neurons within the preBötC (Garcia et al.
2016; Garcia et al. 2017). Incompletely synchronized
preBötC bursts fail to evoke a population burst within
the XII motor nucleus (Garcia et al. 2016), which could
contribute to a pharyngeal collapse (Ramirez et al. 2013).
The transmission failures from the preBötC to the XII
can be prevented with ROS scavengers, suggesting that
the CIH-induced changes involve a build-up of ROS
and oxidative stress within the brainstem (Fig. 3; Garcia
et al. 2016). The CIH-induced amplitude fluctuations in
the preBötC are reminiscent of fluctuations also seen
in an animal model of Rett syndrome (Fig. 4; Viemari
et al. 2005). These mice and also human patients are
characterized by increased oxidative stress (De Felice et al.
2012, 2014; Janc & Muller, 2014; Ciccoli et al. 2015; Filosa
et al. 2015; Janc et al. 2016; Pecorelli et al. 2016). It is
therefore conceivable that the oxidative stress seen after
CIH also contributes to the breathing disturbances in Rett
syndrome including the characteristic fluctuations in tidal
volume (Fig. 4; Weese-Mayer et al. 2006). However, CIH
and ROS production affects not only the preBötC but also
other CNS sites, including the nucleus tractus solitarii
(NTS; Kline, 2010), where CIH alters neurotransmission,
neuromodulation (de Paula et al. 2007; Kline et al. 2007;
Zhang et al. 2008; Kline et al. 2009; Costa-Silva et al.
2012; Shell et al. 2016), neuroprotection and plasticity by
altering proteins such as TrkB and brain-derived neuro-
trophic factor (Almado et al. 2012; Moreau & Ciriello,
2015). CIH also enhances sympathetic drive and alters the
baroreflex by acting differentially on central respiratory
neurons (Moraes et al. 2016, 20136; Souza et al. 2016,
2017; Machado et al. 2017). Taken together, these studies
show the close interaction between the central respiratory
and cardiovascular response; however, it is also important
to take careful consideration concerning CIH studies,
as paradigms can vary widely among experimenters. It
seems that the changes in sympathetic discharge and
the levels of arterial pressure are due to the changes
in the central respiratory network (Machado et al.
2017). This interaction occurs via connections from the
respiratory microcircuits to the brainstem neurons that
control sympathetic, but also parasympathetic activity.
How whether the recently discovered excitatory post-
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Figure 3. The effect of chronic
intermittent hypoxia (CIH) on respiratory
centres
A and B, integrated population recordings
from the hypoglossal (XII, upper traces) and
preBötC (lower traces) indicate that CIH
exposure results in transmission failures
reflected in the XII output. C, These
transmission failures translate in ‘XII apnoeas’
that are prevented by treatment with
cell-permeant SOD mimetic manganese(III)
tetrakis(1-methyl-4-pyridyl)porphyrin
(MnTMPyP).

inspiratory complex (Anderson et al. 2016) contributes to
the integration of the sympathetic nervous system is still an
open question, but a recent study indicates that there are
anatomical interactions between PiCo, preBötC and the
RVLM (Dempsey et al. 2017). For the preBötC it has been
shown that it contributes to the activity of vagal neurons
and parasympathetic control (Dergacheva et al. 2010)
involving GABAergic neurons (Frank & Mendelowitz,
2012).

It is important to emphasize that the degree and specific
pattern of hypoxia determine whether the consequences
are detrimental or beneficial (Navarrete-Opazo &
Mitchell, 2014; Wilkerson et al. 2018), as intermittent
hypoxia can decrease (Edge & O’Halloran, 2015) or
increase long-term facilitation (Fuller & Mitchell, 2017;
Dougherty et al. 2018). Thus, under the right conditions,
intermittent hypoxia has been successfully used to induce
plasticity that is very beneficial during the rehabilitation
following spinal cord injury (Trumbower et al. 2012; Dale
et al. 2014; Fields & Mitchell, 2015; Gonzalez-Rothi et al.
2015).

