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Abstract

Background: Cancer is the second leading cause of death in the United States, exceeded only by heart disease.
Extant cancer survival analyses have primarily focused on individual-level factors due to limited data availability
from a single data source. There is a need to integrate data from different sources to simultaneously study as much
risk factors as possible. Thus, we proposed an ontology-based approach to integrate heterogeneous datasets
addressing key data integration challenges.

Methods: Following best practices in ontology engineering, we created the Ontology for Cancer Research Variables
(OCRV) adapting existing semantic resources such as the National Cancer Institute (NCI) Thesaurus. Using the
global-as-view data integration approach, we created mapping axioms to link the data elements in different
sources to OCRV. Implemented upon the Ontop platform, we built a data integration pipeline to query, extract, and
transform data in relational databases using semantic queries into a pooled dataset according to the downstream
multi-level Integrative Data Analysis (IDA) needs.

Results: Based on our use cases in the cancer survival IDA, we created tailored ontological structures in OCRV to
facilitate the data integration tasks. Specifically, we created a flexible framework addressing key integration
challenges: (1) using a shared, controlled vocabulary to make data understandable to both human and computers,
(2) explicitly modeling the semantic relationships makes it possible to compute and reason with the data, (3) linking
patients to contextual and environmental factors through geographic variables, (4) being able to document the
data manipulation and integration processes clearly in the ontologies.

Conclusions: Using an ontology-based data integration approach not only standardizes the definitions of data
variables through a common, controlled vocabulary, but also makes the semantic relationships among variables
from different sources explicit and clear to all users of the same datasets. Such an approach resolves the ambiguity
in variable selection, extraction and integration processes and thus improve reproducibility of the IDA.

Keywords: Semantic data integration, Ontology, Semantic web, Cancer survival, Integrative data analysis

* Correspondence: bianjiang@ufl.edu
†Hansi Zhang and Yi Guo contributed equally to this work.
1Department of Health Outcomes and Biomedical Informatics, College of
Medicine, University of Florida, Clinical and Translational Research Building
Suite 3228, 2004 Mowry Road, PO Box 100219, Gainesville, FL 32610-0219,
USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhang et al. BMC Medical Informatics and Decision Making 2018, 18(Suppl 2):41
https://doi.org/10.1186/s12911-018-0636-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-018-0636-4&domain=pdf
mailto:bianjiang@ufl.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
As the second leading cause of death, cancer is respon-
sible for one in every four deaths in the United States
[1]. In 2017, there were approximately 1.68 million new
cancer cases and 600 thousand cancer deaths in the US
[2] estimated by the American Cancer Society. When
first diagnosed with cancer, patients ask about their
prognosis, whether their cancer is relatively easy or more
difficult to treat, and the likelihood of survival. There is
a huge variation in survival between cancer types, stages,
age groups, races/ethnicities, genders, and many other
factors. For example, among some of the frequently di-
agnosed cancers, including lung, colorectal, breast, and
prostate cancers, the 5-year overall survival rates are
18.3, 64.9, 89.7, and 98.3%, respectively [3]. These rates
are much worse when the cancer is metastasized, which
are 4.5, 13.9, 26.9, and 29.8% for the same types of can-
cers, respectively [3].
To improve cancer survival rates and prognosis, one

of the first steps is to improve our understanding of con-
tributory factors associated with cancer survival. Priori
research such as the National Institute on Minority
Health and Health Disparities (NIMHD) Research
Framework [4] and the social-ecological model [5] rec-
ognizes that individuals are embedded within the larger
social system and constrained by the physical environ-
ment they lived in. Thus, the determinants of individ-
uals’ health span across different domains of influence
(i.e., biological, behavioral, physical/built environment,
sociocultural environment, and healthcare system) as
well as different levels of influence (i.e., individual, inter-
personal, community, and societal). Within these frame-
works, cancer survival is influenced by multiple factors
from multiple levels and multiple domains. At the indi-
vidual level, cancer survival is influenced by not only cancer
stage of diagnosis and treatment, demographics, and finan-
cial status, but also risky health behaviors such as smoking,
alcohol drinking, and physical inactivity. For example,
cigarette smoking is by far the most important risk factor
for lung cancer; 80% of lung cancer deaths in the US were
caused by smoking [2]. Beyond individual-level factors, oc-
cupational or environmental exposure to secondhand
smoke, air pollution, radiation, and some organic chemicals
are also significant risk factors. Further, at the contextual
level, cancer survival is influenced by public policies that in-
fluence health care delivery which could impact patients’
travel distance to the treatment facility [6].
Prior epidemiologic research on cancer survival in the

US, however, has primarily focused on contributory fac-
tors from the individual level due to limited data availabil-
ity. Very few studies have explored contextual factors, and
certainly no study has explored all possible factors to-
gether. Most of these analyses used data from a single
source, such as data from a hospital (e.g., electronic health

records, EHRs), a cancer registry (e.g., the Surveillance,
Epidemiology, and End Results, SEER registry) or admin-
istrative claims systems (e.g., data from Centers for Medi-
care and Medicaid Services, CMS) [7–10]. SEER is an
extremely popular data source for studying cancer survival
[8–10]. However, it is important to pool heterogeneous
data sets with variables beyond the individual level for in-
tegrative data analysis (IDA) that simultaneously examine
as many cancer survival predictors as possible (i.e. top
down approach to the model building) so that confound-
ing effects and interactions among predictors can be fully
understood. For example, the linked SEER-Medicare data
give us a more complete picture of cancer patients beyond
their cancer status with other clinical characteristics such
as comorbidity as well as their healthcare utilization pat-
terns [11–14]. Nonetheless, the ability to integrate risk
factors of more domains and levels from other data
sources such as socioeconomic status of the community
from US Census data and community smoking rate from
the Behavioral Risk Factor Surveillance System (BRFSS)
will further advance our understanding of the determi-
nants of cancer survival.
Nevertheless, researchers are faced with key challenges

