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Power considerations for trials evaluating vaccines against infectious diseases are complicated by indirect pro-
tective effects of vaccination. While cluster-randomized controlled trials (cRCTs) are less statistically efficient than
individually randomized controlled trials (iRCTs), a cRCT’s ability to measure direct and indirect vaccine effects
may mitigate the loss of efficiency due to clustering. Within cRCTs, the number and size of clusters affects 3 deter-
minants of power: the effect size being measured, disease incidence, and intracluster correlation. We simulated
trials conducted in a collection of small communities to assess how indirect protection and clustering affected the
power of cRCTs and iRCTs during an emerging epidemic. Across diverse parameters, we found that within the
same trial population, cRCTs were never more powerful than iRCTs, although the difference can be small. We also
identified 2 effects that attenuated the loss of cRCT power traditionally associated with increased cluster size. First,
if enrollment of fewer, larger clusters was performed to achieve higher vaccine coverage within vaccinated commu-
nities, this increased the effect to be measured and, consequently, power. Second, the greater rate of imported
transmission in larger communities may increase the attack rate and similarly mitigate loss of power relative to a
trial in many, smaller communities.

cluster-randomized trials; dynamic modeling; epidemics; indirect effects; vaccine trials

Abbreviations: cRCT, cluster-randomized controlled trial; ICC, intracluster correlation coefficient; iRCT, individually randomized
controlled trial; PH, proportional hazards.

Cluster-randomized controlled trials (cRCTs) have become an
increasingly common method for evaluating interventions for
infectious diseases, including vaccines. Compared with individ-
ually randomized controlled trials (iRCTs), cRCTs may offer
logistical, operational, and acceptability advantages (1), and they
allow the measurement of direct and indirect effects of vacci-
nation, which are often relevant for policy-makers (2). The sta-
tistical theory of cRCT design has largely focused on the effect
of clustering, commonly measured by intracluster correlation,
on power (3–5). Intracluster correlation arises because outcomes
of members of the same cluster are more similar than those from
different clusters. Therefore, increasing the number of indivi-
duals within a cluster provides less information than would
adding the same number of individuals in a new cluster.

When the trial outcome is an infectious disease, correlation
arises also because each case in a cluster can transmit infection to
other cluster members. Thus, trials of vaccines against infectious

diseases exhibit a more complicated relationship between statis-
tical power and sample size than is seen in trials for noninfectious
outcomes (6, 7); in particular, the total or overall vaccine effect
measured by a cRCT is generally larger than the direct effectmea-
sured by an iRCT. In principle, this increased effect size in a
cRCT might partially or fully offset the loss of power due to
within-cluster correlation. Understanding these complexities
can aid in vaccine trial design for emerging epidemics. While an
important consideration in any clinical trial, maximizing effi-
ciency is particularly crucial in trials during infectious disease
emergencies such as the 2014–2016 Ebola epidemic, where eval-
uation of experimental vaccines is especially urgent and where
limited available vaccine doses and/or changing disease incidence
may constrain trial design (8).

In the present study, we first compared the power of an iRCT
with that of a cRCT in the same population across a broad range
of realistic parameters, taking into account that the cRCT is
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generally measuring a larger effect size. We hypothesized that,
when R0 is slightly above 1, a cRCT may have greater power to
detect total vaccine effects than an iRCT would have to detect
direct effects. Our justification was 2-fold. First, a vaccine’s total
effect is greater than its direct effect and thus more easily de-
tected. Second, when an iRCT is conducted within numerous
small communities, the indirect effects of vaccinationmay reduce
incidence among control participants sufficiently to erode the
trial’s power (6). In a second analysis, we restricted our attention
to cRCTs and considered 2 decisions an investigator must navi-
gate when balancing the number of clusters with the size of a
cluster, for a given trial population size (Figure 1). Throughout we
distinguished between communities that are targeted for enroll-
ment and clusters that comprise the individuals enrolled. When
study clusters are sampled from communities, the first decision
(enrollment proportion) concernswhether to enroll a larger propor-
tion of each community from fewer communities, or to enroll a
smaller proportion from a larger number of communities, fixing
community size. The second decision (community size) concerns
whether to recruit clusters from a smaller number of large com-
munities or recruit from a larger number of small communi-
ties, fixing enrollment proportion.

