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Abstract: Routine stress monitoring in daily life can predict potentially serious health impacts.
Effective stress monitoring in medical and healthcare fields is dependent upon accurate determination
of stress-related features. In this study, we determined the optimal stress-related features for effective
monitoring of cumulative stress. We first investigated the effects of short- and long-term stress on
various heart rate variability (HRV) features using a rodent model. Subsequently, we determined
an optimal HRV feature set using support vector machine-recursive feature elimination (SVM-RFE).
Experimental results indicate that the HRV time domain features generally decrease under long-term
stress, and the HRV frequency domain features have substantially significant differences under
short-term stress. Further, an SVM classifier with a radial basis function kernel proved most accurate
(93.11%) when using an optimal HRV feature set comprising the mean of R-R intervals (mRR),
the standard deviation of R-R intervals (SDRR), and the coefficient of variance of R-R intervals
(CVRR) as time domain features, and the normalized low frequency (nLF) and the normalized
high frequency (nHF) as frequency domain features. Our findings indicate that the optimal HRV
features identified in this study can effectively and efficiently detect stress. This knowledge facilitates
development of in-facility and mobile healthcare system designs to support stress monitoring in
daily life.

Keywords: heart rate variability; cumulative stress; electrocardiogram; stress monitoring; support
vector machine-recursive feature elimination

1. Introduction

Increased awareness of the negative effects of stress on personal health has concomitantly
increased interest in routine stress monitoring. Stress can be caused by various factors stemming from
physical (e.g., allergies, fatigue, or poor sleep), psychological (e.g., conflicts, trauma, or work demands),
or environmental (e.g., noise, crowds, or disasters) influences [1]. When the body is temporarily
exposed to stress, the body responds by activating the sympathetic nervous system with simultaneous
withdrawal of the parasympathetic nervous system [2]. However, chronically accumulated stress can
lead to dysfunction of the stress response system. Autonomic dysfunction has been closely associated
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with serious health problems such as hypertension, cardiovascular disease, and depression [3,4].
In general, stress symptoms appear only after serious health problems have occurred. Therefore,
routine stress monitoring is essential for managing stress in a timely manner and providing proper
feedback to avoid serious health issues.

The electrocardiogram (ECG) biosignal has been widely used for stress monitoring. ECG analysis
provides a feasible option for routine monitoring because it can be supported in real-time mobile or
wearable device applications. Many previous studies have used heart rate variability (HRV) from the
ECG biosignal for monitoring stress, and a variety of HRV features have been used to evaluate stress
as it relates to autonomic nervous system (ANS) activity [5]. However, several experimental studies
have demonstrated that not all HRV features provide accurate stress-related information. For example,
decreased high frequency power (HF), increased low frequency power (LF), and LF/HF have been
identified as potential indicators of stress [6]. However, Kim et al. [7] suggested that the HRV frequency
power could be influenced by personal traits such as the individual’s preference in coping with stress.
Similarly, Lee et al. [8] identified heart rate (HR) as the strongest indicator of driving stress and found
that other time domain features tended to change based on personal traits. Furthermore, since the
involvement of irrelevant features in the monitoring system might increase the computational time
and lead to poor performance [9], determination of the optimal features is essential for the monitoring
system. Therefore, identifying the optimal HRV features related to cumulative stress is important for
routine stress monitoring.

The goal of this study was to determine the optimal set of HRV features that would accurately
detect cumulative stress and subsequently improve the efficiency of routine stress monitoring.
We first investigated the effects of cumulative stress on various HRV features via an experimental
study. We conducted experiments using a rodent model, which is widely used as a stress and
depression model, since the use of a human model has rigid restrictions and ethical rules for chronic
physiological stress exposure. Next, we determined an optimal HRV feature set using support vector
machine-recursive feature elimination (SVM-RFE). Specifically, we calculated a ranking criterion for
HRV features in both time and frequency domains using SVM-RFE and determined the optimal feature
set based on the results of six classifiers.