when integrating data from different sources. Data inte-
gration is a daunting task because data from different
sources can be heterogeneous in syntax (e.g., file for-
mats, access protocols), schema (e.g., data structures),
and semantics (e.g., meanings or interpretations). The ef-
fort required to connect different sources is substantial
due to lack of clear definitions (i.e., data semantics) of
variables, measures, and constructs. Many traditional
data integration techniques have been used on large
scale in biomedical research [15–17], such as rule-based
links (i.e., link variables from different data sources dir-
ectly base on the names and definitions), data ware-
houses (i.e., create a new system to store a copy of the
data from difference data sources, and manage the data
separately from the original data systems) and ad-hoc
query optimizers (i.e., re-phrasing a user’s query into
multiple subqueries according to the structures of indi-
vidual distributed databases) and federated middleware
frameworks (i.e., link multiple applications and user in-
terfaces to multiple data sources, act as the overarching
facade across multiple applications). However, all these
traditional methods did not consider the semantic know-
ledge, which intend to integrate information based on
the meaning of the data elements. For example, how to
distinguish synonyms, homonyms and related terms
(e.g., different representations of the same disease using
different coding standards) across different data sources.
Therefore, adopting a semantic data integration ap-
proach, we propose to generate a universal conceptual
representation of “information” to bridge the data het-
erogeneities across different sources. The “information”
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includes not only data elements but also their relation-
ships, via “ontologies”. An ontology is a computational
representation of a domain of knowledge based upon a
controlled, standardized vocabulary for describing entities
and the semantic relationships between them [18–21].
The use of ontologies can facilitate data integration in
many ways, including metadata representation, automatic
data verification, global conceptualization, support for
high-level semantic queries, and extend beyond traditional
approaches of using common data elements (CDEs) and
common data models (CDMs) [22–24], especially in the
biomedical domain [15, 25].
Marenco et al. developed a Query Integrator System

(QIS) to address robust data integration from heteroge-
neous data sources in the biosciences in 2004 [26]. An
ontology server was used in QIS to map data sources’
metadata to the concepts in standard vocabularies [26].
Cheung et al. developed a prototype web application
called YeastHub based on a Resource Description
Framework (RDF) database to support the integration of
different types of yeast genome data in different sources
in 2005 [27]. Lam et al. used the Web Ontology Lan-
guage (OWL) to integrate two heterogeneous neurosci-
ence databases [28] in 2005. In a follow-up study, Lam
et al. designed AlzPharm that used RDF and its exten-
sion vocabulary, RDF Schema (RDFS), to facilitate both
data representation and integration [29]. Smith et al.
built the LinkHub system leveraging Semantic Web
technologies (i.e., RDF and RDF queries) to facilitate
cross-database queries and information retrieval in pro-
teomics in 2007 [30]. In 2008, Shironoshita et al. intro-
duced a query formulation method to execute semantic
queries across multiple data services in the cancer Bio-
medical Informatics Grid (caBIG), named Semantic
caBIG Data Integration (semCDI). Mercadé et al. devel-
oped an ontology-based application called Orymold for
dynamic gene expression data annotation, integration
and exploration in 2009. Based on the QIS [26], Luis et
al. designed an automated approach for integrating fed-
erated databases using ontological metadata mappings in
2009 [31]. Chisham et al. created the Comparative Data
Analysis Ontology (CDAO) and developed the
CDAO-Store system to support data integration for
phylogenetic analysis in 2011 [32]. Kama et al. built a
Data Definition Ontology (DDO) using the D2RQ (i.e., a
platform to provide RDF-based access over relational da-
tabases) for accessing heterogeneous clinical data
sources [33]. Pang et al. developed BiobankedConnect to
speed up the process of integrating comparable data
from different biobanks to get a pooled data using onto-
logical and lexical indexing in 2014 [34]. Ethier et al. de-
signed the Clinical Data Integration Model (CDIM)
based on the Basic Formal Ontology (BFO) [35] to sup-
port biomedical data integration in 2015 [36]. Mate et al.

proposed an ontology-based approach to organize and
describe the medical concepts of both source and target
systems in order to integrate the data across different
clinical and research systems [37]. Livingston et al. cre-
ated an integrated knowledge base of biomedical data
from multiple sources, called KaBOB, based on Open
Biomedical Ontologies [38]. In 2016, Liang et al. pro-
posed an ontology-oriented approach to represent the
relations between genes, drugs, phenotypes, symptoms,
and diseases from multiple information sources in aiding
the analysis of psychiatric drug repurposing [39]. Similar
to our approach, Kock-schoppenhauer et al. used the
ontology-based data access (OBDA) model and the
Ontop framework to access relational clinical databases
with SPARQL queries [40]. However, most of these
existing semantic data integration systems and frame-
works have focused on 1) the harmonization and align-
ments of data elements using semantic resources; 2)
creating tailored ad hoc resources for specific use cases
that may not be generalizable; and 3) the integration of
data from similar data sources (e.g., data from different
electronic health record systems) and addressing the
syntactic (i.e., data formats) and schematic (i.e., data
models) heterogeneity. Very few studies have fully lever-
aged the reasoning ability provided by ontologically
structured data. And none of the studies has used ontol-
ogies as a knowledge representation tool to document
the data integration process.
This paper describes a case study of semantic data in-

tegration linking five data sets that cover both individual
and contextual level factors for the purpose of assessing
the association of predictors of interest with cancer sur-
vival. The main contribution of our work is that we ap-
plied an ontology-based data integration framework to
integrate both individual and contextual level factors to fa-
cilitate integrative data analysis (i.e., pool heterogeneous
data sets). The use of ontologies can facilitate data integra-
tion in many ways and extend beyond traditional data in-
tegration approaches. Unlike existing ontology-driven
data integration methods, our study focused on en-
coding the different data integration scenarios expli-
citly using a formal and computational model with a
shared vocabulary—the Ontology for Cancer Research
Variables (OCRV). Our goal is not only to make the
data integration process easier, but also to facilitate
documentation and communication of the data inte-
gration processes between scientists. This is signifi-
cant for research rigor, transparency, reproducibility
as well as data reusability.
In our previous short paper [41], we prototyped an

ontology-based data access approach to integrate three
different datasets to support IDA of cancer survival. In
this extended journal paper, we significantly expanded
our ontology-based data integration framework.
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� We used n-ary relations [42] in our ontology to rep-
resent relations among more than two individuals.
For example, we created a ‘ocrv:diagnosis_relation’
class to link the ‘ocrv:date of diagnosis’, the ‘ocrv:-
diagnosed tumor type’ and the ‘ncit:patient’.

