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Abstract

Background: Relationships between bio-entities (genes, proteins, diseases, etc,) constitute a significant part of our
knowledge. Most of this information is documented as unstructured text in different forms, such as books, articles
and on-line pages. Automatic extraction of such information and storing it in structured form could help
researchers more easily access such information and also make it possible to incorporate it in advanced
integrative analysis. In this study, we developed a novel approach to extract bio-entity relationships
information using Nature Language Processing (NLP) and a graph-theoretic algorithm.

Methods: Our method, called GRGT (Grammatical Relationship Graph for Triplets), not only extracts the pairs of terms
that have certain relationships, but also extracts the type of relationship (the word describing the relationships). In
addition, the directionality of the relationship can also be extracted. Our method is based on the assumption that a
triplet exists for a pair of interactions. A triplet is defined as two terms (entities) and an interaction word describing the
relationship of the two terms in a sentence. We first use a sentence parsing tool to obtain the sentence structure
represented as a dependency graph where words are nodes and edges are typed dependencies. The shortest paths
among the pairs of words in the triplet are then extracted, which form the basis for our information extraction method.
Flexible pattern matching scheme was then used to match a triplet graph with unknown relationship to those triplet
graphs with labels (True or False) in the database.

Results: We applied the method on three benchmark datasets to extract the protein-protein-interactions (PPIs), and
obtained better precision than the top performing methods in literature.

Conclusions: We have developed a method to extract the protein-protein interactions from biomedical literature. PPls
extracted by our method have higher precision among other methods, suggesting that our method can be used to
effectively extract PPIs and deposit them into databases. Beyond extracting PPIs, our method could be easily extended
to extracting relationship information between other bio-entities.
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Graph-theoretic algorithm
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Background

Relationships among different biological terms such as
genes, proteins, diseases, small molecules, pathways, and
gene ontology (TO) terms (called bio-entities in this
paper) form the backbone of our knowledge. Bio-entity
relationships such as protein-protein interactions (PPIs)
are indispensable for understanding of complex diseases,
biological processes, and guiding drug discoveries [1].
Human annotation has been used in the past to extract
this information from scientific literature, which is then
deposited into various databases [2—21].

However, human annotation can be very time and re-
source consuming, and keeping pace with the ever in-
creasing amount of biomedical publications has become
more and more difficult. As a result, computational
methods have been designed to extract bio-entity rela-
tionships automatically from the literature, and used to
assist scientists in their efforts to build databases using
manual annotation approach [22-48]. Most computa-
tional studies attempted to extract PPIs from PubMed
abstracts due to the easy accessibility of deposited arti-
cles [49, 50]. Most of the PPI extraction methods are
based on one of the two ways: (1) specify some rules (or
patterns, templates etc.) manually [34, 50-66]; or (2)
infer/learn the rules computationally from manually la-
beled sentences [67—-69].

Simple rules, such as co-occurrence, were used in the
early efforts of PPI extraction. Co-occurrence assumes
that two proteins likely interact with each other if they
co-occurred in the same sentence/abstract [70, 71]. The
drawback of these approaches is that the false positive
rate of the methods tends to be quite high. Later studies
used manually-specified rules, which can sometimes
achieve much lower false positive rate, but often suffered
from low recall rate [34, 50-66].

Recently, machine learning solutions have been pro-
posed to extract PPI information automatically. By learn-
ing the language rules from annotated texts, machine
learning techniques can perform better than other
methods in terms of both decreasing the false-positive
rate and increasing the coverage [67-69]. Huang et al...
[67] used a dynamic programming algorithm, similar to
that used for sequence alignment, to extract patterns
from sentences tagged by part-of-speech taggers. Kim et
al. [69] and Murugesan et al [72] used a kernel-based
approach for learning genetic and protein-protein inter-
action patterns.