The remainder of this paper is organized as follows. Section 2 discusses related work. Section 3
describes experimental approaches employed in determining the optimal HRV features for cumulative
stress monitoring. Section 4 presents the results obtained regarding the effects of short- and long-term
stress on various HRV features based on experimental methods and the optimal HRV feature set based
on SVM-RFE methods. Section 5 discusses the implications of these results in the context of the broader
state of knowledge. Section 6 presents concluding remarks.

2. Related Work

Various researchers have attempted to determine the optimal or important HRV features for
stress monitoring. Endukuru et al. [10] used analysis of variance (ANOVA) and the unpaired t-test
to demonstrate that some HRV features—the mean of heart rates (mHR), the standard deviation of
R-R intervals (SDRR), the square root of the mean squared difference between adjacent R-R intervals
(RMSSD), the number of N-N intervals that differ by more than 50 ms (NN50), the proportion of
N-N intervals that differ by more than 50 ms (pNN50), LF, HF, and LF/HF—were sensitive in response to
a mental stress test. Vargas-Luna et al. [11] used statistical analysis to confirm that two spectral features
of HRV—LF and HF—significantly differed between rest and mental tasks. Similarly, Borchini et al. [12]
used the analysis of covariance (ANCOVA) linear regression models to find a significant association of
LF and HF with prolonged work stress.

In several studies, a feature selection approach such as the filter [13,14] and wrapper
method [13,15,16] was used for determining optimal HRV features. Aigrain et al. [15] evaluated the
predictive power of various multimodal features by investigating the composition of the best feature
subset and showed that the HR values (maximum and variation) and the amplitude of HR (maximum,
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mean, and variation) provided the best prediction among features related to ECGs. Ollander et al. [13]
used both the filter and wrapper method to search multimodal features related to stress for detecting
driving stress.

In the determination of optimal HRV features, most previous studies considered acute stress in
response to a specific stressor (mental or driving load) rather than cumulative stress. Although a few
studies of HRV features have been performed on accumulated stress, these studies analyzed the effects
of HRV features on stress rather than identifying optimal features for a monitoring system. In our
study, we analyzed the effects of cumulative stress and determined the optimal features for cumulative
stress monitoring using SVM-RFE as the wrapper method for feature selection.

3. Materials and Methods

3.1. Experimental Study

3.1.1. Animals

Forty-five male rats (Sprague-Dawley rat, 250 g, Charles River Laboratories International, Incheon,
Korea) were used in this study. We randomly divided the rats into three groups (n = 15 per group):
Control, short-term stress (SS), and long-term stress (LS) groups. The rats had free access to food and
water and were kept at controlled temperature (22± 2 ◦C) with a 12 h light-dark cycle. All experiments
were performed in accordance with the recommendations for the care and use of laboratory animals
by the Ethical Committee of the Korea Institute of Science and Technology (2016-013).

3.1.2. Cumulative Stress Protocol

We used the chronic mild stress (CMS) procedure to create the environments of cumulative
stress in animal model [17]. Based on reversal results after three weeks of the CMS treatments in
previous study [18], we exposed the SS and LS groups to unpredictable mild stress for either short-term
(two weeks) or long-term (four weeks) periods, respectively (Figure 1A). The stress procedure is based
on the protocol used in previous studies [19,20]. The rats in each of the stress groups (SS or LS groups)
were exposed, once daily, to one of the following randomly selected stressors: Water deprivation (24 or
18 h), food deprivation (24 or 18 h), 45◦ tilted cage (18 h), wet cage (18 h), no bedding (18 h), restraint
(2 or 3 h), and forced swimming (10 or 15 min). These stressors were randomly exposed to all rats of
stress groups for each stress procedure (Figure 1B). The rats in the control group took their rest in each
house for experimental periods.
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Figure 1. Experimental design used in this study. Based on the timeline of the experimental protocols, 
after 10 days of recovery from surgery, rats in the short-term stress (SS) or long-term stress (LS) groups 
were exposed to two or four weeks of stress, respectively, while rats in the control group rested. (A) 
At the baseline and the end of the two- and four-week stress periods, electrocardiograms (ECGs) were 
recorded for each group. (B) Based on the schedule of stress procedures, rats in the two stress groups 
(SS and LS) were exposed to unpredictable mild stress every day using seven randomly selected 
stressors. 