� We adopted the Time Event Ontology (TEO)
[43–45] for representing events, time, and their
relationships. For example, the ‘ocrv:date of
diagnosis’ was represented as a
‘ocrv:diagnosis_relation’ instance (event) associated
with an ‘teo:timeInstance’ (time).

� We improved the reasoning ability via using OWL
restrictions [46], so that we can encode certain
knowledge (i.e., constrains on properties) in the
ontology. For example, in our model, current
smoker is defined as patients who (1) is a current
everyday/someday smoker, and (2) smoked at least
100 cigarettes in the entire life. Thus, we created
restrictions for the object property
‘ocrv:has_smoking_status’.

� We leveraged the ontology to exam the consistency
of the source data. For example, we used an
individual’s ‘ocrv:date of diagnosis’ and ‘ncit:birth
year’ to calculate the diagnosis age and then
compared with the value directly obtained from the
‘ncit:age at diagnosis’ variable to check the
consistency of the source data.

Methods
Our overall goal is to facilitate the data integration needs
of a theory-driven multi-level IDA of cancer survival in-
formed by the NHMID Research Framework and the
socio-ecological model with an ontology-based semantic
data integration approach.

Data integration use case: The multi-level integrative data
analysis of Cancer survival
The goal of the multi-level IDA was to examine the pre-
dictive ability of cancer survival models under 3 com-
mon data integration scenarios that researchers often
face in data analysis: (1) additional predictors, especially
contextual factors such as county smoking rate become
available through linking multiple datasets, (2) different
predictors representing the same concept are available
(e.g., different definitions of rurality based on either the
rural-urban commuting area (RUCA) [47] codes or the
National Center for Health Statistics (NCHS) [48]
urban-rural classification scheme), and (3) different forms
of the same predictor are available (e.g., different grouping
strategy based on the raw 10-level RUCA classification to
define metropolitan vs. non-metropolitan). To do so, we
linked data from five different sources to evaluate discrim-
ination performance of predictive models for breast, lung,
and colorectal cancers.

Data sources
The multi-level IDA of cancer survival was based on
data of the UF Health Cancer Center Catchment Area
(CCCA) from multiple sources. The UF Health CCCA is
a region in north Florida that included 20 counties: Ala-
chua, Baker, Bradford, Citrus, Clay, Columbia, Dixie,
Gilchrist, Hamilton, Jefferson, Lafayette, Leon, Levy,
Madison, Marion, Putnam, Sumter, Suwannee, Taylor,
and Union. The individual- and contextual-level factors
were extracted from 6 data sources: (1) We collected
each patient’s demographic, diagnosis, treatment and
survival information from the 1996–2010 Florida Cancer
Data System (FCDS) [49]—a statewide cancer registry
supported by the Centers for Disease Control and Pre-
vention (CDC)—data. The FCDS followed the national
data standards set forth by the American College of Sur-
geons, Commission on Cancer (ACoS/CoC), the North
American Association of Central Registries (NAACCR)
and the Surveillance, Epidemiology and End Results
(SEER). (2) We obtained census tract level social vulner-
ability index (SVI) [50] from the Agency for Toxic Sub-
stances & Disease Registry (ATSDR). (3) We also
obtained education and poverty information from the
United States Census Bureau [51] (i.e., the 2000 US cen-
sus). (4) We obtained county-level smoking rate, alcohol
consumption rate, and health status from the Behavioral
Risk Factor Surveillance System (BRFSS) [52] of the
Centers for Disease Control and Prevention (CDC).
Note that, each record in BRFSS is assigned with a final
weight to make generalizations from the sample to the
populations. BRFSS uses the raking weighting method-
ology, which is comprised of two parts, design weight
and raking, where BRFSS final weight = Design Weight *
Raking Adjustments [53]. (5) We used data from the
County Health Ranking and Roadmaps [54], where we
obtained county-level mental health, physical health, and
primary care related information. All the raw data were
in relational structures, thus, we imported and stored all
of our source data in a relational database (i.e., MySQL)
without any manipulations.
Adult cancer patients (18 years or older at the time of

diagnosis) were identified in the FCDS data using the Inter-
national Classification of Disease for Oncology 3rd edition
(ICD-O-3) codes: C50.0-C50.9 for breast, C34.0-C34.3,
C34.8, and C34.9 for lung, and C18.0-C18.9, and C26.0 for
colorectal cancers. We obtained 50,151 unique cancer pa-
tients (18,644 breast, 21,552 lung, and 9955 colorectal).
Table 1 shows a summary of the risk factors extracted from
the 5 data sources. The individual-level factors were all
extracted from the FCDS, reflecting individual patients’
sociodemographic and clinical characteristics. The
contextual-level factors such as county level average
smoking rate were linked to individual patients based
on their residencies. These contextual-level factors,
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contributing to individuals’ cancer survivals, reflect
the environmental and societal characteristics of
where the individuals were embedded in. In our data
analysis, these contextual-level factors were either cal-
culated at the county level (e.g., average smoking rate
from BRFSS) or the census tract level (e.g., the social
vulnerability index from ATSDR), depending on the
geographic resolutions of the raw data available. In
addition to the risk factors, our datasets also con-
tained variables such as survival status and cause of
death (if died, and coded with the International Clas-
sification of Diseases, Ninth Revision, Clinical Modifi-
cation, ICD-9-CM, codes).