With regard to enrollment proportion, recruiting a higher pro-
portion of each community leads to higher vaccine coverage in
communities receiving vaccination and thus more indirect pro-
tection to the community members. The greater overall protec-
tion may lead to increased power. With regard to community
size, larger communities may experience an increased rate of
introduction into the community if, for example, disease importa-
tions are proportional to the number of travelers to and from

the community, which likely scales with community size. Both
the increased indirect protection and the increased importation
rate may increase power because they increase the effect size and
the average number of cases in the trial population, respec-
tively. These effects may thus partially counterbalance the loss of
power that is known to accompany having fewer, larger clusters.
Weused a transmissionmodel of an emerging directly transmitted
infection (such as Ebola virus disease) to assess the contribution
of these effects to the relative power of iRCTs and cRCTs.

METHODS

Theoretical analysis

We first explored the plausibility that cRCTs might be more
efficient than iRCTs by using theoretical final size equations to
calculate the expected outbreak probability and attack rate in
clusters, varying enrollment proportion, R0, and vaccine efficacy
(see Web Appendix 1 for details, available at https://academic.
oup.com/aje). While this analysis provided some insight into the
trade-off between indirect effects and clustering, we conducted the
following simulation-based analyses to more realistically account
for how epidemic stochasticity may increase variability between
communities.

Simulated population structure

We considered a population divided into 2 distinct groups: a
main population in which a major epidemic is progressing, and a
smaller population made up of multiple small communities from
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Cluster-
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Figure 1. Schematic of an example of an individually randomized controlled trial (iRCT) and a cluster-randomized controlled trial (cRCT). Study
clusters (solid outline) are enrolled from communities (circles). In the iRCT, individuals within each cluster are randomized to a vaccine (gray) or
control (black) group. In the cRCT, half the clusters are randomized to vaccination and half to control. In the cRCT design, fixing the number of indi-
viduals enrolled, there are 2 ways to balance cluster size and number of clusters in the trial: 1) fixing the community size: vary the enrollment propor-
tion and the number of communities enrolled; and 2) fixing the enrollment proportion: vary the community size and number of communities.
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which the trial population is enrolled. The communities are repre-
sented with a stochastic block network model (9), in which con-
tacts between individuals within the same block are far more
common than those between blocks. This assumption is essential;
it increases the strength of indirect effects within clusters relative
to scenarios in which there is more between-cluster transmission
(10). A connection between individuals in the network represents
a single infectious contact per day, and we assume that the num-
ber of contacts per individual (degree) is Poisson-distributed.

Transmissionmodels

To balance realismwith computational feasibility, we relied on
distinct transmission models for the main population and for the
communities, using a deterministic compartmental model and a
stochastic compartmental model, respectively.

Both models use a susceptible-exposed-infectious-removed
compartmental structure. We assumed that infections are intro-
duced into communities via transmission from the main popu-
lation, and the daily hazard of infection for an individual is
proportional to the prevalence of infection in the main population.
The community-level rate of disease importation (“importation
rate”) is defined as the number of cases per year arising solely as a
function of these external transmission events. We assumed that
the importation rate varies with the size of the community. In par-
ticular, larger communities experience more disease importation
events, with community importation rateMi increasing with Ni ,
whereNi is the size of the ith community (11). SeeWebAppendix
1 formore details on importation rate and disease natural history.

