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ABSTRACT: In this work, we report the interaction of a
fluorescent ZnO−Au nanocomposite with deoxyribonucleic
acid (DNA), leading to AT-specific DNA interaction, which is
hitherto not known. For this study, three natural double-
stranded (ds) DNAs having different AT:GC compositions
were chosen and a ZnO−Au nanocomposite has been
synthesized by anchoring a glutathione-protected gold nano-
cluster on the surface of egg-shell-membrane (ESM)-based
ZnO nanoparticles. The ESM-based bare ZnO nanoparticles
did not show any selective interaction toward DNA, whereas
intrinsic fluorescence of the ZnO−Au nanocomposite shows
an appreciable blue shift (Δλmax = 18 nm) in the luminescence wavelength of 520 nm in the presence of ds calf thymus (CT)
DNA over other studied DNAs. In addition, the interaction of the nanocomposite through fluorescence studies with single-
stranded (ss) CT DNA, synthetic polynucleotides, and nucleobases/nucleotides (adenine, thymine, deoxythymidine
monophosphate, deoxyadenosine monophosphate) was also undertaken to delineate the specificity in interaction. A minor
blue shift (Δλmax = 5 nm) in the emission wavelength at 520 nm was observed for single-stranded CT DNA, suggesting the
proficiency of the nanocomposite for discriminating ss and ds CT DNA. More importantly, fluorescence signals from the nano-
bio-interaction could be measured directly without any modification of the target, which is the foremost advantage emanated
from this study compared with other previous reports. The AT base-pair-induced enhancement was also found to be highest for
the melting temperature of CT DNA (ΔTmCT = 6.7 °C). Furthermore, spectropolarimetric experiments followed by calorimetric
analysis provided evidence for specificity in AT-rich DNA interaction. This study would lead to establish the fluorescent ZnO−
Au nanocomposite as a probe for nanomaterial-based DNA-binding study, featuring its specific interaction toward AT-rich DNA.

■ INTRODUCTION

The interaction between engineered nanoparticles (NPs) and
biomolecules has led to the development of new type of
biosensors1,2 and biomolecular targets.3,4 To explore the
fundamental5,6 and technological7 aspects of nano-bio-inter-
action, a broad range of inorganic,8,9 organic,10 and hybrid
nanostructures11 or nanocomposites12,13 exhibiting well-defined
structural, optical, electrical, and magnetic properties have been
targeted by many investigators. Among these, metal−semi-
conductor nanocomposites possessing synergy between differ-
ent components are also being projected as a new class of
materials for this purpose.14,15 There are several reports on
ZnO-based DNA sensors using thiol-oligonucleotide or
fluorophore-labeled target DNA and related perspectives of
their interaction.16−20 Among the metal nanoparticles, Au has
been considered as a classical material because of its novel
optical properties arising out of plasmonic resonance,
biocompatibility, and above all availability of facile synthesis
procedures for achieving controlled particle size distribution
compared to other noble metal nanoparticles.21−27 Simulta-

neously, ZnO−Au composites have also been explored by
many; for example, Purwidyantri et al. demonstrated Au NP-
decorated zinc oxide as a platform for bacterial DNA
hybridization.28 Singhal et al. reported the electrochemical
performance of zinc oxide/platinum−palladium (ZnO/Pt−Pd)
with DNA.29 Perumal et al. developed a detection strategy for
DNA from pathogenic leptospirosis with a gold-seeded ZnO
nanoflower.30 Foo et al. described a Au-decorated ZnO thin-
film-based biosensor using a thiol-modified single-stranded (ss)
DNA probe.31 However, all of these electrochemical methods
involve an additional reducing/oxidizing agent, which makes
the detection more complicated. In contrast, optical detection,
namely, the fluorescence-based method, offers high sensitivity
toward specific molecular recognition with a rapid response and
easy operating technique.32 Recently, resonance Raman
scattering has also been used for a specific DNA target
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sequence.33 Apart from gold nanoparticles, gold nanoclusters
(Au NCs) also exhibit size-dependent strong fluorescence
property, photostability, and functionality for bioconjuga-
tion.34−36 Hence, several current studies focus on developing
fluorescent probes using gold nanoclusters, such as, a label-free
sensor has been developed by Wang’s group using gold
nanoclusters (Au NCs).37 Several theoretical studies also
support the strong interaction of Au NCs with nucleo-
bases.38−42 From the data available in the literature,
distinguished affinity of gold nanoclusters toward nucleobases
is evident.
In the past, we have carried out extensive work in

understanding the interaction of various nanostructures like
carbon spindles,10 silver nanoparticles,8 and ZnO nano-
particles43 with DNA. In one of our recent studies, the
interaction of fluorescent ZnO rods with DNA, which
incidentally resulted in Escherichia coli (EC) DNA-specific
interaction leading to white light emission, has been reported.9

Inspired by this result and motivated by the affinity of gold
nanocluster toward oligonucleotides,38−42 we have extended
our research with fluorescent nanocomposites to understand
the synergistic effect of two fluorescent materials in a single
nanocomposite to find out if there could be base-pair-specific
interaction with such composites. For this purpose, we have
chosen two individual fluorescent materials, ZnO nanoparticles,
exhibiting emission at 389 and 513 nm, and gold nanoclusters,
exhibiting emission at 610 nm. Here, we present a fluorescent
ZnO−Au nanocomposite exhibiting dual emission at ∼390 and
520 nm as a probe for elucidating DNA interaction and
specificity. Highly monodispersed glutathione (a natural thiol-
containing tripeptide)-protected fluorescent gold nanoclusters
(G-Au NCs) were synthesized via a facile synthetic method,
followed by their deposition onto preformed egg-shell-
membrane (ESM)-based ZnO nanoparticles. A rigorous
characterization of the nanocomposite was carried out prior
to investigating the nano-bio-interaction. Three natural DNAs,
calf thymus (CT), E. coli (EC), and Micrococcus lysodeikticus
(ML) DNAs, having different AT:GC compositions were
chosen for this study. A noticeable change in the fluorescence
of the synthesized nanocomposite in the presence of CT DNA
indicates its strong interaction, which can be ascribed to the
synergistic effect of the synthesized nanocomposite derived
from the unique combination of G-Au NCs and ZnO
nanoparticles. Furthermore, thorough investigation was also
carried out to understand the fundamental aspects of binding
that can explain the differences in binding efficiency to different
DNAs.