Figure 1. Experimental design used in this study. Based on the timeline of the experimental protocols,
after 10 days of recovery from surgery, rats in the short-term stress (SS) or long-term stress (LS)
groups were exposed to two or four weeks of stress, respectively, while rats in the control group
rested. (A) At the baseline and the end of the two- and four-week stress periods, electrocardiograms
(ECGs) were recorded for each group. (B) Based on the schedule of stress procedures, rats in the two
stress groups (SS and LS) were exposed to unpredictable mild stress every day using seven randomly
selected stressors.



Sensors 2018, 18, 2387 4 of 15

3.2. Radio-Telemetry System

In order to obtain electrocardiograms (ECGs) in unrestrained rats for long-term periods, we used
ECG telemetry system (TSE system, Chesterfield, MO, USA), consisting of a receiver and implantable
ECG transmitter sensors (Figure 2). Since the receiver could acquire the data wirelessly from a number
of animals in longer distance (up to 5 m), we could perform the data acquisition simultaneously from
all rats in each cage without restraint. The implantable ECG sensor was suitable for implantation into
rat’s abdominal cavities due to its small volume (6 cm3) and light weight (11 g). Furthermore, since
the battery life was up to 12 months in case of animals with weight more than 170 g, this system was
ideal for our experimental protocol over more than 5 weeks. The sampling rate of ECG recording
could be flexibly selected up to 1 kHz. In our study, ECGs were recorded at sampling rate of 1 kHz for
5 min, referring the previous study that time and frequency domain HRV analysis required at least a
sampling rate of l kHz for rats [21]. The ECG data was transferred via USB serial communication to
the PC configured using AcqKnowledge 4.4 (BIOPAC Systems, Inc., Goleta, CA, USA).
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Figure 2. Schematics of radio-telemetry system for the ECG recording. The ECGs, which were
measured from the transmitter ECG sensor, were wirelessly transferred to the receiver through radio
communication. The data stored in the receiver can be monitored and processed on the PC via the USB
serial communication.

3.3. Transmitter Implant Surgery

Transmitters with negative and positive electrodes were surgically implanted in all of the
rats. Figure 3 depicts this surgical implant process. Briefly, while each rat was under anesthesia,
the telemetry transmitter was implanted in the rat’s abdominal cavity. The electrodes were placed in
the modified lead II configuration. The positive and negative electrodes were fixed to the left caudal
rib and right pectoral muscle, respectively. To avoid irritation of the tissue, the two leads were ensured
to lie flat against the muscle. The reference lead was attached in the lower right quadrant on the inside
of the abdominal muscle. Following surgery, the rats were allowed 10 days to recover before stress
experiments were initiated.
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Figure 3. Rat model with surgically implanted transmitter to record electrocardiograms. (A) Implantable
transmitter placement in a lead II configuration and (B) transmitter implant surgical process in which
the transmitter body was positioned in the rat’s abdominal cavity with the positive and negative
electrodes fixed to the left caudal rib and right pectoral muscle, respectively.

3.4. HRV Analysis

ECGs were recorded at the baseline (pre-test) and at the end of the experimental period (post-test).
The recorded ECGs were divided into two trials, each comprising a 150-s window without overlap.
An R-R tachogram was generated by detecting the R peak in each ECG trial. The HRV features were
subsequently calculated in the time and frequency domains from the R-R tachogram. The HRV time
domain features included the mean of R-R intervals (mRR), mHR, SDRR, the coefficient of variance of
R-R interval (CVRR), RMSSD, and the proportion of consecutive N-N intervals that differ by more than
5 ms (pNN5). The HRV frequency domain features were calculated from the R-R tachograms using
fast Fourier transformation (FFT; Welch’s periodogram with a Hamming window of 512 points and
50% overlap). The frequency bands used in this study were the low frequency (LF; 0.1 to 1.0 Hz) and
high frequency (HF; 1.0 to 3.5 Hz) bands. The HRV frequency domain features included the absolute
values of each band power and the ratio between the power bands. To obtain normal distributions, HF,
LF, and the ratio of LF and HF were converted into natural logarithms (ln LF, ln HF, and ln (LF/HF)).
In addition, the LF and HF were presented in normalized units (nLF and nHF).