Although extensive studies have by far been carried
out, existing methods only achieved partial success
in small datasets [55, 58—60, 67, 73] [54]. Kim et al
[74] developed a web server: PIE, and tested their
method on BioCreative dataset [38, 39, 75], achiev-
ing a reasonably good performance for a PPI article
filtering task.
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A machine learning based PPI extraction method was
developed by Chowdhary et al. [73]. In this study, a
novel methodology was developed based on Bayesian
networks (BNs) for extracting PPI triplets (a PPI triplet
consists of two protein names and the corresponding
interaction word) from unstructured text. Various of fea-
tures were extracted from sentences with potential PPIs,
including preposition close to the protein names, the
preposition close to the interaction word, the type of
interaction word, the order of the words in the triplet,
the distance between the first and second triplet word,
the distance betwenn the second and third triplets
words, existence of comma between triplet words, the
distance of the comma to one of the triplet word, exist-
ence of the negative words such as “but”, “not”, “no”
etc., existence of “which”, and number of interaction
words in the sentence, in addition to other features. The
method achieved an overall accuracy of 87% on a
cross-validation test using manually annotated dataset
with 2550 triplets. It was also showed, through extract-
ing PPI triplets from a large number of PubMed ab-
stracts, that the method was able to complement human
annotations to extract large number of new PPIs from
literature. Through manual validation of some of the
predictions, they concluded that the current databases
likely missed at least 130,000 PPIs [45]. The method was
later applied to a large scale PPI extraction task for auto-
matic knowledge discovery using an integrated
bio-entity network made using heterogeneous types of
bio-entities, including proteins, genes, diseases, gene on-
cology terms, pathways etc. [45]. A variation of the
method that allows the extraction of directionality was
also developed later using a mixture logistic model and
ensemble approach [76]. A new PPI corpus, called
PICAD (Protein Interaction Corpus with Annotated Di-
rections), was manually curated with more than 1500
sentences and more than 10,000 triplet cases.

Thus far, there have been few methods that extract
both the protein names and the interaction words at the
same time. However, only the protein names are insuffi-
cient to understand PPIs. As a result, there is an urgent
need to extract the PPI triplet (two different protein
names and one interact word) in order to reveal how the
proteins are interacted [77].

There is a practical issue in extracting PPI triplets if we
omit the structure of a sentence. Ideally the PPI triplet
appears in the order of (proteinl—interaction word —
protein2), and one single sentence contains only one trip-
let; In practice, however, a PPI triplet ordered as (inter-
action word — proteinl — protein2) may occur, and for
each sentence, multiple distinguished triplets may exist as
well. In most cases, there is only one triplet that describes
the true PPIL. For example, the sentence in Fig. 1 contains
four protein names (FKBP12-like is not considered as a
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Triplets:

3 [PARX nteract [FKBP52)

...\PAHX|has the physical capacity to[i_rlt_e_rz_c_ljwith the FKBP12-like domain of|FKBP52,

but not with|FKBP12, suggesting that it is a particular and specific target of|FKBP52.|...

2.[PAHX] finteract!
4.interact

are shown below the sentence

Fig. 1 Example of PPIs. The sentence has four protein names and two interactions words, “interact” and “target”. The five triplets with “interact”

protein name) PAHX, FKBP52, FKBP12, and FKBP52 (the
second occurrence of FKBP52 in the sentence) and one
interaction word interacts. There are five PPI triplets
(Fig. 1), only one of the triplets correctly describes
this specific PPI (triplet 1 in Fig. 1).

Recently Natural Language Processing (NLP) tech-
niques have been utilized in many machine learning ap-
proaches [63-66] to parse sentences into dependency
trees or constituent trees, which could further be used
in pattern matching or rule-based search. However, to
our best knowledge, all the methods have to adopt some
given rules/patterns. The given rules are typically rather
general; therefore, they fail to represent all the patterns
in the training sentences.

Bui et al. has developed a hybrid approach for extract-
ing PPIs [78]. The method consists of two phases. First,
the data were automatically categorized into subsets
based on its semantic properties and candidate PPI pairs
were extracted from these subsets. Second, support vec-
tor machines (SVMs) were applied to classify candidate
PPI pairs using features specific for each subset. They
obtained promising results on five benchmark datasets:
AlIMed, Biolnfer, HPRD50, IEPA and LLL with F-scores
ranging from 60 to 84%.