■ RESULTS AND DISCUSSION
Carboxylic groups are the commonly employed functional
groups for anchoring plasmonic materials onto the ZnO
surface.44 Thus, following this, here, we have also used
glutathione-protected Au NCs with carboxylic acid groups for
forming a composite with ZnO nanoparticles. A schematic of
the synthesis procedure is shown in Figure 1. Disappearance of
the absorption spectra of bare G-Au NCs from the supernatant
of the resultant ZnO−Au nanocomposite after centrifugation
confirms the complete anchoring of G-Au NCs onto ZnO
nanoparticles and the successful formation of the nano-
composite.
To gain insight into the crystalline nature of gold

nanoclusters (G-Au NCs), ESM-based native ZnO (ZO)
nanoparticles, and ZnO−Au (AZO) nanocomposites, the X-
ray diffraction (XRD) study was performed as presented in
Figure 2. It is very difficult to acquire strong reflections in the

XRD pattern for nanoclusters. Recently, Wu et al. studied the
crystal structure of glutathione-capped gold nanoclusters
through XRD measurements and reported two broad
reflections with 2θ at around 37.5 and 66.5°, respectively.45

But, here, we have observed only one broad diffraction peak at
33.03° with a weak intensity for G-Au NCs. The XRD pattern
of bare ZO nanoparticles is in good accordance with that of the
hexagonal wurtzite ZnO lattice reported elsewhere.46 Fur-
thermore, besides the diffraction peaks of ZnO, the diffraction
peaks of gold nanoclusters are not observed in the composite
because of their negligible intensity.47

Figure 1. Synthesis of the AZO nanocomposite is shown as a schematic representation.

Figure 2. XRD patterns of gold nanoclusters (G-Au NCs), native ZnO
(ZO) NPs, and ZnO−Au nanocomposite (AZO).
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Figure 3a−f depicts the representative bright field trans-
mission electron microscopy (TEM) images of native ZO
nanoparticles, as-synthesized G-Au NCs, and the binary AZO
nanocomposite with monodispersed G-Au NCs, respectively, at
low (Figure 3a,b,d) and high magnifications (Figure 3c,e,f).
Figure 3g−i represents the corresponding high-resolution TEM
(HRTEM) images. The bright field image presented in Figure
3a reveals the formation of almost spherical ZnO nanoparticles
with an average size of 30−40 nm using ESM as a biotemplate.
Figure 3b,c represents the as-synthesized gold nanoclusters
with an average size of 1.8 nm. Figure 3d−f clearly
demonstrates the formation of a binary AZO nanocomposite,
depicting uniform distribution of very small gold nanoclusters
onto ZnO nanoparticles. The light contrast particles are ZnO
nanoparticles, and the dark particles are G-Au NCs. In addition,
bright field images of the AZO nanocomposite also confirm the
well-anchored G-Au NCs on the surfaces of ZnO and it is hard
to observe individual ZO nanoparticles or G-Au NCs, which
signifies the successful integration of the G-Au NCs on the ZO
nanoparticles. Importantly, the average size of G-Au NCs (∼1.8
± 0.04 nm) was well preserved in our system, as evident from
Figure 3c,f. Interestingly, the HRTEM image of native ZnO
(Figure 3g), which shows the lattice fringes of 0.281 nm d-
spacing corresponding to the (100) lattice plane, becomes faint
with the presence of very small G-Au NCs in the nano-

composite (Figure 3h,i), confirming the co-existence of ZnO
and G-Au NCs.
To clarify the presence of anchoring sites within the

composite, the Fourier transform infrared (FT-IR) study of
the pure glutathione (G) ligand, G-Au NCs, ZO nanoparticles,
and the AZO nanocomposite was carried out as shown in
Figure 4. The FT-IR spectrum of ZO shows a stretching band

Figure 3. TEM bright field images of (a) native ZnO (ZO) NPs, (b, c) as-synthesized gold nanoclusters (G-Au NCs), (d), (e), and (f) ZnO−Au
(AZO) nanocomposite, respectively, HRTEM of (g) ZO and (h) and (i) AZO nanocomposite, respectively.

Figure 4. FT-IR study of pure glutathione (G), gold nanocluster (G-
Au NC), ZnO−Au nanocomposite (AZO), and native ZnO (ZO).
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at approximately 436 cm−1 due to the vibration of Zn−O
bonds.48 The band identified at around 1630 cm−1 is attributed
to the bending vibration of the H−O−H group of chemisorbed
water, and the broad band at 3000−3650 cm−1 is reasonable to
confirm the adsorption of water molecules.49 The stretching
Zn−O band at 436 cm−1 (as observed in bare ZnO) shifted to
428 cm−1 in the AZO nanocomposite. On the other hand, in
comparison in the spectrum of pure glutathione ligand, the
characteristic peak related to the S−H stretching vibration at
2524 cm−1 was not found in the spectrum of G-Au NC within
the detection limit, whereas the other peaks at 3353 and 1714
cm−1 that stem from −NH2 and the −CO stretching
vibration modes, originating from glutathione ligands, and the
weak band at 1456 cm−1 peak arising from CH2−S methylene
scissoring (δ) were also observed.50,51 This confirms the
disappearance of S−H bonds and the formation of the S−Au
chemical bond in the synthesized gold nanoclusters. However,
the nature of the characteristic bands in the G-Au NC and AZO
nanocomposite is slightly different from that of the original
ligand with low intensity. The characteristic peaks observed at
2925, 3257, and 3443 cm−1 in the AZO nanocomposite are
responsible for C−H, N−H, and O−H stretching frequencies,
respectively.47