Overview of a semantic data integration pipeline
Our semantic data integration workflow is based on an
ontology-based data access (OBDA) framework demon-
strated in Fig. 1. The first step of semantic data integra-
tion is to construct synthesized, integrated descriptions
(i.e., a global ontology) of the information coming from
multiple sources. An ontology—the Ontology for Can-
cer Research Variables (OCRV)—in our case, is a
metadata representation of the data elements and

their semantic relationships in a both human- and
machine-understandable structure. After building the
ontology, an OBDA model was created—using seman-
tic mapping axioms—to link the source data elements
to the entities in OCRV. Given a global view of avail-
able data from different sources, a user can pose data
(integration) requests for the selected variables (and
desired representations) against our data integration
pipeline, which converts the requests to a set of
SPARQL queries. Based on the semantic mapping ax-
ioms defined in the OBDA model, Ontop’s Quest—a
SPARQL query engine—can translate a SPARQL query
over the ontology into a union of sub-queries over the
data sources. The integration of the sub-query results con-
stitutes the answer to the semantic query. The sub-queries
are subject to the structure of source schemas, and often
expressed in the native query languages of the sources
(e.g., Structured Query Language, SQL commonly used
for relational databases).
We used the Ontop platform that provides an infra-

structure for querying relational databases through on-
tologies [55]. Within Ontop, entities (i.e., classes and
properties) in the ontology are mapped to the data

Table 1 Summary of the risk factors extracted from different datasets

Risk factor Data source Reference
ontology

Individual level Race
Gender
Ethnicity
Marital status
Smoking status
Insurance payer
Residency: county and census tracta

Age at diagnosis
Year of diagnosis
Tumor stage
Tumor type
Treatment procedure

Florida Cancer Data System (FCDS) NCIt
TEO
OCRV

Contextual
level

Census tract SVIb household composition and
disability
Census tract SVI minority status and language
Census tract SVI housing and transportation
Census tract SVI socioeconomic status

Agency for Toxic Substances & Disease Registry
(ATSDR)

OCRV

Census tract high school completion rates
Census tract family poverty ratesc

United States Census Bureau OCRV

Census tract rurality statusd OCRV
NCIt

County adult mental and physical health statuse

County density of primary care physiciansf
County Health Ranking & Roadmaps OCRV

County smoking rate
County alcohol consumption rate

Behavioral Risk Surveillance System (BRFSS) OCRV
NCIt

aThe residency of the individual at the county- and census tract-level (i.e., which county and census tract the individual lives in), which are the linkage variables
used to connect the individuals with contextual-level risk factors
bSocial Vulnerability Index (SVI) refers to the resilience of communities when confronted by external stresses on human health, such as when facing disasters or
disease outbreaks
cThe percentage of all families whose income in the past 12 months is below the poverty level
dThe rurality status for each census tract is based on the RUCA code
eThe average number of days a county’s adult respondents report that their mental/physical health was not good during past 30 days
fThe ratio of the population to total primary care physicians
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elements (and the relationships between the data elements)
in the databases and presented as virtual Resources De-
scription Framework (RDF) graphs. Subsequently, we can
then query the virtual RDF graphs via SPQRAL queries.

Constructing an ontology for Cancer research variables
(OCRV)
Scope
The OCRV was built for integrating and unifying
multi-level predictors of cancer survival across heteroge-
neous data sources. The OCRV covered a broad range of
individual- and contextual-level factors, as shown in
Table 1. We used the Basic Formal Ontology (BFO) [35]
as the upper-level ontology, and imported the NCI The-
saurus (NCIt) and the Time Event Ontology (TEO) as
the foundation for creating the OCRV.

Approach
Using the BFO as the overarching organization, the
OCRV was developed with both top-down and
bottom-up strategies to catalog relevant entities. A

top-down approach was followed to identify candidate
entities based on the predictors (i.e., identified
through a comprehensive literature review of existing
predictors related to cancer survival guided by the
NIMHD Research Framework and the social-ecological
model) used in the cancer survival analysis. In addition, a
review of existing widely accepted ontologies (using the
NCBO BioPortal [56]) was conducted to find the rele-
vant entities that can be reused in OCRV. As shown
in Table 1, many of the entities that we needed are
captured in the NCIt. A bottom-up approach was
then used to characterize the entities that have been
identified in the top-down approach. We examined
the data sources that contained these risk factors, es-
pecially the metadata (i.e., the table structures of the
relational database). We inspected how these risk fac-
tors were expressed in the relational source databases
as well as the relationships among the raw data ele-
ments, and determined what additional entities and
relations were needed to fully represent these risk fac-
tors in OCRV.

Fig. 1 The overall process of our semantic data integration approach through an ontology-based data access framework. *The user can post data
integration requests according to OCRV, then the requests were converted into SPARQL queries through the data integration pipeline. The OBDA model
consists of a set of semantic mappings that specify how source data are related to the entities in the ontology. The Quest is a SPARQL query engine
which uses the semantic mappings in the OBDA model to translate SPARQL queries over the ontology into SQL queries over the data sources
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More importantly, we considered the specific data in-
tegration use cases for supporting the multi-level IDA of
cancer survival. For example, in our cancer survival ana-
lysis, we only needed to model ‘marital status’ as ‘single’
vs. ‘married’, while the raw data has a more fine-grained
categorization (e.g., ‘widowed’ and ‘divorced’). Thus, we
constructed our ontology to support the data analysis
needs by declaring ‘widowed’ and ‘divorced’ as subclasses
of ‘single’.

Implementation
We used Protégé 5 [57] to construct the ontology. We
worked collaboratively, finalizing the list of entities based
on each one’s domain expertise (e.g., oncology, cancer
prevention and outcomes, and cancer population sci-
ence). An example of the raw data records annotated
with the OCRV is shown in Fig. 2.