3.5. Support Vector Machine-Recursive Feature Elimination

We used the SVM-RFE method for determining the optimal features. The SVM-RFE method
performs feature selection using sequential backward elimination based on SVM [22]. In the
construction of the SVM model, the weights of the features were calculated. This method has been
proven to be more scalable and more efficient than other feature selection methods [9]. Figure 4
shows a schematic outline of the SVM-RFE process, in which a ranking criterion for HRV features
was generated and used to determine the optimal feature set based on the results of six classifiers.
We used the ECG signal of the dataset acquired at end of the experimental procedure in each group for
determining the optimal features. Before initiating this process, we normalized all data involving the
HRV features over a 0 to 1 range using the min-max method.

3.5.1. Ranking Criterion Generation

We first developed individual multiclass support vector machines (SVMs) to identify HRV features
for the control, SS, and LS groups. An SVM is a learning model that performs classification by
identifying the class-separating hyperplane that maximizes the distance between training data points
in each class (i.e., support vectors). Originally developed for binary classification tasks, the two-class
SVM formulation can be extended to solve k > 2 classification problems by constructing k binary
classifiers [23]. In this study, a one-versus-all (OVA) multiclass extension was employed. We considered
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three binary classifications among the control, SS, and LS groups: Control versus all other groups
(C-SVM), SS group versus all other groups (SS-SVM), and LS group versus all other groups (LS-SVM).

Given an input dataset xi (i = 1, . . . , n; xi ∈ RD), the decision function of the rth SVM classifier
(r = 1, 2, 3) can be formulated as follows:

fr(x) = wT
r ·xi + br (1)

where wr = (wr1, wr2, . . . , wrD)
T is the rth weight vector, and b is a bias. The intent of the rth SVM

classifier is to minimize the following optimization problem:

minimize
1
2
||wr||2 + C ∑ ξr

i (2)

subject to yr
i

(
wT

r xi + br

)
≥ 1− ξr

i (3)

ξr
i ≥ 0, i = 1, . . . , n

where C is the penalty parameter. After each of the k binary OVA classifiers [ f1, f2, f3] was determined,
the class of sample x (corresponding to the maximum value of the k binary classifier) was predicted
as follows:

yi = argmaxr=1, 2,3 fi(x) (4)
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Figure 4. Schematic outline of the support vector machine-recursive feature elimination (SVM-RFE)
process, which includes generating a ranking criterion for heart rate variability (HRV) features (top)
and using it to determine the optimal feature set based on the results of six classifiers (bottom).

We supplemented this SVM method with a recursive feature elimination (RFE) method to
determine the optimal HRV feature set. A feature-ranking criterion is generated by feature scores,
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which are determined as the squared coefficient of feature j (w2
j , j = 1, 2, . . . D) for a binary classification.

Similar to the SVM method, the combined SVM-RFE method was originally limited to binary
classification. In this study, feature-ranking scores were calculated on the three binary SVMs via
OVA method. The final ranking score of the jth feature was determined as the maximum value of
ranking scores among the three SVMs as follows:

Jj = argmaxr=1, 2, 3

((
wr

j

)2
)

(5)

where Jj is the cost for not selecting feature j, and wr
j is the weight-value that corresponds to the jth

feature of an rth binary classifier. The feature with the smallest final ranking score was eliminated, and
the classifier was retrained using the remaining feature set. This process was performed iteratively
until a single optimal feature remained. During each iteration, the eliminated feature was reassigned
to a lower ranking and the overall HRV feature-ranking criterion was recalculated.

3.5.2. Optimal Feature Subset Determination

Determination of feature set were performed using different feature sets that were generated by
iteratively including the highest ranked features based on the ranking criterion. The best feature subset
was determined as that with the highest accuracy. The performance assessments were performed by
using five-fold cross-validation of the data to ensure the integrity of this study’s results. The accuracy
was determined as follows:

ACC = (TN + TP)/(TP + TN + FN + FP) (6)

where TP, FP, TN, and FN represent the number of true positives, false positives, true negatives, and
false negatives, respectively. In this study, various classification methods were considered to determine
the optimal feature set including the SVM method, linear discriminant analysis (LDA), quadratic
analysis (QDA), and the k-nearest neighbor (K-NN) algorithm. The SVM method included the use of
linear, polynomial, and radial basis function (RBF) kernel functions.