The recorded absorption spectra of ZnO nanoparticles, G-Au
NCs, and ZnO−Au nanocomposite in the 250−800 nm range
are presented in Figure 5a. The pure gold nanocluster has a
characteristic shoulder peak at 391 nm, which is consistent with
Au(0)@Au(I)−thiolate structures, as discussed earlier by Xie’s
group.52 The absence of absorption band at around >500 nm
for Au−thiolate NCs indicates that the obtained G-Au NCs are
distinctly different from the conventional plasmonic gold
nanoclusters.53,54 ZnO nanoparticles exhibit a threshold
(band gap) in the UV region of 376 nm (3.29 eV), which is
attributed to the excitonic absorption of ZnO. The absorption
profile of ZnO in the nanocomposite is significantly red-shifted
compared to that of bare ZnO, with an onset at 383 nm (3.23
eV).
Figure 5b illustrates the steady-state emission spectra of bare

ZO nanoparticles, G-Au NCs, and AZO nanocomposites. As
we have reported earlier, under excitation at 345 nm, ZnO
nanoparticles exhibit two emission bands: a narrow near-band-
edge (NBE) emission in the UV region with a maximum at
∼389 nm owing to the direct radiative recombination of
excitons and a broad emission in the visible zone with a
maximum at ∼513 nm corresponding to the oxygen-vacancy-
related surface defects.46,55 On the other hand, G-Au NCs show

a strong luminescence property with an emission maximum at
∼610 nm on excitation at 420 nm.56 A large Stokes (λemi − λabs
∼ 190 nm) shift in the emission is consistent with the
aggregation-induced emission of Au(I)−thiolate complexes on
the Au(0) surface, as demonstrated by Xie’s group.52 A digital
image as in Figure S1 demonstrates the strong red emission of
G-Au NCs under UV light (λ365 nm) exposure. This emissive
property undoubtedly distinguishes the ultra-small G-Au NCs
from the larger plasmonic Au nanoparticles. Emission spectra of
the resultant nanocomposite (AZO) show the NBE emission at
∼390 nm and the surface-defect-related broad emission in the
450−720 nm region, as shown in Figure 5b. Interestingly, it was
observed that in the nanocomposite the spectral intensity of the
surface-defect-related emission was significantly reduced with
extended spectral span. The multidentate anchoring ability of
the glutathione ligand enables G-Au NCs to bind to the defect
present in the ZnO surface, which may induce extended
spectral span toward longer wavelength in the resultant
nanocomposite.

DNA-Binding Studies. The usual biophysical techniques
are implemented to investigate the interaction of AZO with
DNA. As discussed earlier, the ZnO−Au nanocomposite
displays a characteristic absorption band at ∼383 nm. The
interaction of the nanocomposite with CT, EC, and ML DNAs
was monitored in the 250−800 nm region, as shown in Figure
S2. The concentration of DNA solution used was in the range
of 0.1−0.7 μM. As evident from Figure S2, with the increasing
concentration of CT DNA, there is a gradual decrease in
absorbance without any shift of the absorption band of the
nanocomposite. This gradual decrease in absorbance was
observed in all of the studied DNAs. The absorption spectrum
of the nanocomposite exhibited 12.6, 14.28, and 14.61%
decrease in the absorbance band at ∼383 nm upon incremental
addition of CT, EC, and ML DNA, respectively.
In the recent past, fluorescence spectroscopy became a well-

accepted tool to monitor the binding kinetics of DNA−NP
interactions.9,43,57 Initially, we have studied the interaction of
native ZnO nanoparticles with the aforementioned three
DNAs. With the addition of all of the DNAs, irrespective of
the AT:GC composition, quenching of the surface defect peak
maximum at around 513 nm of the bare ZO nanoparticles was
observed, as evident from Figure S3. The observed spectral
changes for all of the DNA−ZnO titrations were same. Recent
computational studies of ZnO with DNA/RNA assigned the
fluorescence quenching to the nano-bio-interaction at the
defect level.58 However, here, bare ZnO could not selectively

Figure 5. (a) Recorded UV−visible and (b) emission spectra of native ZnO (ZO) NPs (λex = 345 nm), ZnO−Au (AZO) nanocomposite (λex = 345
nm), and gold nanocluster (G-Au NC) (λex = 420 nm).
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interact with DNAs. Therefore, in this work, the luminescence
property of the ZnO−Au nanocomposite was chosen to explore
the interaction with different DNAs. For this purpose, the
ZnO−Au nanocomposite was titrated with CT, EC, and ML
DNAs, respectively, and emission spectra were monitored as
presented in Figure 6. For better data comparison, all of the
emission spectra have been normalized with respect to band
edge emission at ∼390 nm. Such a plot helps in monitoring the
actual change of the surface-defect-related peak with varying
DNA concentrations. Figure 6a shows a marginal change in the
intensity of the emission band, at ∼520 nm, of the
nanocomposite upon addition of CT DNA at the initial stage
of the interaction. However, further addition of CT DNA
elicited a continuous reduction in the intensity of the emission
maximum at ∼520 nm along with a blue shift of ∼18 nm at the
saturation level. This was indicative of a strong binding of the
ZnO−Au nanocomposite with CT DNA. Spectroscopic
titration with EC DNA (Figure 6b) also reduced the emission
intensity with a blue shift of ∼10 nm under the same
experimental conditions. The decrease in the emission intensity
in above cases can also be due to the microenvironmental
variation in the nanocomposite−DNA complex system. In
contrast, in the case of ML DNA titration (Figure 6c), the shift
in the emission maximum at ∼520 nm was only ∼3 nm, i.e.,
only a minor shift was noticed. It is clear that CT DNA
containing 42% GC + 58% AT showed a maximum shift in the
emission maximum at ∼520 nm and EC DNA containing 50%
GC + 50% AT showed a closely similar change, whereas ML
DNA containing 72% GC + 28% AT did not exhibit any
significant change. However, this change is markedly different
from that in our previous reports on the studies of fluorescent
ZnO43 and carbon spindles10 with DNA, thereby suggesting a
distinctly different binding pathway compare to the former. The
fluorescence spectral changes of this nature though small are