These studies also revealed a close link to inflammation,
which can suppress some aspects of the plasticity
evoked by intermittent hypoxia (Vinit et al. 2011;
Huxtable et al. 2013; Huxtable et al. 2015), while
other pathways that lead to facilitation are resistant to

inflammation (Agosto-Marlin et al. 2017). How hypoxia
and inflammation interact within the CNS is an inter-
esting and emerging area of research, with important
implications for the respiratory system and the clinic
(Gresham et al. 2011; Jafri et al. 2013; Lorea-Hernandez
et al. 2016; Ribeiro et al. 2017). A commonly used approach
to study inflammation is the use of lipopolysaccharide
(LPS; Gresham et al. 2011; Balan et al. 2012; Master et al.
2016; Ribeiro et al. 2017), which via the vagal nerve causes
neuroinflammation (Balan et al. 2011; de La Serre et al.
2015; Le Maitre et al. 2017). The relationship between
inflammation and CIH is particularly relevant for pre-
mature infants, which are susceptible to lung injuries and
have unstable periodic breathing (Di Fiore et al. 2013).
Both CIH and LPS-induced inflammation modulate CB
development with long-lasting consequences (Abbott
et al. 2011) for the control of breathing, including
attenuated hypoxic and hyperoxic responses (Gauda
et al. 2013; Master et al. 2016). Unravelling these inter-
actions will be critical to understanding the relationship
between respiratory infections and the resulting changes in
breathing that are characteristic of small infants (Gresham
et al. 2011; Balan et al. 2012).

There is increasing evidence that astrocytes play a
central role in the response to inflammation and hypoxia.
These cells are intrinsically sensitive to hypoxic insults,

C© 2018 The Authors. The Journal of Physiology C© 2018 The Physiological Society
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and they have been implicated in the inflammatory
response (Bellaver et al. 2015; Forster & Reiser, 2016),
the control of the cardiorespiratory responses and the
modulation of sympathetic drive (Kasymov et al. 2013;
Angelova et al. 2015; Marina et al. 2015, 2016a). The
hypoxic environment increases ATP and lactate release
by astrocytes, which is thought to lead to overexcitation
of sympathetic circuits affecting cardiorespiratory control
(Marina et al. 2016a,b). A recent review by Marina and
colleagues has detailed how researchers have tackled the
astrocyte hypothesis by blocking ATP-mediated signalling,
which leads to slow progression of cardiac remodelling in
rats and reduced systemic blood pressure in hypertensive
rats (Marina et al. 2017). The role of glia and purinergic
signalling will be discussed in more detail in the next
section.

The role of purinergic signalling and neuroglial
interaction in sensing O2 and CO2

There is an increasing consensus that neuroglial inter-
actions play critical roles in sensing changes not only in PO2

but also in PCO2 /H+. Indeed, it seems that specialized glial
cells determine whether a given region, organ or network
is sensitive to PO2 or PCO2 /H+. These glial cells then
communicate with neurons and other glia through trans-
mitter release (Pascual et al. 2005; Gourine et al. 2010);

in particular, ATP (Guthrie et al. 1999), D-serine (Schnell
et al. 1995; Beltrán-Castillo et al. 2017) and glutamate
(Parpura et al. 1994). The concept of specialized cell-to-cell
interactions among neurons is emerging for astrocytes
within the medulla, but also the cortex (Kasymov et al.
2013), and they may confer differential sensitivity to PO2

and PCO2 /H+ depending on location within the ventral
respiratory column (VRC) (Grass et al. 2004; Oku et al.
2016; Beltrán-Castillo et al. 2017; Forsberg et al. 2017).
Interestingly, the neuroglial interactions that seem to
underlie PO2 /PCO2 /H+ sensitivity in the central nervous
system are strikingly similar to those that occur peri-
pherally in the carotid bodies (Figs 5 and 6) (Kumar &
Prabhakar, 2012).