3.6. Statistical Analysis

For statistical analysis, repeated measures analyses of variance (ANOVA) were conducted,
followed by Tukey’s post-hoc tests, with group (control, SS, or LS) as the independent factor and time
as the repeated measure. Subsequently, the effect of short- and long-term stress or control treatment on
each parameter at different time points was further analyzed with a one-way ANOVA. The following
p values were considered statistically significant: * p < 0.01 and ** p < 0.001. All data are expressed as
mean ± standard error of the mean (SEM).

4. Results

4.1. Analysis of Effects of Short- and Long-Term Stress on HRV Features

Before determining the optimal feature set, we investigated the effects of cumulated durations of
stress exposure (short- and long-term stress) on various HRV features in both the time and frequency
domains. Figure 5 compares these measured HRV feature values for the control, SS, and LS groups in
pre- and post-tests.

Considering the HRV time domain features, when compared with pre-test, the LS groups showed
increased mRR by 24.15 ms and decreased mHR, SDRR, CVRR, RMSSD, and pNN5 by 45.82 bpm,
3.94 ms, 2.66, 0.7 ms, and 2.14%, respectively. Furthermore, the LS group had a significantly higher
mRR value than that of the control group in the post-test (194.52 ± 2.72 vs. 166.82 ± 3.04 ms; p < 0.001).
Conversely, the LS group had significantly lower mHR (310.29 ± 4.54 vs. 362.99 ± 6.33 bpm, p < 0.001),
SDRR (4.82 ± 0.20 vs. 9.68 ± 0.40 ms, p < 0.001), CVRR (2.51 ± 0.11 vs. 5.81 ± 0.22, p < 0.001), RMSSD
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(1.28 ± 0.06 vs. 2.30 ± 0.13 ms, p < 0.001), and pNN5 (0.48 ± 0.13 vs. 3.95 ± 0.57%, p < 0.001) values
than that of control group in the post-test (Figure 5A–F).

Considering HRV frequency domain features, when compared with pre-test, the SS group showed
decreased ln HF and nHF by 0.44 ln ms2 and 19.01%, respectively. In contrast, when compared with the
pre-test values, the SS group had shown increased ln (LF/HF) and nLF by 0.94 and 19.01%, respectively.
Furthermore, the SS group had a significantly higher ln LF (2.15± 0.15 vs. 1.44± 0.13 ln ms2, p < 0.001),
ln (LF/HF) (1.32 ± 0.89 vs. 0.22 ± 0.78, p < 0.001), and nLF (77.81 ± 1.35 vs. 55.41 ± 1.90%, p < 0.001)
value with lower nHF (22.19 ± 1.35 vs. 44.59 ± 1.90%, p < 0.001) values than that of the control group.
When compared with the pre-test values, the LS group showed decreased ln LF and ln HF by 0.84 and
1.02 ln ms2, respectively (Figure 5G–K).

The results of the HRV analysis showed that the LS groups generally decreased in the time domain,
whereas the SS groups had substantially significant differences in the frequency domain. Based on
these results, both the HRV time and frequency domain features should be included to determine the
optimal features for monitoring cumulative (short- and long-term) stress.
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Figure 5. Effects of short- and long-term stress on (A–F) HRV time domain features and (G–K) frequency
domain features. The LS group had significantly lower values across all HRV time domain features
when compared with the control group and their pre-test. The SS group had significantly higher
log-transformed low frequency power (ln LF), normalized low frequency (nLF), and log-transformed
ratio of low frequency and high frequency powers (ln (LF/HF)) values and a significantly lower
normalized high frequency (nHF) value when compared with the control group and their pre-test.
(One-way analysis of variance followed by Tukey’s post-hoc test; * p < 0.01 and ** p < 0.001).
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4.2. Determination of Optimal Feature Sets on Various Classifiers