A comprehensive benchmark was developed for Kernel
based PPI extraction methods by Tikk et al. [43]. In the
work, the authors study whether the reported perform-
ance metrics are robust across different corpora and learn-
ing settings and whether the use of deep parsing actually
leads to an increase in extraction quality. They concluded
that for most kernels no sensible estimation of PPI extrac-
tion performance on new text is possible, given the
current heterogeneity in evaluation data [43].

In this paper, we propose a method based on NLP and
automatically learn rules/patterns to extract the PPI trip-
lets from sentences. We then classify them as true or
false with probabilities based on whether the interaction
words correctly describe the interaction relationship be-
tween the two participant protein names.

Methods

Our method, GRGT, utilized the grammatical relation-
ship among each Protein-Protein-Interaction triplet ex-
tracted by natural language processing (NLP) techniques
and a graph theorem algorithm (shortest path algorithm)
as feature to build a classifier. A dictionary of protein
names and interaction words with their morphemes
were built based on our previous study [28]. All inter-
action words in our dictionary were a single word, and
were grouped manually into 22 categories by the similar-
ity of their grammatical properties to reflect the fact that
some interaction word can be used interchangeably
without altering the sematic of the sentence.

Preprocessing

The sentence harboring the PPI triple was first toke-
nized, so that each word took their own tag as an inde-
pendent component. The tokenized sentence was then
parsed using Stanford Sentence Parser to obtain the
grammatical relationships among all the words. For ex-
ample, the sentence, “The first PDZ domain of PAR3a-
Ipha is considered to interact with PAR6.,” was parsed to
have a relationship graph showing in Fig. 2 representing
the grammatical relationships between the words in the
sentence. The words in red, such as nn, nsubj, etc. are
typed dependencies defined in [79].

The typed dependencies have a hierarchical structure
themselves. Here we only introduce some necessary
facts. The top level of the hierarchical structure is
dependent (dep), which has the following types: auxiliary
(aux), argument (arg), coordination (cc), conjunct (conj),
expletive (expl), modifier (mod), parataxis (parataxis),
punctuation (punct), referent (ref) and semantic
dependent (sdep). Each of the above types may have sub-
types themselves. For example, arg has subtypes: agent
(agent), complement (comp) and subject (subj), where
subj has nominal subject (nsubj) and clausal subject
(csubj) as its subtypes. For example, “domain” is nsubj of
“interact” (Fig. 2).
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PDz
The
det nn
nsubjpass -
first L"d) domain IP »| considered %ss
prep_of nsubyj
is
xcomp
PAR3alpha
interact prep_with
aux PARG
to
Fig. 2 Grammatical dependencies graph

Feature extraction

We designed the direct feature of each triplet (two protein
names and the interaction word) as the minimal sub-graph
containing the triplet. Dijkstra’s shortest paths algorithm
was adopted to find the shortest path (highlighted path in
Fig. 2) in the grammatical graph between pairs of the triplet
elements. The obtained sub-graph is the Grammatical Rela-
tionship Graph for Triplets (GRGT) (Fig. 3a).

The GRGT of Fig. 3a describes the meaning “domain
of P1 (PAR3alpha) interact with P2 (PAR6).” The infor-
mation in this graph is all the information we need to
know to infer the interaction between PAR3alpha and
PARG. In fact, for two triplets with only altered protein
names but exactly the same GRGT, these two triples are
equivalent in the sense of grammatical relations; thus,
they shall be classified as the same category. Although
the direct feature, exact GRGT, is quite specific and the

classification based on only these exact GRGTs are of
very high precision. It sacrifices the generalizability a lot:
the pattern of a new GRGT of PPI triplet has to match
the training true patterns exactly to be considered as a
true PPL. To introduce more general GRGTs, we could
relax the subgraph. For example, in the subgraph above,
we allowed the domain to vary from annotated samples
(Fig. 3b). Furthermore, it is also possible to alternating
the interaction word to replace the interaction word in
GRGT with other members in its group (notice we
grouped interaction words into 22 categories).