Therefore, the CB could provide critical insights into
our understanding of how the CNS responds to hypoxia
and CO2. The CB consists of two primary cell types: type
I (glomus) and type II (sustentacular) cells. These cells
are bundled tightly in groups, and located in close contact
with capillary beds. Afferent sensory nerves leading to
the carotid sinus nerve receive autonomic innervation
from the petrosal ganglion, and connect to the NTS to
control breathing (Housley et al. 1987; López-Barneo
et al. 2008; Kumar & Prabhakar, 2012; Prabhakhar et al.
2015). Type I cells are of neural origin (Duchen et al.
1988; López-Barneo et al. 2008; Pakkarato et al. 2015)
and there are proposed to be several subtypes (McDonald
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integrated population recordings from the PreBötC that resemble those seen after CIH exposure. B, human data
from Rett syndrome patients show large fluctuations in tidal volume. C, breath holds during Rett syndrome elicit
oxidative and hypoxic stress. During these breath hold episodes cardiorespiratory coupling is compromised as the
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et al. 2006.

C© 2018 The Authors. The Journal of Physiology C© 2018 The Physiological Society



J Physiol 596.15 Cellular and integrative control of oxygen homeostasis in the CNS 3051

& Mitchell, 1975; Chen & Yates, 1984; Prabhakhar et al.
2012). The responsiveness of type I cells to changes
in PO2 /PCO2 /H+ may therefore be representative of the
heterogeneous hypoxic responses of central respiratory
neurons (St John & Wang, 1977; Richter et al. 1991;
Ballanyi et al. 1994; Peña et al. 2004; Hill et al. 2011;
Beltrán-Castillo et al. 2017). In contrast, type II cells are
glial-like and are located in close proximity to groups of
type I cells, where they unsheathe type I cells with thin
proccesses and are arranged into glomeruli (Fig. 5; Kumar
& Prabhakar, 2012).

Both CB cell types possess distinct electrophysiological
properties (Clarke & de Burgh Daly, 1981; Duchen et al.
1988), and there is significant crosstalk between them.
ATP released from type I cells during hypoxia or hyper-
capnia leads to a rise in intracellular Ca2+ ([Ca2+]i),
followed by a delayed, secondary [Ca2+]i increase in
proximal type II cells (Murali et al. 2014; Murali &
Nurse, 2016). A depolarization of type I cells results
in sensory output to the petrosal ganglion and on to
the carotid sinus nerve, mediating the cardiorespiratory
response in the NTS (Housley et al. 1987; Iturriaga &
Alcayaga, 2004). The primary transmitter, ATP, activates

P2X2/3 receptors on afferent nerve terminals (Wood et al.
1965; Prasad et al. 2001; Murali & Nurse, 2016), possibly
through pannexin-1 channels, which release ATP after
activation of P2Y2 receptors (Prabhakhar, 2013; Murali
et al. 2014; Prabhakhar & Joyner, 2015; Prabhakhar &
Semenza, 2015).

Mechanisms proposed to underlie chemoreception in
the RTN/pFRG, raphe nucleus (RN), NTS, preBötC and
other areas of the respiratory network similarly rely on
purinergic signalling involving astrocytes (Guthrie et al.
1999; Gourine et al. 2010; Huxtable et al. 2010; Huda et al.
2012; Turovsky et al. 2016; Gourine & Funk, 2017). Much
has been learned about the RTN/pFRG as an important site
for PO2 and PCO2 /H+ sensing, but there are additional areas
with varying sensitivity to hypoxia and hypercapnia in the
VRC (Gourine et al. 2005). Purinergic signalling also plays
a critical role in the central control of the cardiovascular
system (Burnstock, 2006; Hawkins et al. 2017; Nishimura
et al. 2017).