sufficient for providing good binding analysis, as already
demonstrated by earlier groups.59,60 The base composition of
DNA has been found to strongly influence the spectral nature
of the nanocomposite emission by altering the relative intensity
of the emission maximum at ∼520 nm with significant shifts in
the peak position. The signature of the AT:GC composition of
DNA on the shift in the emission band can be distinctly
visualized from Figure 6d. The inset of Figure 6d typically
displays the Commission Internationale de Ľeclairage (CIE)
1931 diagram exhibiting the shift in the emission wavelength as
a function of DNA composition. The CIE co-ordinates were
found to be (0.32, 0.40), (0.29, 0.36), (0.30, 0.38), and (0.29,
0.35) for the AZO nanocomposite, AZO-CT DNA, AZO-EC
DNA, and AZO-ML DNA, respectively. A simple variation in
the AT:GC composition essentially shifts the CIE indices. In
addition, to understand the crucial role of the gold nanoclusters
in DNA interaction, controlled experiments with only G-Au
NCs were also monitored under the same experimental
conditions for a comparative purpose, as depicted in Figure
S4. There are several reports in the literature describing the
interaction between Au NCs and DNA.38−42 An experimental
study by Kimura-Suda et al. investigated the adsorption affinity
of gold nanoclusters toward individual nucleobases and found
the lowest affinity for thymine.41 However, in the present study,
the red-emitting bare G-Au NCs did not show significant
variation in the activity toward all of the studied DNAs. Hence,
it can be assumed that the changes in the emission spectra of
the nanocomposite upon addition of different DNAs are
attributed to the contribution from both ZnO and G-Au NC.
Accordingly, the emission spectra of the bare nanocomposite
and the nanocomposite after complexation with all of the
studied DNAs at their saturation point were deconvoluted into
two separated Gaussian components (Figure S5) with maxima
at ∼520 and ∼610 nm, respectively. It can be seen that the

Figure 6. Fluorescence study of AZO with (a) CT, (b) EC, and (c) ML DNA’s (0.1−1.2 μM), respectively, and (d) variation of emission of the
AZO nanocomposite as a function of AT:GC composition; the inset displays the observed wavelength shift in terms of CIE diagram.
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synergistic effect of ZnO NPs/G-Au NCs in the AZO
nanocomposite leads to specificity in DNA interaction,
resulting in a shift in the emission profile, as discussed above.
It is reasonable to evaluate the limit of detection (LOD) from
the plots of F0−F of the AZO nanocomposite versus DNA
concentration, as shown in Figure S6. Here, F is the
fluorescence intensity of the nanocomposite in the presence
of different concentrations of DNA and F0 is the initial
fluorescence intensity in the absence of DNA. The limit of
detection (LOD) has been determined using the standard
equation involved as signal-to-noise ratio of (3σ/S), where σ is
the standard deviation of the blank and S is the slope obtained
from the linear plot. The fluorometric results confirmed the
detection of CT DNA with a linear range from 0.1 to 0.7 μM
with a low detection limit of 36 nM; conversely, it was
estimated to be 62 and 66 nM for EC and ML DNAs,
respectively. This outcome shows that the AZO nanocomposite
exhibited a noticeable wavelength shift on interaction with CT
DNA along with a lowest LOD value compared to that of other
DNAs, as discussed above.
We have additionally extended our fluorometric studies with

polynucleotides, which have similar composition to natural
DNAs, as shown in Figure 7. A detailed examination reveals
that initial addition of the poly(dA)·poly(dT) poly AT pair
causes a hypochromic effect of the visible emission band at
∼520 nm, followed by a blue shift in the visible emission band
with a reasonable hyperchromic effect. A remarkable shift in the
emission band from 520 to 489 nm was noticed at the
saturation level as a result of the interaction of AZO with poly
AT. It is to be noted that the interaction of AZO with the
poly(dG)·poly(dC) (poly GC) pair, demonstrated in Figure 7b,

did not exhibit any significant change on the fluorescence of the
nanocomposite. The observed shift (Δλ) in the emission band
at 520 nm during the interaction of AZO with poly AT and
poly GC is further highlighted in Figure 7c. The substantial
shift in the λmax (Δλ = 31 nm) toward a shorter wavelength in
the case of poly AT over poly GC is consistent with the
fluorometric results obtained with natural DNAs. The above
results demonstrate the influence of base composition and
concentration of DNA, leading to AT base pair selectivity of the
composite.
To establish a probable interaction mechanism of AZO with

DNA, further studies were carried out with DNA bases/
nucleosides. Because the AT pair exhibited distinguishable
emission characteristics compared with the GC pair, as shown
in Figure 7, to obtain additional insight into the affinity and
specificity of the ZnO−Au nanocomposite, similar experiments
were also carried out with nucleoside derivatives such as
deoxyadenosine monophosphate and deoxythymidine mono-
phosphate. For each nucleoside, the fluorescence spectra were
measured, as shown in Figure S7a,b. Only in the case of
deoxyadenosine monophosphate, the shift of the emission band
was recognized more precisely than that of deoxythymidine
monophosphate. This result also corroborates the results
obtained with the polynucleotides (vide supra). To extract
more valuable information, we have also performed the
fluorescence titration of the nanocomposite with different
bases, viz. adenine and thymine, and the results are shown in
Figure S7c,d. Fluorescence titration data with deoxyadenosine
monophosphate and adenine were similar and quite com-
parable, although not identical. Interestingly, the fluorescence
spectrum was blue-shifted about 24 nm only for deoxyadeno-

Figure 7. Fluorescence study of AZO with polynucleotides: (a) poly(dA)·poly(dT) (poly AT) pair and (b) poly(dG)·poly(dC) (poly GC) pair and
(c) shift in the peak maximum at 520 nm after the addition of AT and GC polynucleotides.