Vaccine trial design

For both designs, the specified number of communities are
enrolled on a fixed calendar day with a target proportion of com-
munity members enrolled at random from the susceptible and
exposed individuals therein, forming that community’s study clus-
ter. In the iRCT, half the individuals in each study cluster are ran-
domized to vaccination with the other half to placebo control. In
the cRCT all individuals in half the study clusters are assigned to
vaccination, while those in the other half are assigned to placebo
control. In this design, all enrolled individuals in clusters assigned
to vaccination are vaccinated.

Statistical analysis

Statistical analysis of the trial was based on time to symptom
onset, with individuals censored after a fixed time. For the iRCT,
a Cox proportional hazards (PH) analysis was performed to esti-
mate the direct effect of the vaccine, stratifying by community
(12). We defined statistical significance at the α = 5% level using
a 2-tailed Wald test, and for each combination of parameters we
simulated 500 trials, estimating the power as the proportion
of trials that reject the null hypothesis of no vaccine effect, which
accounts for different estimands used by different designs. We
calculated themedian vaccine effect estimate across the simulated
vaccine effect estimates. To estimate the type I error of each
design, we repeated the above process with the true vaccine effi-
cacy set to 0. To measure the magnitude of clustering in the
cRCT, we report the design effect, defined as =design effect

+ ρ( − )m1 1 , where ρ is the intracluster correlation coefficient

(ICC) calculated using themethod in Shoukri et al. (13), which is
likely an underestimate of the ICC for time-to-event data (14),
andm is the average size of a study cluster. The design effect in-
creaseswith ICC, as subjects in the same cluster aremore similar,
and with the size of each cluster, as there are fewer, larger groups
of similar individuals. The ICC is a measure of between-cluster
variance relative to total variance in the outcome: If between-
cluster variance is large relative to within-cluster variance, the
ICC is large and individuals in the same cluster provide little
information relative to individuals in different clusters.

In this cRCT design, a Cox PHmodel estimates the total effect
of vaccination. To ensure we used a cRCT analysis that maintains
nominal type I error when comparing cRCT powerwith that of an
iRCT, we first compared type I error between several methods to
account for clustering when determining statistical significance
within the cRCTdesign: namely, a CoxPHmodelwithGaussian-
or gamma-distributed shared frailty, and a Cox PH model with
robust standard error estimate. We excluded from analysis indivi-
duals who developed symptoms within 10 days after vaccination
(the average incubation/latent period) to avoid diluting the vaccine
effect by analyzing infections that preceded vaccination. All simu-
lationswere performed inR (RFoundation for Statistical Comput-
ing, Vienna, Austria) (15), and code that can be used to generate
the data presented in this study is available onGithub (16).

Choice of parameters

Table 1 shows the parameters used in the model, their mean-
ings, values under baseline assumptions, range explored (where
applicable), and references or justifications.

RESULTS

Comparison of iRCT and cRCT

In our theoretical analysis based on final size calculations, we
found support for our initial hypothesis that cRCTs could bemore
efficient than iRCTs:WhenR0 in vaccinated clusters in the cRCT
is just above 1, the measured total effect is close to 1, which in-
creases power; on the other hand, indirect effects in the iRCT
drive down the incidence of disease among controls, undermining
its power. Increasing enrollment proportion increased power of
the cRCT relative to the iRCT, and there were parameter ranges
forwhich the cRCTwasmore powerful than the iRCT. For exam-
ple, with communities of size 100 and enrollment proportion
60%, we estimated that a cRCT would be more efficient than an
iRCTwhenR0was close to 1.6 and vaccine efficacywas between
50% and 60% (seeWeb Figure 1).