Designing the mapping axioms
In Ontop, the OBDA model consists of two parts: map-
ping axioms and data source declarations (i.e., to estab-
lish the database connections to the source databases

using the Java Database Connectivity (JDBC) application
program interface). The goal of the mapping axioms is
to link the data elements in data sources to the entities
in the OCRV. We constructed the mapping axioms
using the Ontop Protégé plugin. In general, there were
three types of mapping axioms (i.e., mappings for clas-
ses, mappings for object properties, and mappings for
data properties). Each mapping axiom consisted of three
fields: a mappingId, a source, and a target. The mappin-
gId was used to uniquely identify a mapping axiom, the
source is typically a SQL query to retrieve the necessary
data from the data sources, and the target is an RDF
triple template. Based on the OBDA model, Ontop was
then able to realize the data in relational databases into
virtual RDF graphs. Subsequently, we can use SPARQL
queries to retrieve and manipulate the data stored in
these virtual RDF graphs. Note that design of the map-
ping axioms as well as the ontology were driven by the
data integration use cases, and subsequently, the re-
quired data query and manipulation needs. Based on the
data integration needs, the SPARQL queries can be clas-
sified into four categories: (1) queries that extract

Fig. 2 An example of data records annotated with the Ontology for Cancer Research Variables (OCRV). * Square boxes are classes, and ovals
are individuals
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Table 2 The entities created for OCRV based on the data analysis needs

OCRV entity Label

Classes social vulnerability index
• SVI household composition and disability
• SVI housing and transportation
• SVI minority status and languages
• SVI socioeconomic status

BRFSS current smoker
• BRFSS current every day smoker
• BRFSS current someday smoker
• BRFSS smoker who smoked at least 100 cigarettes in the entire life

BRFSS heavy drinker
• male heavy drinker who reported having more than 14 drinks per week
• female heavy drinker who reported having more than 7 drinks per week

rural-urban commuting area codes
• metropolitan area core
• metropolitan area high commuting
• metropolitan area low commuting
• micropolitan area core
• micropolitan high commuting
• micropolitan low commuting
• small town core
• small town high commuting
• small town low commuting
• rural areas

census tract high school completion rate

census tract family poverty rate

county adult mental health status

county adult physical health status

county density of primary care physicians

single

unknown marital status

Object properties has death cause

has diagnosis

has marital status

has procedure

has smoking status

has drinking status

has tumor type

has tumor stage

has stage

has race

has biological sex

has ethnicity

has insurance payer

has survival status

has tumor stage

has family poverty level

has education level
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variables directly linked to a patient without the need for
any processing; (2) queries that need to preprocess the
raw data to produce the desired results; (3) queries that
are used to link a patient to contextual factors through
geographic variables (e.g., county, census tract); (4) quer-
ies that generate results based on the knowledge which
has been encoded in ontology. We will discuss these
four types of queries in detail in the RESULTS section.

Creating a data integration pipeline
The goal of our data integration tasks was to link predic-
tors from different data sources to generate a single
pooled dataset for cancer survival analysis. Thus, we cre-
ated a data integration pipeline using the Ontop OWL
Java application programming interface (API) [58] to
translate user requests into SPARQL queries and to
organize the query results into an analytic format. The

OWL API [59] is a reference implementation for inter-
acting with OWL ontologies. The Ontop OWL API ex-
tended the OWLReasoner interface in the OWL API to
support SPARQL query answering against relational da-
tabases. As required by our data analysis models, the
final results were organized into a data table (i.e., a
matrix), where each row represented a patient’s cancer
diagnosis record (as one patient can have multiple can-
cer diagnoses in the FCDS data), and each column rep-
resented a cancer risk factor.

Results
The ontology for Cancer research variables (OCRV)
The OCRV was constructed iteratively using the Protégé
tool. We used the BFO as the upper-level ontology and
imported the NCIt and the TEO as the foundation for
creating the OCRV. Besides reusing terms in existing

Table 2 The entities created for OCRV based on the data analysis needs (Continued)

OCRV entity Label

has mental health condition

has physical health condition

has primary care physician ratio

has svi

lives in

Data properties has BRFSS final weight

Table 3 The implementation of the OWL restrictions for ‘ocrv:BRFSS current smoker’

Class Notation 3 (N3) code

BRFSS current smoker @prefix: <http://www.semanticweb.org/ontologies/OCRV#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix owl: <http://www.w3.org/2002/07/owl#>
: BRFSS current smoker
a owl:class
rdfs:subClassOf ncit:smoking status.

BRFSS current every day smoker @prefix: <http://www.semanticweb.org/ontologies/OCRV#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix owl: <http://www.w3.org/2002/07/owl#>
:BRFSS current every day smoker
a owl:class
rdfs:subClassOf
[a owl:Restriction; owl:allValuesFrom: BRFSS smoker who
smoked at least 100 cigarettes in the entire life;
owl:onProperty:has smoking status].

BRFSS current someday smoke @prefix: <http://www.semanticweb.org/ontologies/OCRV#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix owl: <http://www.w3.org/2002/07/owl#>
:BRFSS current someday smoker
a owl:class
rdfs:subClassOf
[a owl:Restriction; owl:allValuesFrom: BRFSS smoker who
smoked at least 100 cigarettes in the entire life; owl:onProperty:has smoking status].

BRFSS smoker who smoked at least
100 cigarettes in the entire live

@prefix: <http://www.semanticweb.org/ontologies/OCRV#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix owl: <http://www.w3.org/2002/07/owl#>
:BRFSS smoker who smoked at least 100 cigarettes in the entire life
a owl:class
rdfs:subClassOf ncit:smoking status.
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ontologies, we also created entities (i.e., classes, object
properties, and datatype properties) based on the data
analysis needs as shown in Table 2. Overall, we created
30 new classes, and added 23 new properties. The max-
imum depth of the classes is 5.
We used owl:Restriction and rdfs:subClassOf axioms to

encode the knowledge of the data integration processes
in OCRV, leveraging the reasoning ability. For example,
to calculate the average smoking rate for a county using
BRFSS, the very first step was to find the number

smokers for the county in the raw BRFSS data. BRFSS is
a national telephone survey that collects state data about
U.S. residents regarding their health-related risk behav-
iors, chronic conditions, and use of preventative services.
Thus, the raw BRFSS data were participants’ survey re-
sponses, including answers to questions such as “Do you
now smoke cigarettes every day, some days, or not at
all?”. According to BRFSS, a smoker was defined as a
person who (1) currently smokes every day or someday,
and (2) has smoked at least 100 cigarettes in the entire