Figure 8. Fluorescence titrations of AZO with (a) ss CT DNA and (b) comparison of the emission of AZO with that of ss and ds CT DNAs at a
saturated concentration of DNA.
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sine monophosphate titration. In other words, it appears that
the adenine base is partially responsible for the observed blue
shift in emission upon complexation. However, this shift is not
as extreme as it was found for the AT pair because of strong
binding. The strong interaction between the nanocomposite
and AT pair was found as a reflection of the noticeable
wavelength shift. However, the addition of thymine does not
influence the spectral maximum at 520 nm. Although we have
not specified the molecular recognition of these interactions, it
is quite reasonable that anchoring of the gold nanocluster onto
the ZnO surface accounts for the complex formation with AT-
specific DNA, which ultimately leads to strong binding.
Having sufficient information regarding the binding of ZnO−

Au nanocomposite with different double-stranded (ds) DNAs,
we studied the titration of the composite with single-stranded
(ss) CT DNA. The representative fluorescence titration profile
of the AZO nanocomposite with ss CT DNA is presented in
Figure 8a. In comparison to that for ds DNA, a decrease in the
emission intensity at ∼520 nm in addition to a minor (∼5 nm)
blue shift was noticed for ss CT DNA (Figure 8b). However,
what is unusual about this is that in spite of the less structural
complexity of ss DNA the fluorometric result is not as
pronounced as it was found for the interaction of ds DNA with
the nanocomposite. This subtle ability of any composite to

distinguish between single-stranded and double-stranded DNAs
suggests its proficiency in DNA-binding studies. All of the
results together enable us to unequivocally establish the
uniqueness of the fluorescent ZnO−Au nanocomposite in
identifying DNA specificity.
To explore X-ray photoelectron spectroscopy (XPS) as a tool

to understand the binding nature of the AZO nanocomposite
after interaction with CT DNA, studies have been carried out
here. The survey scan of the AZO nanocomposite over a wide
range of binding energy was acquired initially, which had
various characteristic peaks of the elements present in the
nanocomposite (Figure 9a). The wide scan spectrum of the
AZO-CT DNA complex shows the presence of phosphorous
contributed from DNA. For a more detailed analysis, highly
resolved photoemission spectra are shown in Figure 9b−d
along with fitted reliable distinction and assignment of the
different components in all of the core-level spectra. As
demonstrated in Figure 9b, the binding energies of Zn 2p1/2
and Zn 2p3/2 of the AZO nanocomposite are found to be
1044.7 and 1021.7 eV, respectively, manifesting the presence of
Zn2+ in the AZO nanocomposite.61 For Zn 2p, the peak
positions and widths of this component in bare AZO
nanocomposite and after treatment with CT DNA strictly
remained consistent. Figure 9c also depicts the photoemission

Figure 9. (a) Analysis of the survey XPS spectrum of AZO and core-level XPS spectra of (b) Zn 2p, (c) Au 4f, and (d) O 1s in the AZO
nanocomposite (1 and 2 indicate before and after treatment with CT DNA, respectively).

ACS Omega Article

DOI: 10.1021/acsomega.7b02096
ACS Omega 2018, 3, 7494−7507

7500

http://dx.doi.org/10.1021/acsomega.7b02096


spectra of the Au 4f core level. The binding energy of Au 4f in
the AZO nanocomposite is found to be shifted toward a lower
binding energy, i.e., for 4f7/2, 83.87 eV and for 4f5/2, 87.57 eV,
compared to that of pure gold (4f7/2, 84.00 eV and 4f5/2, 87.71
eV),62 as shown in Figure 9c. Similar to the previous reports,
the Au 4f7/2 spectrum was deconvoluted in the two
components of Au(I) and Au(0) with binding energies of
84.27 and 83.17 eV, respectively.53,56 However, the intensity
ratio of 4f7/2 to 4f5/2 drastically changed from 1.022 to 0.710
after complexation with CT DNA. On the other hand, the O 1s
core-level spectrum (Figure 9d) reveals an asymmetric nature,
which upon deconvolution has been attributed to lattice oxygen
(OL, 530.27 eV) i.e., O2− ions on the wurtzite structure with
hexagonal Zn2+ ion array, surface oxygen vacancy (Ov, 531.37
eV) correlated with O2− ions in the oxygen-deficient area, and
chemisorbed oxygen (Oc, 531.8 eV), as shown in Figure 9d.

61,63

Interestingly, the O 1s spectrum of the AZO-CT DNA complex
exhibited an apparent redistribution between the different
deconvoluted components of O 1s. Such behavior is due to a
change in the ratio of the integral area of Ov to OL from 1.18 to
0.72 and of OC to OL from 1.3 to 0.89. Indeed, the changes
observed in Au 4f and O 1s spectra clearly approve the AZO-
CT DNA complex formation, which was also evident from the
fluorescence results.
To further elucidate the mechanism of nanocomposite−

DNA interaction, liquid FT-IR study was performed for the
ZnO−Au nanocomposite and DNA-bound nanocomposites, as
shown in Figure S8. Absorption bands in the 1750−1600 cm−1

region were assigned to the in-plane vibrations of mainly the
base residues related to the stretching motions of the CN,
CO, and CC bonds of the nucleic acids.64 Peaks at 1660−
1665 and 1564 cm−1 are assigned to the vibration of C4O of
thymine and amide II of the adenine moiety, respectively.65

The 1160 cm−1 band is considered to be due to the stretching
vibrations of the sugar−phosphate backbone for B-DNA.66 A
weak band at 860 cm−1 is mainly ascribed to the C−O−P−O−
C backbone vibration, which characterizes the B form of
DNA.64 The bands appearing at 987 and 1080 cm−1 are due to
the skeletal vibrations of ribose-phosphate and PO2

− group in
DNA.64 The specific peaks are either shifted, weak, or become
invisible in the case of DNA-bound nanocomposites, which
collectively indicate the possible interaction of DNA with
nanocomposites. The sharp changes in the intensity of the band
at 1080 cm−1 for all of the DNAs bound with nanocomposites
confirmed that the phosphate of DNA mainly interacts and
assists the binding of nanocomposites with DNA molecules.
Study on DNA Structure. The stabilities of the control