Training

We adopted a probabilistic way to train the model. Each
feature, GRGT, will be assigned a probability of being
corresponding to a true PPI as the proportion of true
PPI triplets in the training data having such a feature

prep_of nsubj prep_with
a
prep_of nsubj prep_with
b [+ ]
) interact, )
c prep_of |I| nsubj binding, prep_with -
o BN
Associate,
LN ]

Fig. 3 Grammatical dependencies sub-graph: a) the strict pattern directly extracted from the annotated sample; b) the relaxed pattern where the
word "domain” was allowed to vary; c) the more general pattern where the interaction word can be replaced by the ones from the same pre-
defined interaction class
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Fig. 4 Example decision tree

(either a direct or generalized one) in all triplets that
have this feature.

The directions of the sub-graph can also be inferred at
the same time, since the information of the direction of
the true patterns can also be annotated.

Prediction

A simple decision tree (Fig. 4) was used to cast the pre-
diction. The decision tree has one decision node at each
level representing the GRGT at different levels of gener-
alizations. For simplicity, we use the above interaction
sentence “domain of P1 interact with P2” as the anno-
tated training sample to demonstrate how the decision
tree works. The procedure is shown below:

e The first level of the decision tree will be the exact
feature in Fig. 3a. If the new sentence does not match
the pattern exactly, send this sentence to the second
level. Therefore, “domain of P1 interact with P2”is a
match, and the probability of triplet “PI-interact-P2”
being true is assigned as the probability of this feature
being associated with true PPIs. However, “motif of P1
interact with P2” does not match the feature, thus
should be passed to the next level.

e The second level is the relaxed graph as shown in
Fig. 3b. At this level, the previous example, “motif of
P1I interact with P2” is a match; therefore, the
probability of this triplet P1-interact-P2 classified as
true triplet is the associated probability of the
feature. However, the sentence “motif of P1
associates with P2” does not have a feature in this
level since the interaction word is different.
Therefore, it is passed to the next level.

e The third level, as described in Fig. 3¢, is the most
relaxed version. In this level we allow the interaction
words to differ from the annotated example as long
as they belong to the same group. For example, the
above sentence “motif of P1 associates with P2” is a
match in level 3, although it is not a match in level
1 or 2. Therefore the triplet Pl-associates-P2 is given
the probability being true as the probability of the
feature being true. If a sentence fails to match the
pattern in this level (in practice there may be much
more levels), we mark the triplet contained in this
sentence as a false triplet.

Results

Table 1 summarizes the datasets we used for testing the
performance of our method (GRGT), including three
benchmark datasets: HPRD50, IEPA, LLL, and a corpus
we constructed: PICAD (protein interaction corpus with
annotated directions). PICAD contains not only the in-
teractions of protein pairs, but the directionality of inter-
actions, which is important for analyzing biological
network.

Table 2 shows the experiment results based on
leave-one-out classification. The performance of
top-performing methods in literature [23, 47, 48, 72]
was also included for comparison. Compared with

Table 1 Dataset information

Corpus No. of sentences No. of Triplets No. of true PPI
HPRD50 145 954 126
IEPA 374 1341 164
LLL 79 977 106
PICAD 1033 19,755 1831
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Table 2 Performance comparison
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Corpus HPRD50 IEPA LLL PICAD®

F P R F P R F P R F P R
Bui et al. [24] 71.7 62.2 84.7 734 62.9 88.1 836 819 854 - - -
Miwa et al. [49] 709 68.5 76.1 7.7 67.5 786 80.1 776 86.0 - - -
Chang et al. [48] 715 63.8 812 714 62.5 833 80.6 732 89.6 - - -
Murugesan et al. [73] 80.0 763 84.2 80.2 759 85.2 89.2 873 912 - - -
“Zhao et al. [81] 713 587 924 74.2 67.0 84.0 82.0 758 91.8 - - -
GRGT 64.0 86.5 50.8 749 91.0 63.6 836 91.2 77. 700 782 634