In principle, the astrocytic response to local changes in
PO2 /PCO2 /H+ results in elevated levels of [Ca2+]i, which
then leads to release of ATP, which further propagates
the astrocytic Ca2+ signal in a feedforward manner. This
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located at the bifurcation of the aortic artery
Glomeruli are made up of type I cells ensheathed by type II cells, which relay changes in blood gas levels to the
heart and brain through the petrosal ganglion and carotid sinus nerve. (1) Hypercapnia/H+ or hypoxia triggers a rise
in [Ca2+]i in type I cells by inhibition of TASK1/3 K+ channels, which is followed by a secondary increase in [Ca2+]i
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release, primarily ATP, binding to P2Y2R receptors in type II cells and allowing ATP release through pannexin-1
channels. ATP is broken down through 5′-endonucleotidase activity and converted to ADO, which (3) binds to
A2ARs on type 1 cells. (4) This cascade creates a positive feedback loop, followed by Na+/Ca2+ release from type I
cells that activates afferent axons in the petrosal axons through a variety of P2X channels (Nurse & Piskuric, 2013).
It has been hypothesized that the connexin family of gap junction channels may also play a role in facilitating
electrical coupling (Murali et al. 2014; Nurse, 2014; Murali & Nurse, 2016). VGCC, voltage-gated calcium channel.
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Figure 6. Illustration of the proposed mechanisms underlying sensitivity of the VRC to changes in blood
gases
(1) Hypercapnia/H+ or hypoxia triggers a cascade of events through which mitochondrial release of ROS or
NBC/NCX transporters leads to a rise in [Ca2+]i in astrocytes close to the ventral medullary surface near blood
vessels (Gourine et al. 2010; Angelova et al. 2015; Turovsky et al. 2016; Rajani et al. 2018). (2) Increase in astrocytic
[Ca2+]i results in vesicular release of gliotransmitters, such as ATP (Guthrie et al. 1999; Angelova et al. 2015;
Holloway et al. 2015), glutamate (Huxtable et al. 2010; Holloway et al. 2015) and D-serine (Beltrán-Castillo et al.
2017). ATP release has been proposed to be facilitated by connexin hemichannels (Huckstepp et al. 2010aa,b,,). (3)
ATP and its derivatives (ADP and ADO; Burnstock, 2006; Robson et al. 2006; Funk, 2013), glutamate and D-serine
are released and bind to respective receptors on neurons (or ATP to P2YRs on other astrocytes, facilitating [Ca2+]i
spread) (Kumar et al. 2015; Beltrán-Castillo et al. 2017; Rajani et al. 2018). Different mechanisms have been
proposed for responses of the preBötC and RTN/pFRG, where the RTN appears to respond to changes in astrocytic
Ca2+ through TASK2/P1YR activation (Mulkey et al. 2004, 2006, 2007bb; Gestreau et al. 2009; Wang et al.
2013b) and preBötC neurons may respond by releasing glutamate that binds to NMDAR/AMPAR/mGluRs on the
postsynaptic neuron or onto P2YRs on astrocytes. (4) Neuronal [Ca2+]i release is then mediated by diacylglycerol
(DAG)/inositol 1,4,5,-trisphosphate (IP3), further activating protein kinase C (PKC) to modulate ion channels,
thereby altering respiratory frequency (Mulkey et al. 2006; Lorier et al. 2008). GPR4, G-protein-coupled receptor
4; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; VGCC, voltage-gated calcium channel.
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in turn increases the activation of chemosensitive
neuron populations that are directly activated by the
release of ATP (Fig. 6; Hartel et al. 2009; Gourine
et al. 2010; Okada et al. 2012; Wang et al. 2013bb).
Depending on the microcircuits in which these neuroglial
interactions occur, there will be different responses at the
organismic level. For example, the RTN or preBötC will
mount different aspects of the systems-level responses to
changes in CO2 and O2. The direct effect on astrocytes
seems relatively clear, as blocking neuronal responses
or injection of current does not alter the astrocytic
Ca2+ response (Gourine et al. 2010). Additionally, ATP
antagonists diminished pH-induced [Ca2+]i signals
(Gourine et al. 2010). The Ca2+ spread is partially due to
gap junctions (Gourine et al. 2010), and is mediated by
release of gliotransmitters (for review of Ca2+ spread in
astrocytes, see Chemes & Ciaume, 2006). Interestingly,
acidosis of the cortex and dorsal areas of the brainstem
caused no change in the astrocytic [Ca2+]i response,
supporting the hypothesis that central chemoreception is
localized to specific area(s) within the respiratory network
(Gourine et al. 2010; Turovsky et al. 2016).

