Skip to main content
. 2018 Jul 21;18(7):2377. doi: 10.3390/s18072377
Algorithm 1: HVB-DCS Algorithm
Input: A set of measurement vectors {y1,y2,,yK} and corresponding measurement matrices
{A1,A2,,AK},k=1,,K.
Output: The reconstructed signal ρ^k=μc+μk, k=1,,K.
Initialize the hyperparameters. Set the initial values of the variables (a, b, {ck,k=1,,K},
{dk,k=1,,K}, e, f) as 106.
Compute the variational distribution for the common component.
Compute Σc=k=1KβAkTAk+Λαc1, and μc=βΣck=1KAkT(ykAkμk).
Compute the variational distribution for the prior of the common component.
Update q(αcn), compute
a˜=a+12,b˜n=b+12(zcn)2.
Compute the variational distributions for the innovation components.
Compute Σk=βAkTAk+Λαk1, and μk=βΣkAkTykAkμc.
Compute the variational distributions for the prior of the innovation components.
Update qαkn, compute
c˜k=ck+12,d˜kn=dk+12zkn2.
Compute the variational distribution for the prior of noise vector.
Update q(β), compute
e˜=e+KM2,
f˜=f+12k=1KykAk(zc+zk)22q(zc)q(zk).
Iterate steps 2 , 3 , 4 , 5 and 6 until convergence occurs to hyperparameters.
Output ρ^k=μc+μk for k=1,,K.