DNA duplexes and the nanocomposites conjugated with
duplexes were determined by a UV thermal denaturation
study by monitoring the absorbance at 260 nm with increasing
temperature, as illustrated in Figure 10. Melting data strongly
support the shifting of melting temperature of DNA (Tm) to
higher values with an increase in the percentage of GC content
in the double-helix structure. The Tm values of CT, EC, and
ML DNAs were 64.6, 65.5, and 90.4 °C, respectively, (Figure
10a−c) under the conditions studied here. After mixing with
the ZnO−Au nanocomposite, the Tm values increased
substantially and changed to 71.3, 69.2, and 92.4 °C,
respectively, for CT, EC, and ML DNAs.
The induced maximum shift in the melting temperature of

CT DNA (ΔTmCT = 6.7 °C) in the presence of the
nanocomposite reveals the selective thermal stabilization effect
compared to that for EC (ΔTmEC = 3.7 °C) and ML (ΔTmML =

2 °C) DNAs under identical experimental conditions. This
observed hyperchromicity trend in thermal stability was
reproducible from three independent sets of experiments.
This AT base-pair-induced enhancement in Tm further reflects
the preferential binding of the nanocomposite toward CT DNA
compared to others.
The study of conformational changes of DNA upon binding

with nanomaterials by utilizing the circular dichroism (CD)
spectroscopic technique is also a unique technique for defining
the nanocomposite−DNA interaction. Figure 11 configures the
CD spectrum of each DNA in citrate phosphate buffer at pH ∼
7.4, displaying a typical B-DNA conformation with a major
positive peak at ∼275 nm due to base stacking and a negative
peak at ∼245 nm for the helical block of the double helix,
furnishing the asymmetric domain of the bases.67 The AZO
nanocomposite is not CD-responsive due to the absence of a
chiral center. The gradual addition of the nanocomposite to CT
DNA induced considerable alteration in the CD spectrum of
CT DNA, as shown in Figure 11, but the effect caused by the
nanocomposite on EC and ML DNAs is not significant. The
band intensity of CT DNA at ∼275 nm was decreased without
clear shift in their position as well as in accordance with B-DNA
conformation it was remained unchanged. This variation in the
band intensity may occur due to the perturbation of the local
relative orientation of the bases to accommodate the nano-

Figure 10. Thermal melting profile of (a) CT DNA, (b) EC DNA,
and (c) ML DNA and their complexes with AZO, respectively.
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composite, which is required to influence the binding
interaction between CT DNA and the AZO nanocomposite.
Such an observation is also consistent with the greater selective
binding affinity of the nanocomposite for the CT DNA.
Furthermore, when the CD responses obtained for CT DNA

bound to the AZO nanocomposite (Figure S9) were monitored
as a function of temperature (20−70 °C), surprisingly, a slight
enhancement in the intensity of the band at ∼275 nm and a
diminution in the intensity of the band at ∼245 nm were
observed. This result reveals that ds CT DNA is strongly
stabilized upon its binding to the nanocomposite at higher
temperatures.

To propose the probable DNA-binding mechanism of the
composite, we have considered a classical minor groove binder
named Hoechst 33258, 2-(4-hydroxyphenyl)-5-[5-(4-methyl-
piperazine-1-yl) benzimidazo-2-yl] bezimidazole. The change in
the emission profile of Hoechst in the presence of CT DNA
with successive addition of the AZO nanocomposite has been
presented in Figure S10. It eventually shows a potential
increment in the fluorescence intensity of the Hoechst−DNA
complex. The Hoechst displacement study supports the non-
groove-binding nature of the nanocomposite.
We also tried to quantify the efficacy of the interactions

between the AZO nanocomposite and the selected DNA
duplexes through thermodynamic parameters. In general, non-
covalent forces that direct foreign particles and DNA binding
admit electrostatic and hydrophobic interactions, hydrogen
bonds, and van der Waals forces. Short-range hydrophobic
interactions generally result in positive values of the enthalpy
and entropy change in contrast to long-range ionic-type
interactions like van der Waals forces or hydrogen bond
formation, where negative values of both the enthalpy and
entropy change predominate.68 From the calorimetric titration,
we have evaluated the Gibbs energy and enthalpy of the
binding association, which ultimately enables us to quantify the
change in entropy for the binding process. Isothermal titration
calorimetry (ITC) profiles for the binding of nanocomposite
under investigation with the DNA’s at 20 °C are presented in
Figure 12. The continuous lines are consistent with the best
integrated isotherm for the one-site model. All of the ITC
thermograms validate the exothermic essence of the reactions,
and the outcome of the ITC experiments is summarized in
Table 1. It can be seen that ITC experiments direct the trend in
the binding constant value as follows: CT > EC > ML, being
highest for CT DNA, which also indicates a greater binding
affinity of the nanocomposite to CT DNA over other DNAs.
Interestingly, the summarized binding data of DNAs with the
composite was mainly supported by the negative enthalpy and
positive entropy contributions. The highest binding threshold

Figure 11. Subsequent changes in the CD spectra of CT, EC, and ML
DNAs on stepwise addition of AZO (initial [DNA] = 60 μM).

Figure 12. ITC profiles for the titration of CT DNA, EC DNA, and ML DNA with the AZO nanocomposite.
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found for CT DNA was mostly entropy-driven (TΔS° = 4.22
kcal/mol) with an enthalpy contribution of 2.76 kcal/mol.
Most of the research in this area is mainly focused on the

dye-labeled DNA interaction study. We have presented a
comparative study with the established fluorescent sensors
already in use in this field, as presented in Table 2. Most of the
existing fluorescent sensors for DNA detection mainly deal with
fluorescent DNA probes with well-known rapid hybridization
kinetics. However, the goal of the present investigation is
mainly aimed at a label-free DNA interaction study of
fluorescent nanomaterials that could exhibit noticeable
specificity. Compared with the fluorogenic conjugates men-
tioned in Table 2, the projected fluorescent ZnO−Au
nanocomposite is capable of discriminating ss and ds CT
DNAs without the use of any dye or quantum dots (QDs) in
the synthesis procedure. Interestingly, an appreciable change in
the intrinsic fluorescence of the nanocomposite with specificity
indicates their selective interaction, which can be ascribed to
the mutual effect derived from the unique combination of G-Au
NCs and ZnO nanoparticles.
More importantly, fluorescence signals arising from the