Precise mechanisms behind astrocytic chemosensitivity
and the role of various P2X and P1/2Y receptors in
modulating respiratory frequency have been partially
revealed for the preBötC (Lorier et al. 2007, 2008; Huxtable
et al. 2009; Zwicker et al. 2011; Rajani et al. 2018).
These mechanisms are possibly similar for the RTN/pFRG.
However, this is still debated as the sensitivity of the
RTN/pFRG to ATP does not appear to be dependent on
P2-related mechanisms (Fig. 6; Mulkey et al. 2006; Wenker
et al. 2012, 2013).

In slices, P2Y1 receptor (P2Y1R) activation in the
preBötC by ATP creates a 2- to 4-fold increase
in the frequency of fictive inspiratory burst activity
(Lorier et al. 2007). ATP released by astrocytes in the
preBötC during the HVR also mediates an increase
in inspiratory frequency and reduces the secondary
depression phase through activation of P2Y1Rs (Rajani
et al. 2018). Astrocytes in the preBötC sense changes
in PO2 and release [Ca2+]i, translating into release of
ATP (and possibly other gliotransmitters), and activation
of P2Y1Rs on neurons (Rajani et al. 2018). It is hypo-
thesized that astrocytes detect changes in blood gas
levels through mitochondria, relaying this information
through a ROS and phosphatidylinositol 4,5-bisphosphate
(PIP2)-mediated cascade that leads to the commonly
detected increase in [Ca2+]i (Angelova et al. 2015). As
mentioned above, the effect of P2Y1R activation in the
RTN/pFRG is somewhat unclear. Several experiments
have shown that although P2Y1Rs are expressed in
RTN/pFRG neurons, they may only play a partial role
in modulating CO2- (Mulkey et al. 2004) or pH- (Mulkey
et al. 2006) driven excitation, as these responses show
experimental cell to cell variablity in vitro versus in vivo.

However, with local application of P2Y1R antagonists
during hypercapnia, there is a resultant increase in
amplitude and frequency of phrenic nerve output
(Burnstock, 2006; Wenker et al. 2012). Further downstram
effects of receptor activation occur to create changes in
respiratory output. Breakdown of ATP results in neuro-
active metabolites, such as ADP and adenosine (ADO),
which are agonists of P2YRs and P1YRs, respectively
(Robson et al. 2006; Funk, 2013). Both of these byproducts
have additional effects on respiratory frequency, as ADP
is excitatory (Lorier et al. 2007) while ADO may have
an inhibitory effect in neonates (Fig. 6; Herlenius, 2011;
for review on P2Y1Rs in respiration, see Rajani
et al. 2016).

An emergent concept is that astrocytes form different
functional subpopulations. This is best illustrated by
astrocytes that exist in the RTN/pFRG and preBötC
performing different functions in modulating respiratory
network activity (Grass et al. 2004; Schnell et al. 2011; Oku
et al. 2016; Forsberg et al. 2017). Forsberg et al. recently
produced novel evidence of two astrocyte subtypes within
the RTN/pFRG and preBötC, a portion of which exhibited
rhythmic calcium oscillations, and another group that
maintained a state of inactivity. They also found sensitivity
differences in regions of the VRC. Selective activation
of astrocytes in the RTN/pFRG and preBötC increased
oscillatory activity; but RTN/pFRG astrocytes released
prostaglandin E2, resulting in neural activation, whereas
neurons in the preBötC had no response to an increase
in calcium oscillations (Forsberg et al. 2017). However,
as already discussed, the interpretation of findings like
this needs to carefully consider experimental caveats.
In normoxia, high levels of glutamate seem to be
required to create astrocyte–neuron coupling. As hypo-
thesized, these non-physiological levels of glutamate
could potentially only occur during hypoxia or when
blocking neuronal glutamate uptake (Schnell et al.
2011). Regardless of these uncertainties, it appears that
each respiratory microcircuit is sensitive to changes in
PO2 /PCO2 /H+ and that multiple astrocytic subtypes may
have different support functions, which is reminiscent
of the situation in the CBs (Kasymov et al. 2013). This
concept has been raised for networks throughout the
CNS, not only the respiratory network (Ben Haim &
Rowitch, 2017).