However, our simulation model revealed that, across a broad
range of parameters—including population structure, trial design,
and vaccine efficacy parameters—iRCTs were always were more
powerful than cRCTs in the same population, despite the larger
effect size being measured in cRCTs. The discrepancy between
the models arises because theoretical calculations underestimate
the average cumulative incidence, as well as the variability in
transmission across clusters, when R0 is close to 1. Figure 2 illus-
trates the power of simulated iRCT and cRCT designs versus R0,
and highlights 2 findings. First, the cRCT generally yields greater
effect-size estimates than the iRCT does, because it measures the
total vaccine effect rather than solely direct effects (Figure 2A).
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Second, the design effect is large and increases with increasing R0
(Figure 2B), because large R0 leads to more outbreaks within
communities, which increases between-cluster variance and thus
the ICC (see Web Figure 2). Therefore, the power that the cRCT
gains by measuring a larger effect is more than compensated by
loss of efficiency due to within-cluster correlation. These 2 points
explain why cRCT power first increases and then decreases with
increasing R0. As R0 increases past a certain threshold, the effect
of clustering begins to dominate the effect of increased incidence
in the study population, and the trial loses rather than gains power
from the increased transmission.

As hypothesized, we found that there was reduced inci-
dence among controls in the iRCT compared with those in the
cRCT due to indirect protection from vaccinated individuals
(17), although this did not significantly affect the power of iRCTs
in our simulations. This is likely because vaccine coverage was

low in the iRCT (a maximum of 50% of individuals within clus-
ters are vaccinated) such that there is still sufficient transmission
among control participants to evaluate the vaccine, in part because
importation events from the main population occur even in the
presence of herd immunity.

The above results focus on the gamma-frailtymodel for analyz-
ing the cRCT. We found that the estimated vaccine effect from a
Cox PH model with robust standard errors decreased drastically
as R0 increased. This occurred because the effect estimate from
the robust standard errors model is not stratified by cluster, and it
is thus biased by heterogeneity in hazard of infection caused by
stochastic variation in outbreak size (12). The gamma-frailty
model can account for this heterogeneity and performed better,
yielding both type I error rates below 5% and unbiased estimates
of total vaccine effects for many of the parameter combinations.
Still, when R0 was sufficiently small, the gamma-frailty model

Table 1. Model Parameter Names, Meanings, Values, Ranges Considered, and References or Justifications, Used for an Analysis Comparing
Cluster-Randomized Controlled TrialsWith Individually Randomized Controlled Trials, 2018

Parameter Meaning Value Range
Considered Reference or Justification

R0 Average number of
secondary infections
generated by an infected
individual

0.6–3 Wide range spanningmost
emerging infectious diseases.
Calculated for networkmodels
usingMeyers et al. (26).

Mean (latent) Mean latent period length
(days)

9.7 (27)

SD (latent) SD of latent period length
(days)

5.5 (27)

Mean (infectious) Mean infectious period
length (days)

5.0 Time to hospitalization (27).

SD (infectious) SD of infectious period
length (days)

4.7 (27)

VE Individual vaccine efficacy 0.6 0.4–0.8 Baseline assumption.

Ni Size of community i 100 50–200 Assumption that some unit of this
size exists in the population.

Mi Importation rate into
communities

N0.0025

cases/year
i − N0.0125 0.05

cases/year
i

Based on a calculation for measles
(11), with the magnitude of the
rate chosen so that there are on
average 0.5 importations into a
community of size 100 over a
2-year epidemic.

Within-community
degree

Average total number of
contacts of an individual
within the same
community

14.85 14.83–14.85 Based on “Ebola, ça suffit!” trial (24)
(ring size of 90,<20% of which
were primary contacts).

Between-community
degree

Average total number of
contacts of an individual
from outside their
community

0 0–0.02 Assumption that communities are
disconnected, to minimize
spillover effect. A range was
explored to represent 1 or 2
contacts outside each
community.

Trial size Average number of
individuals enrolled

4,000 Assumption to achieve reasonable
power for chosen parameters.

Trial start day First day of enrollment,
vaccination, and start of
follow-up, relative to the
first day of the epidemic
in the main population

150 100–250 Assumed the trial starts before the
peak of the epidemic in themain
population and that the trial team
is ready to go when epidemic
starts.

Trial length Length of follow-up after
trial start (days)

140 70–210 Assumption to achieve reasonable
power for chosen parameters.