We obtained the feature ranking list and compared the optimal feature set based on various
classifiers. First, the ranking criterion was generated for 11 HRV features for the control, SS, and LS
groups using the SVM-RFE method. Figure 6 shows the colormap of the weight values in each iteration
from the multiple SVM, C-SVM, SS-SVM, and LS-SVM for the 11 HRV features. The C-SVM was a
binary classification that classifies the data into two classes: non-stress (Control) and stress states (SS
and LS groups). The weight values of each iteration were normalized in the range 0–1 using w/‖w‖.
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Figure 6. Colormap of weight value from the multiple SVM, Control versus all other groups (C-SVM),
SS group versus all other groups (SS-SVM), and LS group versus all other groups (LS-SVM) for various
HRV features. (A) The Multiple SVM included features determined by the C-SVM, SS-SVM, and
LS-SVM. (B) Optimal features determined included the mean of R-R intervals (mRR), ln (LF/HF), and
ln HF by the C-SVM; (C) the nLF, nHF, ln LF, and square root of the mean squared difference between
adjacent R-R intervals (RMSSD) by the SS-SVM; and (D) the standard deviation of R-R intervals
(SDRR), coefficient of variance of R-R intervals (CVRR), and mean of heart rates (mHR) by the LS-SVM.
The results of the ranking process indicate the following descending order for the HRV features: CVRR,
nLF, nHF, SDRR, mRR, ln (LF/HF), ln HF, mHR, ln LF, proportion of N-N intervals that differ by more
than 5 ms (pNN5), and RMSSD.

As shown in Figure 6A, the results of the ranking criterion were finally determined by multiple
SVM, indicating the following descending order for the importance of HRV features considered in this
study: CVRR, nLF, nHF, SDRR, mRR, ln (LF/HF), ln HF, mHR, ln LF, pNN5, and RMSSD. The features
with the highest and lowest order were CVRR and RMSSD, respectively. Each weight-value in the
multiple SVM method was determined to be the maximum value among the C-SVM, SS-SVM, and
LS-SVM classifications. Comparing the C-SVM, SS-SVM, and LS-SVM classifications in the first
iteration, C-SVM had the highest mRR (0.39 vs. 0.38 vs. 0.30), ln (LF/HF) (0.41 vs. 0.14 vs. 0.11), ln HF
(0.47 vs. 0.18 vs. 0.04), and pNN5 (0.21 vs. 0.07 vs. 0.13) values, while SS-SVM had the highest nLF
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(0.33 vs. 0.54 vs. 0.04), nHF (0.30 vs. 0.54 vs. 0.04), ln LF (0.06 vs. 0.22 vs. 0.05), and RMSSD (0.05 vs.
0.23 vs. 0.01) values. Finally, LS-SVM had the highest CVRR (0.11 vs. 0.10 vs. 0.61), SDRR (0.44 vs.
0.31 vs. 0.63), and mHR (0.05 vs. 0.10 vs. 0.32) (Figure 6B–D)). In total, the multiple SVM method has
generally selected the mRR, ln (LF/HF), ln HF, and pNN5 values from the C-SVM; the nLF, nHF, ln LF,
and RMSSD values from the SS-SVM; and the CVRR, SDRR, and mHR values from the LS-SVM in
whole iterations.

We determined the optimal feature subset of six classifiers (linear, polynomial, and RBF kernel
SVMs; K-NN; LDA; and QDA) based on classification performances. Figure 7 shows the results of
the classification accuracies according to the number of HRV features on the six classifiers. The linear,
polynomial, and RBF kernel SVM classifiers achieved the highest performances on the top-five features
(CVRR, nLF, nHF, SDRR, and mRR), obtaining 91.56 ± 1.13, 91.56 ± 1.80, and 93.11 ± 1.63% total
accuracies, respectively. The K-NN achieved also the highest performance on the top-five ranked
features, obtaining 91.11 ± 0.67% total accuracy. The LDA achieved the highest performance on the
top-four ranked features, obtaining 90.00 ± 0.74% total accuracy. Finally, QDA achieved the highest
performance on the top-two ranked features, obtaining 92.22 ± 2.72% total accuracy.Sensors 2018, 18, x FOR PEER REVIEW  10 of 15 
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Figure 7. Comparison of optimal feature set on six different classifiers based on results of accuracies.
Classifiers included (A) linear function SVM, (B) polynomial function SVM, (C) radial basis function
(RBF) kernel function SVM, (D) k-nearest neighbor (K-NN), (E) linear discriminant analysis (LDA), and
(F) the quadratic analysis (QDA) algorithm.