Further support for the concept of astrocyte subtypes
and differential sensitivity in the respiratory networks
comes from evidence that astrocytes also respond to
changes in CO2 by releasing D-serine (Beltrán-Castillo
et al. 2017). It is thought that D-serine in the RN
and VRC, but not NTS, increases respiratory frequency
under control conditions and hypercapnia through
NMDAR-dependent mechanisms (Papouin & Oliet, 2014;
Beltrán-Castillo et al. 2017). Astrocytes appear to inter-
act not only with neurons, but also with pericytes.
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Pericytes are responsive to lactate, which results in
contraction and relaxation under normal and hypo-
xic conditions, respectively. Lactate has been shown
to be released by astrocytes located in the respiratory
groups (Erlichman et al. 2008, 2010; Lazarenko et al.
2009; Erlichman & Leiter, 2010; Funk et al. 2015;
Marina et al. 2015).

Astrocytes versus neurons as the primary target in
oxygen sensing

As discussed above, there is support for the notion
that astrocytes are directly targeted by changes in
PO2 /PCO2 /H+, while neurons are indirectly controlled by
the astrocytes. Specifically, it is hypothesized that changes
in blood gases are detected by astrocytes (Angelova et al.
2015), which in turn elicit an increase in [Ca2+]i, a sub-
sequent release of gliotransmitters and neuronal activation
(Hartel et al. 2009). However, most likely, this hypo-
thesized mode of chemosensory transmission is much
more complex, and there is still much to be learned when
it comes to specific neuroglial interactions. Moreover, as
discussed before, the responsiveness and mechanisms may
vary for different regions.

However, can neurons be intrinsically sensitive to
changes in O2 or CO2? In the preBötC, synaptically isolated
pacemaker neurons respond to hypoxia with transient
increases in rhythmicity, which is followed by cessation
of the endogenous rhythm during extended exposure to
hypoxia, indicating that pacemakers play a direct role in
the hypoxic response (Thoby-Brisson & Ramirez, 2000).
While these hypoxic responses persist after synaptic iso-
lation, it is important to emphasize that this study does
not exclude a possible involvement of gliotransmitter
involving purinergic signalling. Thus, it will be necessary
to demonstrate that the hypoxic responses are maintained
when physically isolated, as has been shown for Raphe
neurons and RVLM neurons for the CO2 response (Wang
et al. 1998; Wang & Richerson, 2000; D’Agostino et al.
2009; Sunderram et al. 2016). For the preBötC and C1
region, it has been shown that cells express haem oxygenase
(HO-1), but these cells were anatomically identified, and
it is not clear whether they play a role in the hypoxic
response (Mazza et al. 2001; D’Agostino et al. 2009).
Some neurons in the RTN/pFRG have also been reported
to respond directly to changes in PCO2 /H+ (Guyenet &
Bayliss, 2015). These neurons are purported to detect PCO2

via TASK2 receptors and G-protein-coupled receptor 4
(Fig. 6; Gestreau et al. 2009; Guyenet & Bayliss, 2015;
Kumar et al. 2015; Ruffault et al. 2015). Yet, these neurons
seem to obtain this information also from surrounding
astrocytes and peripheral chemoreceptors (Gourine et al.
2010). In this study, blocking activity of RTN/pFRG
neurons had no effect on the astrocytic Ca2+ increase
(Gourine et al. 2010). It has also been reported that inward

currents in preBötC astrocytes occurring in phase with
rhythmic neuronal oscillations under normoxia are due
to neuronal release of K+ and glutamate (Schnell et al.
2011).