Abbreviations: SD, standard deviation; VE, vaccine efficacy.
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of cRCT designs did exhibit slightly elevated type I error (17)
due to the sporadic and heterogeneous nature of outbreaks in the
communities.

Figure 2 shows that the power of the cRCT is strongly affected
by the design effect (Figure 2C), and that the difference in power
between the cRCT and iRCT is smaller when there is low R0.
This observation held when other parameters were varied, includ-
ing trial start day (relative to epidemic onset), vaccine efficacy,
importation rate, and population structure. In the setting of lowR0,
epidemics will die out stochastically in most clusters experiencing

at least 1 case importation. The cluster-level attack rates are thus
close to zero, and the between-cluster variance is small (17).

Varying community enrollment proportion in a cRCT

Restricting attention to cRCTs, Figure 3 displays the vaccine
effect estimate (Figure 3A), design effect (Figure 3B), and power
(Figure 3C) for a cRCT across varying community enrollment
proportions (holding community sizes constant, but varying num-
ber of communities). As expected, the estimate of total vaccine
effect increases with increasing proportion enrolled because it
increases vaccine coverage and, consequently, the indirect ef-
fects in vaccinated clusters. However, the increased effect size
is counterbalanced by increases in the design effect (driven by
larger clusters). Thus, for all values of R0 displayed, except the
highest considered (R0 = 3), there is no clear trend in power
with the community enrollment proportion. For R0 = 3, the
simulations follow the trend generally expected for cRCTs, in
which the use of more, smaller clusters increases trial power.

Varying size of enrolled communities in a cRCT

Figure 4 displays the attack rate in the study population
(Figure 4A), design effect (Figure 4C), and power (Figure 4E) for
a cRCT with varying size of enrolled communities, holding the
proportion of communities enrolled and the total number of trial
participants constant. The attack rate in the trial population is
determined by the product of: 1) the average proportion of a com-
munity infected given an outbreak in that community (final size);
and 2) the proportion of communities that experience an outbreak.
When R0 > 1, the final size is the same regardless of community
size because we assume frequency-dependent transmission (18).
However, if importation rate increases with community size, then
the grouping of individuals into fewer large communities makes
each community more likely to receive at least 1 importation,
increasing the proportion of communities that experience an out-
break. In effect, letting each importation be shared acrossmore in-
dividuals increases the probability that any trial participant lives
somewhere that experiences an importation and, thus, an out-
break. The magnitude of the increase in attack rate with fewer
large communities depends on how importation rate scales with
community size. In this case, assuming sublinear increase in
importation rate, the increased attack rate with fewer, larger
communities is not large enough to offset the greater design
effect and thus power decreases when increasing community
size and decreasing community number.

If community importation rate scales linearly with community
size, there is an even greater increase in attack rate when there are
fewer, larger communities (Figure 4B), relative to the analysis
above. In this case, even though the design effect increases with
community size (Figure 4D), the higher attack rate offsets the
increased design effect, and power does not change appreciably
with size of enrolled communities when transmission ismoderate
(Figure 4F).

Analysismethods for a cRCT

In answering our primary research questions, we explored a
range of analysis methods for the cRCT.We found that a Cox PH
model with Gaussian-distributed frailty had significantly
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Figure 2. Comparison of vaccine effect estimates and power of indi-
vidually randomized controlled trials (iRCTs) and cluster-randomized
controlled trials (cRCTs), showing vaccine effect estimates (A), design
effect (B), and power (C), analyzed using either a shared gamma-frailty
model or a Cox proportional hazards model with robust standard
error (SE) estimates. The data are simulated. The incidence rate of
importations into an average community is 0.5 cases/year, the vac-
cine efficacy is 60%, and other parameters are the baseline values
listed in Table 1.
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elevated type I error (17). Fortunately, 2 common ap-
proaches to analyzing clustered survival data—a Cox PH model
with gamma-distributed frailty or robust standard error estimation
—were the best methods in terms of power and validity. The
robust standard error analysis has higher power than the gamma-
frailty model when transmission is low. However, the model
does not account for heterogeneity in hazard rates in its estimate
of the vaccine effect, leading to a downward bias that is particu-
larly apparent when R0 is high, as seen in Figure 2. The gamma-
frailty model is not susceptible to this bias.