4.3. Comparison of Performances on Optimal Feature Sets

We compared the performances of the optimal feature sets with those of all 11 features. Figure 8
shows the results of the accuracies for all 11 HRV features and for an optimal HRV feature set based on
six classifiers. The accuracy for each of the classifiers improved when the optimal HRV feature set was
considered. By considering the optimal HRV feature set rather than all HRV features, accuracy gains of
2.67, 4.89, 1.78, 2.22, 5.56, and 8.89% were observed for the linear, polynomial, and RBF kernel SVMs;
K-NN, LDA, and QDA, respectively. The RBF kernel SVM classifier achieved the highest accuracy
(93.11%) when considering the optimal HRV feature set. Based on these collective results, the RBF
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kernel SVM classifier proved most accurate when using an optimal HRV feature set comprising CVRR,
nLF, nHF, SDRR, and mRR.
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Figure 8. Comparison of six different classifiers based on overall accuracy for all HRV features and an
optimal HRV feature set. The accuracy of each classifier increased when considering the optimal HRV
feature set rather than all HRV features. The RBF kernel SVM classifier achieved the highest accuracy
(93.11%) when considering the optimal HRV feature set.

5. Discussion

In this study, we determined five optimal HRV features (the CVRR, nLF, nHF, SDRR, and mRR)
for routine stress monitoring. Previous studies have similarly proposed optimal HRV features for
stress monitoring [10–16]. However, most of those studies considered a singular exposure to a specific
stressor. In daily life, light stress tends to accumulate over time. We therefore considered the effects of
short- and long-term stress on various HRV features using a rodent model and determined an optimal
HRV feature set for monitoring cumulative stress using SVM-RFE.

5.1. Results Interpretation

We first developed the cumulative stress model in animal, dividing the short-term (2 weeks)
and long-term stress (4 weeks) in reference to the harmful effects of exposure to stress for more than
3 weeks. Based on our analysis of short- and long-term stress effects of different HRV time and
frequency domain features, we found that HRV time domain features generally decreased under
long-term stress, whereas HRV frequency domain features had substantially significant differences
under short-term stress. The HRV time domain features reflect cardiac autonomic activation, whereas
the HRV frequency domain features reflect ANS balance [5]. Thus, the results of this study suggest that
short-term exposure to stress has no effect on ANS activity but causes a substantial ANS imbalance,
shifting toward sympathetic activation. In contrast, long-term exposure to a mild stressor decreases
ANS activity and causes a slight ANS imbalance. In other words, long-term stress led to reduced most
HRV features, including features associated with both sympathetic and vagal tones, which indicated
weakened overall ANS activities. However, in this study, the mHR decreased during long-term
stress with a simultaneous increase in mRR. We can only assume that long-term stress dramatically
decreased sympathetic activation compared with parasympathetic activation. Stubsjøen et al. [24]
similarly found that stress exposure duration affected various HRV features. Specifically, they observed
increased sympathetic activation and decreased vagal activity in sheep during days 9–17 but noted
that these ANS tendencies adapted to chronic stress after day 17. The results of our study therefore
contribute to the state of knowledge regarding the different effects of stress exposure durations on the
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ANS and suggest the need to consider both short- and long-term periods of stress in future research.
Furthermore, the results of our study confirm the feasibility of using both time and frequency domain
HRV features to detect or monitor daily stress by quantifying the activation of ANS.

When using the SVM-RFE method to determine an optimal HRV feature set, we found that the
classification accuracy for each of the six different classifiers improved when an optimal HRV feature
set was considered. For example, the RBF kernel SVM classifier proved to be the most accurate (93.11%)
when using an optimal HRV feature set comprising CVRR, SDRR, and mRR as time domain features
and nLF and nHF as frequency domain features. Among these features, CVRR and SDRR significantly
decreased under long-term stress and were identified as optimal factors in LS-SVM. In general, SDRR
reflects overall autonomic activity, and CVRR, which is the ratio between SDRR and mRR, indicates
the total HRV without respiratory influence. A decrease in these features helps predict heart disease
mortality [25]. Liu et al. [26] similarly identified SDRR and CVRR as optimal features for classifying
chronic heart failure, which is known to be a stress-related disease.