Thus, while neurons may have intrinsic sensitivity to
O2 and CO2, there seems to be more evidence to support
the notion that astrocytes are the primary sensors for pH
and hypoxic conditions. Moreover, astrocytes within the
medulla are found to be in close proximity to blood vessels
(Gourine et al. 2010) and exhibit radial processes that are
in contact with vessels (Wenker et al. 2010). They have
reversal potentials near K+ equilibrium potential (EK),
and are blocked with barium and desipramine, a blocker
of Kir4.1 channels; this has led to later experiments that
have helped to uncover specific channels that astrocytes
use in sensing changes in oxygen or pH (Wenker et al.
2010).

Ion channels and the mechanisms of O2 and CO2

sensing

The studies from the previous section cohesively define
the role of astrocytes within the ventrolateral medulla as
chemosensitive units, but specific mechanisms underlying
PO2 /PCO2 /H+ sensing and what role each specific area of
the respiratory network plays in chemosensitivity have yet
to be completely uncovered. Our limited understanding
is partly rooted in the aforementioned experimental
challenges in isolating independent mechanisms in slices
or in vivo. This is exemplified by the amount and variety
of ion channels tied to the oxygen sensing abilities of
astrocytes and neurons. Clearly, multiple ion channels
are involved in chemoreception. However, which channels
and what particular role they play are dependent on cell
type, anatomical location and experimental conditions
(Lazarenko et al. 2010). Gap junction channels facilitate
Ca2+ spread (Gourine et al. 2010), and several types of
K+ channels contribute to chemotransduction pathways
within both astrocytes and neurons in the respiratory
groups, especially within the RTN/pFRG (Bayliss et al.
2001; Mulkey et al. 2007b; Gestreau et al. 2009; Lazarenko
et al. 2009; Wang et al. 2013a; Rajani et al. 2016;
Sobrinho et al. 2017). K+ channels such as the Kir4.1
inward rectifying channel have been implicated in
regulation of the astrocyte resting membrane potential
throughout the brain in several studies (Nwaobi et al.
2016), and could explain astrocytic activation through
voltage-dependent mechanisms (Olsen et al. 2015). Inter-
estingly, the application of fluorocitrate had no effect on
astrocytes when applied to the NTS or raphe neurons
(Sobrinho et al. 2017). The possibility of TASK channels
playing a role in chemoreception was proposed in 2001, as
these channels are prominent in brainstem motor nuclei
and exhibit high sensitivity to pH (Bayliss et al. 2001,
2014). However, the situation may be more differentiated,
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since TASK1/3 knock-out mice seem to exhibit no signs
of health issues (Mulkey et al. 2007aa), while the loss of
TASK2 channels in the RTN/pFRG blunted the response
to pH changes. Indeed, these three subunits are in different
subgroups of the same family of K2P channels, and
thus the intrinsic sensitivities of TASK1/3 channels and
TASK2 channels are different. Subunits 1 and 3 both
exhibit a very tight range of pH sensitivity, while TASK2
has a much broader sensitivity to changes in alkalinity
(Lesage & Barhanin, 2011; Bayliss et al. 2014). These
subtle differences could underlie different mechanisms
of chemosensitivity within networks of the VRC, and
also explain why knockout and mutation studies were
not severely detrimental to respiratory activity. TASK1
channels have similarly been suggested to have a role in
controlling the background current in the carotid bodies,
as mRNA and protein expression data show that they are
expressed within the atrium and ventricles of heart tissue
(Jones et al. 2002; O’Connell et al. 2002; Buckler, 2010).