nano-bio-interaction can be measured directly without any
modification of the target, which is the foremost advantage
compared to that of other previous results. Besides these,
through first-principles calculations, different groups reported
the possible way of interaction of nanomaterials and
DNA.60,80−83 However, there are limited experimental research
works pertaining to the interaction of nanomaterials and DNA
mainly driven by direct binding study. To sum up, as shown in
Table 3, it is found that when nanomaterials interact with CT
DNA the magnitude of binding constant (Ka) was derived to be
in the order of 104−105 M−1. None of the above binding
studies have focused on the fluorescent nanocomposite derived
from two individual fluorescent nanomaterials and compared

the synergistic effect of individual fluorophore. Compared to
that in the aforementioned studies, the intrinsic fluorescence of
the ZnO−Au nanocomposite shows an appreciable blue shift in
the emission maximum at ∼520 nm in the presence of CT
DNA over the other studied DNAs with comparable binding
constant values, which is more interesting compared to other
results, as depicted in Table 3.

■ CONCLUSIONS
Here, the ZnO−Au nanocomposite has been synthesized by
anchoring a glutathione-protected gold nanocluster on the
surface of ESM-based ZnO nanoparticles. According to the
detailed material characterization results, the as-synthesized
nanocomposites were found to exhibit interesting optical
properties with substantial integrity between their constituents,
which turned out to be advantageous for their use as a
fluorescent probe. Fluorescence titrations of the nanocomposite
with the different DNAs reveal the favorable binding interaction
of the nanocomposite toward CT DNA with a maximum blue
shift of the surface-related spectra of the nanocomposite. In
addition, the results obtained from the titrations with synthetic
polynucleotides were consistent with the fluorometric results
obtained with natural DNAs. Although we have not assigned
the specific molecular recognition of these interactions, it is
quite likely that anchoring of the gold nanocluster onto the
ZnO surface is accountable for the complex formation with AT-
specific DNA, which was evident from the fluorometric titration
and XPS study. Compared with the native ZnO, in virtue of this
appreciable fluorometric change, the synthesized nanocompo-
site could act as a fluorescent probe for DNA interaction with
improved specificity. More significantly, we have also found
that, contrary to the expectation, the binding of ss CT DNA
with the nanocomposite was not as effective for a noticeable

Table 1. Thermodynamic Parameters Derived from ITC
Experiments for the AZO Nanocomposite at 20 °C

DNA N Ka

ΔH°
(kcal/mol)

TΔS°
(kcal/mol)

ΔG°
(kcal/mol)

CT
DNA

0.434 1.47 × 105 −2.76 4.22 −6.98

EC
DNA

0.213 8.50 × 104 −2.56 4.07 −6.63

ML
DNA

0.484 5.97 × 104 −3.02 3.28 −6.30

Table 2. Comparison of the Analytical Performance of the Nanomaterial-Based Fluorescent Sensor for DNA Detection

nanomaterial feature detection limit reference

single-walled carbon nanotubes (SWNT) SWNT function as both a “nanoscaffold” and a “nanoquencher” of the fluorophore 4.0 nM 69
Pd nanowire substantial fluorescence quenching of dye followed by specific hybridization 0.3 nM 70
graphene oxide molecular beacon used as a probe to identify target analyte 12 nM 71
MoS2 nanosheet single-layer MoS2 nanosheet used as quencher 500 pM 72
carbon nitride nanosheet photoinduced electron transfer (PET)-based fluorescence quenching 2.1 nM 73
CdTe QDs and Ru-complex Ru-complex acts as both the quencher to QDs and a receptor to ds-DNA 5 ng/mL 74
zinc(II)−protoporphyrin IX/G-quadruplex using functional hairpin structures and Exo-III assisted analyte recycling 5 nM 75
dumbbell-shaped DNA hosted Cu NPs probe DNA assimilated by Exo-I and Exo-III 76
CdTe QDs and Al(III) gatifloxacin (Al-GFLX) PET process between QDs and Al-GFLX efficiently activated by dsDNA 6.83 ng/mL 77
fluorescent Ag nanocluster surface plasmon-enhanced energy transfer process involving fluorescent

DNA/AgNC string and Au NPs
2.5 nM 78

DNA−silver nanoclusters analysis of different DNAs by simply varying the probe DNA sequence 5.0 × 106 mol/L 79
ZnO−Au nanocomposite change in fluorescence of the nanocomposite without additional target 36 nM this

work

Table 3. Comparison of Binding Constant Values of
Nanomaterials with CT DNA

nanoparticles Ka (M
−1) ref

Ag NPs 6.32 × 104 10
Ag NPs 4.1 × 103 84
Au NPs 7.2 × 105 85
ZnO rod 6.49 × 105 9
ZnO NPs 5.8 × 105 86
ZnO NPs 7.88 × 104 43
AZO nanocomposite 1.47 × 105 this work
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fluorometric change as it was for ds CT DNA. Hence, this AZO
nanocomposite possesses the proficiency to distinguish ss and
ds DNAs, which is a highly interesting observation for DNA-
based diagnostics. Besides fluorometric results, the thermal
melting study, CD spectroscopic results, and the thermody-
namic evaluation clearly reveal the greater binding harmony of
the nanocomposite to CT DNA compared to that to the other
DNAs. Thus, it is anticipated that this type of fluorescent
ZnO−Au nanocomposite will be poised to elucidate a new
perspective in DNA-binding study with specificity and will open
up an interesting aspect in this field.