DISCUSSION

Traditional comparisons of cRCTs versus iRCTs that focus on
within-cluster correlation and the design effect should also con-
sider other ways in which the unit of randomization affects power
in randomized controlled trials. Although an iRCT and a cRCT
answer different research questions (measuring direct and total ef-
fects, respectively), a positive finding for either could arguably
lead to the same policy outcome, especially during an epidemic
(19). For example, the recombinant vesicular stomatitis virus
(rVSV)–Zaire ebolavirus vaccine was approved for use in the
Democratic Republic of Congo in 2017 based on the findings of
“Ebola, ça suffit!,” a cRCT (20). We have shown that a cRCT’s
ability to measure both indirect and direct effects can partially
compensate for the loss of power due to clustering. Theoretical
calculations suggest that cRCTs may exhibit greater statistical
efficiency than iRCTs in some low-R0 scenarios. However, simu-
lations that more realistically capture stochasticity in transmission
suggest that iRCTs remainmore powerful than cRCTs conducted
in the same trial population. In low-transmission settings, the dif-
ference in power between themmay be small, although forR0 val-
ues lower than those considered here, a risk-prioritized design
(such as ring vaccination) would be preferable, and these results
should be examined separately in this context.

The above comparisons between cRCTs and iRCTs can be
extended to examine cRCTs of different cluster sizes (which is
particularly apparent once noting that an iRCT can be considered
a cRCTwith cluster size of 1). For instance,within cRCTdesigns,
enrolling more individuals from the same cluster is generally less
statistically efficient than enrolling individuals in a new cluster.
Previous work has argued that the ICC often decreases with clus-
ter size, mitigating some loss of efficiency with larger clusters
(10), and demonstrated how cross-contamination may increase
when cRCTs are run in clusters of fewer individuals, reducing the
effect to be estimated and thus power. Cross-contamination oc-
curs either via transmission between intervention and control clus-
ters or inadvertent receipt of intervention by control clusters, both
of which are less likely when clusters are separated in space (21)
or are sufficiently large that they are less affected by external po-
pulations (10).

Here we showed that, even in the absence of cross-
contamination, indirect effects in themselves can mitigate
the loss of efficiency caused by the increasing design effect
associated with fewer, larger clusters. To our knowledge, this
fact has been alluded to but the effect on power has never been
quantified (22, 23). Another counterintuitive finding arises from
the fact that, because larger communities experience a greater
influx of transmission imported from elsewhere, enrolling fewer
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Figure 3. Relationship between power and community enrollment
proportion for a cluster-randomized controlled trial (cRCT), using sim-
ulated data. Vaccine effect estimates (A), design effect (B), and power
(C) from a cRCT versus the percentage of individuals enrolled from
each community, with total sample size held constant and assuming a
vaccine efficacy of 60%.
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Figure 4. Relationship between power and size of enrolled communities for a cluster-randomized controlled trial (cRCT), using simulated data.
Attack rates in the trial population (A and B), design effects (C and D), and power (E and F) for cluster-randomized vaccine efficacy trials versus the
size of the communities recruited, with total sample size held constant. In the left-hand column, community case importation rate is proportional to
the square root of community size, and in the right-hand column it is proportional to the community size. All results shown here assume 60% com-
munity enrollment.
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but larger communities may yield a greater attack rate, and
thereby partly or fully compensate for the loss in power due to the
design effect. This result is dependent on the relationship between
case importation rate and community size. Consequently, this will
differ according to disease and population setting andmay be true
only in scenarios in which a pathogen is not endemic to trial com-
munities and the probability of pathogen introduction into a com-
munity is relatively low.