Fig. 3 The representation of the relations among ‘ocrv:BRFSS current every day smoker’, ‘ocrv:BRFSS current someday smoker’ ‘ocrv:BRFSS current
every day smoker’, and ‘ocrv:BRFSS smoker who smoked at least 100 cigarettes in the entire life’

Fig. 4 The representation of the n-ary relation pattern among patient, diagnosed tumor type, and date of diagnosis, where (a) illustrates how a
patient A links to a breast cancer diagnosis, (b) is a graphical representation of the diagnosis relation contains not only the diagnosis "breast
cancer" but also a timestamp for the date of diagnosis, (c) shows on the instance level how a patient A, her diagnosis of breast adenocarcinoma,
and the diagnosis date are connected, and (d) shows how owl:Restriction is used to implement this n-ary relation
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life. The variables we used in the source data to define a
smoker were: (1) SMOKDAY2 (i.e., “Do you now smoke
cigarettes every day, some days, or not at all?”), and (2)
SMOKE100 (i.e., “Have you smoked at least 100 ciga-
rettes in your entire life?”). We first defined a
‘ocrv:BRFSS current smoker’ class, with two subclasses
as: ‘ocrv:BRFSS current every day smoker’ and
‘ocrv:BRFSS current someday smoker’, which were linked
to a person (i.e., ‘ncit:interviewee’) using the object prop-
erty ‘ocrv:has smoking status’. We also created a class (i.e.,
‘ocrv:BRFSS smoker who smoked at least 100 cigarettes in
the entire life’) to represent people who smoked at least 100
cigarettes in their entire life. To encode the BRFSS’s defin-
ition of smoker, we applied OWL restrictions on the prop-
erty ‘ocrv:has smoking status’ for each subclass of
‘ocrv:BRFSS current smoker’ as shown in Table 3 in Nota-
tion3 (N3) syntax [60], which enforces that the ‘ocrv:BRFSS
current every day smoker’ and ‘ocrv:BRFSS current someday
smoker’ need to have smoked at least 100 cigarettes in their
entire life. Fig. 3 shows the relations among ‘ocrv:BRFSS
current every day smoker’, ‘ocrv:BRFSS current someday
smoker’ ‘ocrv:BRFSS current every day smoker’, and

‘ocrv:BRFSS smoker who smoked at least 100 cigarettes in
the entire life’.
We also followed the best practices to define n-ary

[42] relations to describe relations among more than
two individuals or values. In RDF and OWL, properties
are binary relations, linking two individuals or an indi-
vidual and a value. For example, as shown in Fig. 4a, a
patient A has been diagnosed with breast cancer. How-
ever, we also want to express that the diagnosis relation
happened on a specific date (‘date of diagnosis’), as “The
patient A has been diagnosed with breast cancer on
January 5, 2018.’ This is an n-ary relation, as shown in
Fig. 4b, where the object property ‘ocrv:diagnosis rela-
tion’ also needs to have an attribute of ‘date of diagnosis’,
which we cannot represent. To do so, we instead created
a ‘ocrv:diagnosis relation’ class; and a ‘ocrv:diagnosis re-
lation A’ individual referring to an instance of the rela-
tion among a ‘ncit:patient’, a ‘ocrv:diagnosed tumor type’,
and the ‘ocrv:date of diagnosis’, as shown in Fig.4.c. The
individual ‘:diagnosis relation A’ represents a single ob-
ject encapsulating both the diagnosed tumor type
(‘:breast adenocarcinoma’, a specific instance of the

Fig. 5 A SPARQL query that extracts the sex information of all patients, where (a) is a graphical representation of the relationship between a
‘ncit:patient’ and its ‘ncit:sex at birth’, (b) shows the SPARQL query, and (c) shows the query results
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tumor type) and the date of the diagnosis (‘January 5,
2018′). Each of the 3 statements in the original n-ary re-
lation, who was diagnosed, what the diagnosis is, and
when it was diagnosed, is then a binary relationship (i.e.,
‘ocrv:has diagnosis’, ‘ocrv:has tumor type’, ‘teo:hasValid-
Time’). The class definitions for the individuals in this
pattern are shown in Fig. 4d. Both properties ‘ocrv:has
tumor type’ and ‘teo:hasValidTime” are functional prop-
erties, ensuring that each instance of ‘ocrv:diagnosis re-
lation’ class has exactly one value for ‘ocrv:diagnosed
tumor type’ and one value for ‘ocrv:date of diagnosis’.
The OWL restrictions on these two properties restrict
the values of the properties (e.g., owl:allValuesFrom indi-
cates that the values of the property are all members of
the class indicated by the owl:allValuesFrom class). We
instantiated the specific ‘ocrv:diagnosed tumor type’ sub-
classes using the ICD-O-3 codes as in the original FCDS
data source (i.e., mapping axioms that linked each ICD-O-3
code to a specific tumor type as defined in the NCIt).

The four types of SPARQL queries
Type 1: Queries that extract variables directly linked to a
patient without the need for any processing
Many individual-level factors such as the gender of a
patient from the FCDS can be extracted with a simple
SPARQL query. For example, the object property

‘ocrv:has biological sex’ was used to link a ‘ncit:patient’
its ‘ncit:sex at birth’ as shown in Fig. 5a. Based on this
relation, we can use a simple SPARQL query as shown
in Fig. 5b. to retrieve all patients’ sex information,
where ‘?patient’ represents the patients and ‘?sex’ repre-
sents the patients’ sex at birth information. Note that,
in SPARQL, query variables are prefixed with either “?”
or “$”. The results of the query were shown in Fig. 5c.