■ EXPERIMENTAL SECTION
Materials. Zinc nitrate hexahydrate (Zn(NO3)2·6H2O) was

bought from Merck Ltd. All DNAs; the synthetic polynucleo-
tides (poly(dA)·poly(dT) and poly(dG)·poly(dC)); the
corresponding monophosphate residues of the DNA; and the
purine and pyrimidine base components, i.e., adenine hydro-
chloride hydrate, thymine, tetrachloroauric acid trihydrate
(HAuCl4·3H2O), and Hoechst 33258, were obtained from
Sigma-Aldrich. The reduced form of L-glutathione (GSH) was
purchased from Alfa Aesar. All of the compounds were treated
without any further purification. Ultrapure water (18.2 MΩ
cm) was used throughout the experiment. All of the DNA
solutions were prepared as previously reported.9 The
concentrations of calf thymus (CT), E. coli (EC), and M.
lysodeikticus (ML) DNAs were determined spectroscopically
from the absorbance value using their corresponding molar
absorption coefficients.9

Synthesis of ZnO Nanoparticles. The stock solution (0.1
M, 100 mL) of zinc nitrate (Zn(NO3)2·6H2O, 99.9%) was
prepared in distilled water. The egg shell membrane (ESM) was
scaled off manually from its CaCO3 shell of commercial eggs
and was washed properly using distilled water and dried under
an IR lamp.87 The fresh ∼1 g ESM was immersed in the zinc
salt solution and stirred on a magnetic stirrer for 10 min,
followed by keeping it at room temperature for 112 h without
any perturbation to favor the adsorption of zinc ions onto the
membrane. The white sheetlike Zn−ESM hybrid membranes
were removed from the salt solution, rinsed thoroughly using
distilled water, and dried under an IR lamp. Finally, the as-
synthesized white product was calcined at 750 °C for 4 h to
prepare ZnO nanoparticles (ZO NPs).
Synthesis of Luminescent G-Au NCs. For batch

preparation, the freshly prepared aqueous solutions of GSH
(10 mL, 7.5 mM) and HAuCl4 (10 mL, 5 mM) were mixed
under gentle stirring, followed by increasing the reaction
temperature to 90 °C and leaving for 3 h for completing the
reaction. A constant volume was maintained during the
reaction. After cooling down to room temperature, the as-
obtained solution was stored at 4 °C for 24 h. The final product
was precipitated out by adding ethanol, dispersed in water, and
kept at 4 °C for further use.
Integration of ZnO Nanoparticles with G-Au NCs. The

calcined ZnO powder (20 mg) was well dispersed in a water−
ethanol mixture by sonicating for 15 min, followed by dropwise
addition of 5 mL of G-Au NC solution to it and refluxing the
mixture at 120 ± 5 °C for 24 h to synthesize the ZnO−Au
nanocomposite. The final solution was centrifuged at 12 000
rpm, washed with water several times, and dried under vacuum
at 60 °C. The product was denoted AZO.
Characterization. X-ray Diffraction Analysis. Structural

characterization of G-Au NCs, ZO nanoparticles, and AZO

nanocomposite was carried out using room temperature
powder X-ray diffraction (XRD) collected on X’pert pro
MPD XRD of the PANalytical system. The target used was Cu
Kα radiation (l = 1.5406 Å) with a scan rate of 2°/min.

Transmission Electron Microscopy Study. Morphological
evolution of native ZnO nanoparticles (ZO), luminescent gold
nanoclusters (G-Au NCs), and AZO nanocomposite was
analyzed by TEM microscopy on a Tecnai G2 30ST (FEI)
high-resolution transmission electron microscope operated at
300 kV.

X-ray Photoelectron Spectroscopy. The X-ray photo-
electron spectroscopy study was performed with a PHI 5000
Versa probe II scanning XPS microprobe (ULVAC-PHI).
Monochromatic Al Kα (hν = 1486.6 eV) radiation accom-
panied by a total resolution of about 0.7 eV and a beam size of
100 mm was maintained for the measurements.

Fourier Transform Infrared Spectroscopy Study. Fourier
transform infrared (FT-IR) spectra have been acquired at room
temperature on a Perkin Elmer FT-IR spectrometer using the
full range from 4000 to 400 cm−1 collecting 200 scans with a
resolution of 4 cm−1. The pellets were made with highly pure
potassium bromide (Sigma-Aldrich (Germany)). Before
collecting the spectra, we have varied the ratio of sample to
KBr to nullify the background signal.

Interaction Study with DNAs. Absorption Titration. A
Shimadzu UV-3600 UV−vis−NIR spectrophotometer was used
for recording the absorption spectra. For each titration, aliquots
of a micromolar stock solution of DNA were added successively
to a fixed concentration AZO composite solution and the
absorption study was continued by maintaining 1 min as the
equilibration time per aliquot up to the saturation point.

Fluorescence Titration. A steady-state spectrofluorimeter
(QM-40, Photon Technology International, PTI) connected by
a xenon lamp (150 W) as an excitation source was employed
for fluorescence titrations. Bare ZO NPs and the composite in
the presence of different DNAs were excited at 345 nm, and
Hoechst 33258 was excited at 341 nm.

Thermal Melting Experiment. For the thermal melting
analysis (relative absorbance versus temperature curves) of each
DNA with and without the AZO nanocomposite, a Shimadzu
Pharmaspec 1700 unit (Shimadzu Corporation, Kyoto, Japan)
attached with the Peltier controlled TMSPC-8 model accessory
was used. The stock solution of DNA was mixed with the AZO
composite, the measurements were performed with the help of
Teflon-stoppered eight segmented micro optical quartz
cuvettes (10 mm optical path length and 110 μL capacity),
and the temperature of the cell was increased from 20 to 110
°C, maintaining the heating rate of 0.5 °C/min, followed by the
continuous monitoring of the absorbance change at 260 nm
wavelength. From the midpoint of the melting transition, the
melting temperature (Tm) was determined.

Isothermal Calorimetric Titration. The energetics of the
current study with each DNA was performed by isothermal
titration calorimetry (ITC) using a MicroCal VP-ITC unit
(MicroCal, Inc., Northampton, MA). The protocols for the
measurements were maintained as described in our earlier
report.9

Circular Dichoric Measurement. For spectropolarimetric
study, a J-815 Jasco unit (Jasco International Co. Ltd, Hachioji,
Japan) fixed with a temperature controller (model PFD 425L/
15) was used to collect spectra in the UV region from 400 to
200 nm at 20 ± 0.5 °C under a nitrogen atmosphere. For the
CD experiment, we have also used a 10 mm path length quartz
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cuvette, the concentration of DNA used was 60 μM, and the
composite concentration was increased gradually up to
saturation. For each sample, the average scan was fitted after
subtracting the buffer baseline.
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