Ourfindings highlighted the importance of adequately account-
ing for heterogeneity between study clusters while maintaining
the nominal false-positive rate andmaximizing power.We lim-
ited the methods to those widely used and found that a Cox PH
model with gamma-distributed frailty performs best overall,
althoughwhenR0 is low, a Cox PHmodel with robust standard
errorsmay be superior.

The results presented here are part of a body of work demon-
strating the utility of simulation when considering the design of
vaccine trials for infectious diseases (7). It is only by including
transmission dynamics in models that we are able to quantify the
relative strength of clustering and indirect protection in affecting
trial power. The present study is intended to explore these effects
more generally, butwe expect our findings to be relevant to inves-
tigators considering cRCT design, whether or not they develop a
full-fledged trial simulation study during the planning phase. The-
oretical work on trial design can help prepare stakeholders to rap-
idly design trials in the face of unexpected epidemics of emerging
pathogens. However, it is important to note that sample size is
only one of many factors that must be taken into consideration
when planning a vaccine trial. Considerations of logistics, cost,
ethics, acceptability, or the particular research question of interest
may, in certain contexts, hold priority.

There are at least 2 sources of intracluster correlation in a
cRCT for an infectious disease: transmission between individuals
within a cluster and the shared characteristics of individualswithin
a cluster. When R0 is large enough, any outbreak that takes off
will infect many individuals in a community, so all clusters will
have an attack rate close to either 0% or 100%. In such cases,
there is very little within-cluster variance, and the total variance
comprises chiefly between-cluster variance, leading to ICCs ap-
proaching 1. Clustering due to shared characteristics can arise for
many reasons (e.g., within-community similarities in behavior,
health, or proximity to source populations). Intracluster correla-
tion, whether due to transmission or to shared characteristics in
clusters, increases the design effect. Given these different sources
of clustering, and the fact that we observed ICCs ranging from
0.05 to 0.8 in our simulations, it is critically important that ICCs
are reported by study investigators when presenting the results of
a cRCT because thismay aid in planning for future trials (24).

Our analysis neglects some aspects of a realistic population in
which a trial is conducted. For example, we do not consider the
second source of clustering described above (i.e., shared character-
istics). More broadly, modeled individuals do not vary in charac-
teristics other than degree and the community to which they
belong, whereas real populations would vary in age structure,
proximity to the epicenter of the epidemic, and other variables that
would predict disease incidence. By ignoring these characteristics,
we underestimate the extent of clustering in a cRCT and overstate
its power. Thismakesmore robust our conclusion that the iRCT is
alwaysmore powerful than the cRCT in the situations considered.

We have conceptualized the population structure as being a
number of small groups separated in space so that there isminimal
transmission between communities; in reality, population struc-
ture is likely to be less distinct.We have not considered permanent
or temporary migration, or secondary structure within commu-
nities (i.e., households). Moreover, real-life degree distributions
have a heavier tail (due to superspreading (25)) than considered
here, although a sensitivity analysis showed that our results are
robust to this assumption (17).

We found that the general principle that enrollment of fewer,
larger clusters leads to decreased power is strongly dependent
on the relationship between community size and rate of importa-
tion. Our base assumption, that importation frequency is propor-
tional to the square root of community size, is based on a finding
formeasles (11). For other diseases, the community-level impor-
tation rate may be independent of community size, in which
case the increased design effect would entirely dictate the loss of
power as community size increases. Our conclusions should
thus be considered in the context of each specific disease and
population.

The indirect effect of vaccination should be considered along
with clustering in calculating the power of a cluster-randomized
trial and in comparing different trial designs for interventions
against infectious diseases. Using simulation, we show that it
does not always increase power to enroll more, smaller clusters
into a cRCT when doing so is associated with reduced indirect
protection to vaccinated individuals or importation of infection
into the study population. Still, while cRCTs measure a greater
vaccine effect than iRCTs, we found that iRCTs are generally
more powerful, though their power may be comparable in low-
transmission settings.
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