Type 2: Queries that need to process the raw data to
produce the desired results
In data analysis, many raw variables needed to be proc-
essed to derive new variables or converted into different
formats. For example, in our cancer survival analysis, we
only considered the year of diagnosis, whereas the raw
data in FCDS were recorded as the date of diagnosis in
‘yyyymmdd’ format. In OCRV, we used ‘teo:hasOrigTime’
(i.e., a data property in TEO) to link a date value to an
individual of ‘ocrv:date of diagnosis’. Fig. 6 illustrates our
process to convert the raw date of diagnosis to the de-
sired year of diagnosis in a SPARQL query.

Type 3: Queries that are used to link a patient to contextual
factors through geographic variables
The contextual-level factors used in our cancer sur-
vival models were linked to individual patients

Fig. 6 A SPARQL query that converts the date of diagnosis to the year of diagnosis, where (a) illustrates how a patient was linked to the date of
diagnosis, (b) shows the SPARQL query, and (c) shows the query results
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through their residencies. In FCDS, each patient’s
residency was mapped to both a census tract code
and county code. We obtained the SVI (i.e., a census
tract-level variable) from the ATSDR [61]. The SVI
indicates the relative vulnerability of every U.S. census
tract. The SVI ranks the tracts on 15 social factors,
including unemployment and minority status, and fur-
ther groups them into four themes: socioeconomic
status, household composition & disability, minority
status & language, and housing & transportation.
Each tract receives a ranking for each factor and for
each of the four themes, as well as an overall ranking.
Based on the census tract codes, we can link a census
tracts’ SVI rankings to each patient. Fig. 7 shows an
example of linking the census tract level SVI socio-
economic status to a patient.

Type 4: Queries that generate results based on the
knowledge encoded in ontology
We discussed how the ‘ocrv:BRFSS current smoker’
was implemented in OCRV in details above. After
encoded the knowledge of what is a BRFSS current
smoker, a simple SPARQL query as shown in Fig. 8b
can be used to retrieve all current smokers from the
source BRFSS data. The reasoner can automatically

resolved the subclasses of the ‘ocrv:BRFSS current
smoker’ and applied the OWL restrictions to ensure
that the retrieved BRFSS current smokers meet the
two conditions: (1) current every day or someday
smoker, and (2) has smoked at least 100 cigarettes in
the entire life.
Also, according to our data analysis use cases, some

of the raw categorical variables were regrouped into
different subgroups—a common practice in building
prediction models. To produce the desired grouping,
we created new classes for the new groups and lever-
aged object properties to encode these grouping logics
in OCRV. For example, the raw marital status had 7
categories (i.e., ‘never married’, ‘divorced’, ‘widowed’,
‘separated’, ‘married’, ‘unknown’ and ‘unmarried’) in
FCDS. However, based on our data analysis needs,
‘never married’, ‘divorced’, ‘widowed’, ‘separated’, and
‘unmarried’ were considered equivalent to ‘single’ as
shown in Fig. 9a. Thus, we created a ‘ocrv:single’ class in
OCRV and modeled ‘ocrv:divorced’, ‘ocrv:widowed’, ‘ocrv:se-
parated’, and ‘ocrv:unmarried’, and ‘ocrv:never married’ as
subclasses of ‘ocrv:single’. Then, we can easily use a
SPARQL query as shown in Fig. 9b to retrieve all patients
whose marital statuses were single. The results of the
query were showed in Fig. 9c.

Fig. 7 A SPARQL query that links the census tract level SVI socioeconomic status to a patient, where the ‘?census_tract’ query variable is the
common census tract code linking the individuals of ‘ocrv:SVI socioeconomic status’ and ‘ocrv:patient’. Figure (a) shows a graphical representation
of how a patient is linked to its area-level socioeconimic status based on her residency, (b) is the SPARQL query, and (c) shows the query results
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The semantic data integration pipeline for Cancer survival
analysis
Equipped with all the necessary SPARQL queries, our
last step was to build a data integration pipeline in
Java with the Ontop OWL API to produce a pooled
dataset for our multi-level cancer survival analysis.
The process of the data integration pipeline consists
of 6 main steps: (1) set up the connections among the
Ontop SPARQL query engine, reasoner, OBDA model,
OCRV ontology, and underlying relational data
sources; (2) load and execute a query that lists all
patients (i.e., patients’ unique identifiers), and use the
results as the first column in the final integrated data-
set; (3) load and execute the SPARQL queries corre-
sponding to each of the risk factors that we selected,
and append the results to the corresponding patients;
and (4) output the final dataset in the required format
(e.g., comma-separated values (CSV) format). A sam-
ple of the final integrated dataset following the process
above is shown in Table 4, where each column repre-
sents a risk factor (or the outcome) and each row rep-
resents a patient record.

Discussion
Our experience in building an ontology-based data inte-
gration approach for linking heterogeneous datasets for
multi-level cancer survival analysis has demonstrated the
feasibility of using semantic data integration to resolve
semantic, syntactic, and schematic heterogeneities across
different data sources.

Benefits of an ontology-based data integration model
The use of ontologies can facilitate data integration in
many ways and extend beyond traditional approaches of
using common data elements (CDEs) and common data
models (CDMs). First, a shared, controlled vocabulary
standardizes the definitions of the data elements and
makes data understandable to both human (i.e., showing
the preferred names for a class, and the synonyms and
properties associated with it) and computers. Second, ex-
plicitly modeling the semantic relationships among data
elements makes domain and data assumptions more ex-
plicit and makes it possible to compute and reason with
the data. For example, the knowledge that a current
smoker in BRFSS has (1) to be a current every day or

Fig. 8 A SPARQL query that lists all current smokers in BRFSS based the OWL restrictions encoded in the ontology, where (a) is the graphical
representation, (b) shows the SPARQL query, and (c) shows the query results
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someday smoker and (2) smoked at least 100 cigarettes in
the entire life (as shown in Fig. 3), can be explicitly mod-
eled in the ontology, which cannot be achieved with CDEs
and CDMs. Third, ontologies enable modeling the con-
strains of data elements using a formal and
machine-readable language, which facilitates automatic
validation and assurance of data quality. Fourth, the need
to shoehorn heterogeneous data into a CDM is re-
placed with a more flexible ontology-based metadata
representation. Subsequently, integrating a new data
source is simply connecting the entities among the
different data sources without the need to modify
the underlying database structures and data models.
Such an approach avoids the error-prone, and
labor-intensive extract, transform, load (ETL) pro-
cesses when transforming the source data into a
CDM. Last, ontology-based metadata representations
make it possible to encode the different data

integration scenarios explicitly using a formal and
computational model with a shared vocabulary. This
makes the data integration task easier and quicker,
and more importantly, facilitates communication of the
data integration processes between scientists. This is sig-
nificant for research rigor, transparency, reproducibility as
well as data reusability.