Performance comparison of our method (GRGT) with top-performing methods on four benchmark datasets. F F;-score, P precision, R recall. The measurement is
out of 100. °deep learning method. PValues are not available because of the unavailability of executable program or source code

other methods, GRGT largely improved precision while
maintaining comparable F-score, especially on IEPA
and LLL. High precision is very important when the
discovered (classified) results are going to be used as
prior knowledge to guide experiment design. If one
model has low precision, the results could be doubtful,
and the researchers would receive incorrect informa-
tion, which may provide false guidance for downstream
studies. On the other hand, the lower recall rate of

GRGT resulted from that most misclassified cases were
false negatives, where true triplets cannot be matched
to any known patterns. This would be acceptable since
most true interactions (PPI triplets) tend to occur more
than once in literature. The interaction will be ex-
tracted as long as one of PPI triplets is classified as
true. A system with high precision can thus be used to
more effectively extract PPIs from biomedical literature
and deposit them into databases. In such task, the value
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Fig. 5 Precision-recall curve: a) HPRD50, b) IEPA, ¢) LLL, d) PICAD
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of precision would be more important than the value of
recall, and the tradeoff that decreases F-score with im-
proving precision significantly is worthy. Figure 5 shows
the precision-recall curves of our system on different
datasets.

Recently, several studies introduced deep learning
methods for PPI extraction [80-83]. We also compare
the performance of our method with Zhao et al. [83],
which uses the same benchmark datasets. Our method
again had better precision for the benchmark datasets
compared with [83], while they get improvement in
recall.

Discussion

To further improve the performance of GRGT, the pat-
terns can be simplified further so that more true triplets
can be matched if they are similar to true patterns, but
not exactly the same. The hierarchical structure of the
typed dependencies can be used for this purpose. For ex-
ample, nsubj (nominal subject) can be reduced to subj
(subject) or even further to arg (argument). We need to
balance recall and precision rate while doing this, as
simplification would improve the recall rate, but with a
cost of lowered precision rate. Some more experiments
can be performed on various ways of reducing the exact
patterns, and on how to combine the new relaxed pat-
terns with our existing patterns by designing different
decision trees to achieve better performance.

We further analyzed the extracted patterns (sub-
graphs), and in Table 3 we can see that not a lot of
patterns appeared more than once, only about 10-20%
of the extracted subgraphs appeared at least twice in the
entire dataset, which leaves the coverage of triplets per
sample relatively low, so that there is not much informa-
tion can be borrowed from other triplets in the dataset.
To further improve the performance, one can annotate
more interaction cases to increase the size of the train-
ing set, which should significantly improve the recall rate
of our method since we will have more coverage per
pattern.

This method can be used to extract other relationships
as well, as long as the triplet is well defined and the
library for terms and interaction words are given.

Table 3 Summary of the extracted subgraphs and their
generalizations

Corpus  # of patterns  # of valid patterns®  Triplet per valid pattern
HPRD50 3895 522 1.83
IEPA 6117 575 2.33
LLL 4859 891 1.10
PICAD 18,794 4363 453

@Patterns appeared at least twice
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Consistent with literature, Table 2 showed that deep
learning approaches cannot beat traditional kernel-based
or machine-learning methods all the time in PPI extrac-
tion task. The reasons would be 1) deep neural networks
would not be beneficial without effectively large amount
of training data and 2) deep neural networks are rela-
tively difficult to train because of the large number of
parameters. For a well-trained deep neural networks
from large amount of training data, the performance
may still get improved by combining with traditional
feature-based machine learning methods [84]. The fea-
tures we designed in this study can be applied to other
machine learning methods, as well as be incorporated
into deep learning methods. The current work is an ex-
panded version of a previous study [82].

Conclusions

In this work, we developed a new NLP-based method,
GRGT, for extracting the protein-protein interactions
from biomedical literature. The performance of GRGT
was demonstrated by comparing with top performing
methods using benchmark datasets. GRGT obtained bet-
ter precision, indicating that researchers can use PPIs
extracted by GRGT as prior knowledge to guide experi-
ment design with high confidence. We believe that
GRGT will be a very useful tool for PPI-extraction task.

Abbreviations

GRGT: Grammatical Relationship Graph for Triplets; NLP: Natural language
processing; PICAD: Protein interaction corpus with annotated directions;
PPI: Protein-protein interaction
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