It has been well established in recent years that ATP
plays a major role in astrocytic detection of changing
PO2 /PCO2 /H+ levels. However, it would be an over-
simplification to imply that purinergic signalling is the
only mechanism involved. Indeed, some studies indicate
that sensing O2 and CO2/H+ could involve entirely
different pathways within astrocytes. Turovsky et al.
demonstrated that the Na+–HCO3

− cotransport (NBC)
and the Na+/Ca2+ exchanger (NCX) are required for
increases in calcium fluctuations in astrocytes in response
to changes in pH (Fig. 6; Turovsky et al. 2016). It will be
interesting to learn whether mechanisms of mitochondrial
activation and activation by NBC/NCX can occur in one
astrocyte population, or if specialized subtypes exist that
are specific to detecting O2 and CO2/H+ changes.

As already mentioned, the mechanisms for sensing
changes in PO2 /PCO2 /H+ levels in both the carotid
bodies and the CNS are surprisingly similar. For the
astrocytes in the RN and VRC it has been proposed that
CO2-evoked D-serine release is due to gap junction hemi-
channels, specifically pannexin1 (Beltrán-Castillo et al.
2017), similar to type II cells in the CB (Murali et al.
2014). Moreover, NMDARs are expressed in CB glomus
cells and CNS astrocytes. Thus, the role of D-serine in
the VRC (Liu et al. 2009) may bear semblance to its role
in the CB. Connexins, specifically connexin 26, respond
to increases in CO2 and mediate ATP release (Huckstepp
et al. 2010a,b), while connexins 36 and 43 are expressed in
the carotid bodies and myenteric plexus in mice and are
known to play a role in CO2 detection (Chen et al. 2001;
Frinchi et al. 2013).

Taken together, there is accumulating evidence for a
central chemosensory component to the HVR that acts
through mechanisms not dissimilar from those proposed
in the carotid bodies. With the understanding that the
ventrolateral medulla plays a role in the HVR, we post-

ulate that localized responsiveness to O2 or CO2/H+ in
the preBötC and RTN/pFRG, respectively, emerge through
specialized neuroglial interactions. Each of these regions
exhibits a high sensitivity to either O2 or CO2/H+, which
involves regionalized astrocytes with specialized sensitivity
to either O2 or CO2/H+. Thus, it seems that the differences
between the RTN/pFRG and preBötC are a function of the
proportion of each astrocyte subtype that exists in each
location (Fig. 6).

Summary

This review discussed the necessity and complexity
involved in chemosensation in the CNS. We highlighted
the evolutionary importance of aerobic metabolism and
how our bodies have developed impeccable mechanisms
to maintain homeostasis between O2 and CO2, which
is particularly critical for normal brain function. Tightly
regulated networks in the medulla that include the NTS,
RN, RTN/pFRG and preBötC are primarily responsible
for the homeostatic response and the regulation of blood
gases. The preBötC, involved in inspiration, responds to
changes in O2 in a biphasic manner by rapidly increasing
neuronal activity followed by respiratory depression
that leads to gasping. This biphasic response to O2 is
attributed to a dynamic reconfiguration involving changes
in ionic channel dependencies, excitatory and inhibitory
conductances and the synchronization of respiratory
neurons. Abnormalities in this and other medullary
networks lead to disorders that affect cardiorespiratory
coupling and elicit inflammatory responses exacerbating
these conditions. At the core of these central chemosensory
network responses are highly differentiated neuroglial
interactions involving purinergic signalling. Although the
chemosensitive processes in RTN/pFRG and preBötC
involve neuroglial interactions including several receptors
and neuromodulators that are strikingly similar to those
described for the CB, it is also important to emphasize
their differences, as astrocytic subtypes imbue different
regions with different response properties. Unravelling
the differential roles of astrocytes as the primary target
in O2 and CO2 sensing is a riveting process, and is a
departure from the ideas that (1) astrocytes are all similar
and (2) neurons are the primary foci of study in the CNS.
While this review emphasizes the importance of chemo-
sensitivity, we also wanted to highlight the need for more
research that will be required to unravel how the body
controls its most necessary function, respiration.
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