Comparatively, both nLF and nHF were significantly different under short-term stress.
These features represent the relative value of each power component in proportion to the total
power [5]. In this study, the ln LF power was significantly higher for the SS group than for the
control group with no significant difference in the ln HF power. Generally, LF (0.1 to 1.0 Hz range) is
considered to be a marker of sympathetic activity [5] and has been found to increase in response to
stress. Vanitha et al. [27] found significant differences in nLF across the four levels of stress. Because of
this increased sympathetic output under short-term stress, nLF and nHF were identified as optimal
factors in SS-SVM. Most studies used the LF or LF/HF of HRV for monitoring stress [28,29]. However,
our results showed that ln LF and LF/HF were not selected as optimal features for monitoring stress.
Similarly, previous studies had expressed doubt on the utility of LF and LF/HF features because
LF and LF/HF were unsuitable for use as markers of sympathetic activity and autonomic balance,
respectively [30], and may be affected by personal traits [7]. Our study suggested that LF and LF/HF
cannot provide accurate information on cumulative stress.

The fifth ranked optimal feature in this study—mRR—helps in distinguishing between normal
and stress states. Consistent with this study’s results, Boonnithi et al. [31] identified mRR as the best
feature for distinguishing between rest and mental stress and achieved a classification accuracy of
79.9% by including this feature. In this study, although there are strong correlations between the
mRR and mHR features, we observed different effects of mRR and mHR on feature selection because
the relationship between the R-R interval and heart rate was non-linear owing to mathematical bias.
In other words, the same changes in R-R interval resulted in high fluctuations of heart rate in a low
average R-R interval than those in a high R-R interval [32]. For this reason, distributions within classes
(control, SS, and LS groups) vary with respect to features. In this study, mRR had higher scores than
mHR in the SVM-RFE method, especially for C-SVM. This finding showed that proper transformation
is important for improving the feature’s importance in order to discriminate between classes.

5.2. Limitations and Future Works

In our study, we conducted an experiment to determine the optimal HRV features related with
cumulative stress using an animal model. Prolonged exposure to stressful situations is not allowed
in experiments on human beings due to strict ethical rules and personal variation [18]. Therefore,
we used a stress animal model by applying the chronic mild stress procedure, which accurately mimics
an environment with cumulated mild stress in daily life [33]. Over the last two decades, rodent models
have been widely employed as useful tools for understanding the cardio-mechanisms in response to
psychological changes [34]. Furthermore, since rat models have similar behavior to humans, various
studies have used rats for investigating the effects of stress and depression [35]. However, rat models
do have a different autonomic balance than humans because the ratio of unmyelinated to myelinated
fibers of the vagus nerve in rats is higher than in humans [36,37]. The proposed HRV features obtained
using rat models have some limitations in applications to stress monitoring systems for humans.
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However, we found the significance of HRV features according to cumulative stress in the animal
model, and we appropriately designed the method for determining optimal HRV features for human
stress monitoring systems using SVM-RFE.

In further studies, we will apply our method, which can determine the optimal features, to patients
with stress-related disease and compare the results to the present animal model study. Furthermore,
we will extend the experiment based on increased collection time of ECGs in consideration of
individual’s physiological variation and recovery from the exposure to stress.

6. Conclusions

In this study, we investigated the effects of HRV features on cumulative stress, and found different
changes in time and frequency domain features according to short- (two weeks) and long-term stress
(four weeks). Based on this finding, the optimal features (CVRR, nLF, nHF, SDRR, and mRR) were
determined with the highest performance of 93.11% on SVM-RFE. Our results demonstrate that the
HRV is an effective method for monitoring the cumulative stress by assessing the activities and
balance of the ANS, and the optimal features should be determined for an effective monitoring system.
The HRV features determined in this study can help to facilitate development of in-facility and mobile
healthcare system designs to support stress monitoring in daily life.
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