The ability to encode data processing and data
integration knowledge in the ontology
As discussed in details above, we leveraged the OWL re-
strictions to properly define the ‘ocrv:BRFSS current
smoker’ in OCRV and used object properties to enable
grouping of raw categorical variables into different sub-
groups based on the data analysis needs. These two ex-
amples illustrated the ability to reason with ontologically
structured data to fulfill data processing and data inte-
gration needs. The same logics can indeed be achieved

Fig. 9 A SPARQL query that lists all patients in FCDS whose marital statuses were single leveraging the grouping logics encoded in OCRV, where
(a) is the graphical representation, (b) is the SPARQL query, and (c) shows the query results

Table 4 A sample result generated using the semantic data integration pipeline for cancer survival analysis

Patient ID Biological Sex Marital Status Year of Diagnosis .. SVI Socioeconomic Status Survival

69,561 female single 1981 … 20.256 1

… … ... … … … …

1,785,573 male single 2001 … 61.632 0
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with having a human explicitly write out the specific
queries in SQL. And, ultimately in our system, the
SPARQL queries were translated into low-level SQL
queries. However, the key difference is that in our case
the computer was able to reason with the knowledge
encoded in the ontology and generate the proper SQL
queries rather than having a human to reason with the
data and manually construct the SQL queries, which
often time is error-prone and labor-intensive. However,
not all data manipulation processes can be easily
encoded in the ontology. Many of the data transform-
ation procedures were achieved through built-in func-
tions in the SPARQL queries. For example, the process
of extracting the year of diagnosis from date of diagnosis
had to be realized in SPARQL as shown in Fig. 5.
Another example of needing computing capability in

addition to the logics encoded in the ontology is to cal-
culate the average smoking rate for each Florida county
using the raw data in BRFSS. The calculation is straight-
forward: for each county, the average smoking rate equals
to the sum of the BRFSS final weights for all current

smokers divided by the sum of the final weights for all
BRFSS population in the county. As shown in Fig. 3,
we can identify who is BRFSS defined current smoker.
A county code and a BRFSS final weight were also at-
tached to each BRFSS respondent as shown in Fig. 10.
With these information, we can easily calculate the aver-
age smoking rate for each county. Nevertheless, these
computations were programed in the data integration
pipeline Java code.

Data quality and consistency checks of the source data
using the ontology
Another advantage of using ontology as a data model is
to conduct automated data quality and consistency
checks of the source data, because the dependencies
among and constraints of the data elements are expli-
citly modeled in the ontology. For example, FCDS has
two related variables: ‘age at diagnosis’ and ‘date of diag-
nosis’. As shown in Fig. 11, we explicitly modeled the re-
lationship and constraints between these two entities, as
the ‘ncit:age at diagnosis’ can be calculated from the

Fig. 10 A SPARQL query that retrieves all BRFSS defined current smokers, the county codes of their residencies and BRFSS final weight, where (a)
is the graphical representation of the relationships among these concepts, (b) is the SPARQL query, and (c) is the query results
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‘ocrv:date of diagnosis’ and ‘ncit:birth year’. We can then
compare the raw ‘age of diagnosis’ and the computed age
of diagnosis to exam data consistency. Further, we also
used OWL restrictions to enforce the required formats
and ranges of the data elements. Equipped with auto-
mated data consistency checks, data analysts shall follow
best practices in dealing with data quality issues [62].

Limitations and future work
The current OCRV stemmed from our particular IDA
for cancer survival use case does not cover all possible
modeling needs in cancer research. More use cases
need to be considered to expand our ontology. In
addition, we instantiated classes ‘ncit:disease or dis-
order’ and ‘ocrv:diagnosed tumor type’ ICD-9-CM
code and the International Classification of Diseases
for Oncology 3rd Edition(ICD-O-3), respectively,
through Ontop’s mapping axioms. Currently, the
knowledge of linking a specific disease to the corre-
sponding ICD-9-CM/ICD-O-3 codes is manually
expressed in the SQL queries when creating the

mapping axioms. In the future work, we will import
the disease ontology, where the corresponding ICD
codes have already been encoded in the classes as an-
notation properties. Nevertheless, we will need to ex-
tract and convert these annotation properties to data
properties (i.e., create individual mapping axioms link-
ing the individuals of diseases to individuals of ICD
codes). Consequently, the reasoner can leverage these
mapping axioms to infer the knowledge of how to
connect a set of ICD codes to corresponding diseases
automatically.

Conclusions
We have presented an ontology-based semantic data in-
tegration approach for multi-level integrative data ana-
lysis of cancer survival. Our approach solves key data
integration challenges: (1) not only provide clear defini-
tions of the data elements using standardized common
vocabulary, but also explicitly expressed the relationships
among the variables, (2) be able to clearly document
data processing and integration procedures, (3) leverage

Fig. 11 An example of using a SPARQL query to calculate the ‘age at diagnosis’ from the ‘date of diagnosis’ and ‘birth year’ for data consistency
checks, where (a) shows a graphical representation, (b) is the SPARQL query, and (c) shows the query results
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ontologically structured data to infer and derive the re-
quired data elements and formats automatically, (4) pro-
vide a convenient mechanism for documenting data
quality and consistency checks, and most importantly
(5) allows scientists to clearly document and communi-
cate their data manipulation processes, which is signifi-
cant for research rigor, transparency, reproducibility as
well as data reusability.
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