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Cause-specific mortality is an important outcome in studies of interventions to improve survival, yet causes of death can
bemisclassified. Here, we present an approach to performing sensitivity analyses for misclassification of cause of death in
the parametric g-formula. The g-formula is a useful method to estimate effects of interventions in epidemiologic research
because it appropriately accounts for time-varying confounding affected by prior treatment and can estimate risk under
dynamic treatment plans. We illustrate our approach using an example comparing acquired immune deficiency syndrome
(AIDS)-relatedmortality under immediate and delayed treatment strategies in a cohort of therapy-naive adults entering care
for human immunodeficiency virus infection in the United States. In the standard g-formula approach, 10-year risk of AIDS-
relatedmortality under delayed treatment was 1.73 (95%CI: 1.17, 2.54) times the risk under immediate treatment. In a sen-
sitivity analysis assuming that AIDS-related deathwasmeasuredwith sensitivity of 95%and specificity of 90%, the 10-year
risk ratio comparing AIDS-related mortality between treatment plans was 1.89 (95% CI: 1.13, 3.14). When sensitivity and
specificity are unknown, this approach can be used to estimate the effects of dynamic treatment plans under a range of
plausible values of sensitivity and specificity of the recordedevent type.

cause of death; HIV; outcomemeasurement errors

Abbreviations: AIDS, acquired immune deficiency syndrome; ART, antiretroviral therapy; CI, confidence interval; CNICS, Centers
for AIDS Research Network of Integrated Clinical Systems; HIV, human immunodeficiency virus.

Cause-specific mortality is an important outcome in studies of
interventions to improve survival, yet causes of death can be mis-
classified. Understanding the effects of interventions on specific
causes of death is important to optimizing strategies to improve
life expectancy. In many settings, cause-of-death information
from death certificates is available through state vital statistics
offices and processed nationally in centralized databases, such
as the National Death Index in the United States. This infor-
mation can be combined with data on clinical care or lifestyle
factors to estimate the effects of treatment strategies or inter-
ventions on cause-specific mortality.

The parametric g-formula is one method that provides consis-
tent estimates of the effects of interventions, exposures, or treat-
ment strategies in a given target population under a set of
identifying assumptions (1). The parametric g-formula offers
advantages over standard regression models in some settings
because it appropriately accounts for time-varying confounding

affected by prior treatment (1), and it can be used to estimate
the effects of dynamic treatment plans (2) or treatment plans
that depend on the natural value of treatment (3). Like stan-
dard regression models, the g-formula assumes that the out-
come, treatment plans, and covariates are measured without
error.

The g-formula can be used to answer questions related to
cause-specific mortality. However, some cause-of-death infor-
mation abstracted from death certificates may be misclassified,
leading to bias in estimates of the effects of treatment plans of
interest. Here, we describe how existing methods to perform
sensitivity analyses for outcome misclassification can be inte-
grated into the parametric g-formula to account for error in the
cause-of-death designations from death certificates, using as
motivation a leading example of an evaluation of antiretroviral
treatment timing on risk of acquired immune deficiency syn-
drome (AIDS)-related death.

1808 Am J Epidemiol. 2018;187(8):1808–1816



METHODS

Existing observational studies (2, 4, 5) and trials (6, 7) indicate
that early therapy improves survival among patients with human
immunodeficiency virus (HIV). Here we assessed the extent to
which delayed therapy initiation separately increased the risk of
bothAIDS- andnon–AIDS-relatedmortality and performed a sen-
sitivity analysis to produce estimates under various assumptions
about sensitivity and specificity of the cause-of-death designation.

Specifically, we implemented this sensitivity analysis to exam-
ine the possible impacts of outcome misclassification on the
estimated difference in the 10-year cumulative incidence ofAIDS-
and non–AIDS-related mortality among patients with CD4 cell
counts over 500 cells/mm3 between 2 HIV treatment strategies:
1) immediate therapy, “initiate antiretroviral therapy immediately
upon entry into care”; and 2) delayed therapy, “initiate antiretrovi-
ral therapy when CD4 cell count first drops below 350 cells/mm3

or the patient is diagnosedwithAIDS.”

Study population

TheCenters forAIDSResearchNetwork of IntegratedClinical
Systems (CNICS) was developed to support population-based
HIV research in theUnited States (8). TheCNICS cohort includes
HIV-positive adults engaged in clinical care from January 1,
1998, to the present at 8 Centers for AIDS Research sites
(Case Western Reserve University; Fenway Community Health
Center of Harvard University; Johns Hopkins University; Uni-
versity of Alabama at Birmingham; University of California,
San Diego; University of California, San Francisco; University of
North Carolina; and University of Washington). All patients
attending 2 primary HIVmedical-care visits at a study site are eli-
gible for CNICS and followed for clinical events, lab measure-
ments, and medications while they remain in care at study sites.
Institutional review boards at each site approved study protocols.
Patients provided written informed consent to be included in the
CNICS cohort or contributed administrative and/or clinical data
with a waiver of written informed consent where approved by
local institutional review boards.

Patientswho enteredHIV clinical care at aCNICS site between
January 1, 1998, and December 31, 2014, and had not previously
initiated combination antiretroviral therapy (ART), which was
defined as treatment with 3 or more antiretroviral drugs, were eli-
gible for inclusion in this analysis (n = 20,931). We included
only patients with a CD4 cell count over 500 cells/mm3 and a
detectable viral load (over 400 copies/mL) at CNICS enroll-
ment (n = 4,123). Patients were excluded if they were missing
information on transmission risk factor, race, or sex (n = 241),
leaving 3,882 patients in the cohort for analysis.

Patients were followed from entry into care at a CNICS site
until death, loss to follow-up, or administrative censoring at 10
years after CNICS enrollment or December 31, 2014. Patients
were considered to be lost to follow-up after 12 months without a
documented clinic visit, CD4 cell count, or viral load measure-
ment. Therapy initiation was defined as initiation of 3 or more
antiretroviral drugswithin a 1-week period.

Outcome ascertainment

The outcomes of interest were AIDS-related and non–AIDS-
related mortality. Each CNICS site maintains a registry of deaths

among patients at that site and semiannually queries the United
States Social Security Death Index and/or National Death Index
to confirm reported deaths and record deaths not captured by the
CNICS sites. Information on cause of death was available from
the National Death Index or state vital statistics registries for 110
of 178 deaths. We classified deaths as “AIDS-related” if the
underlying cause of death on the death certificate was coded
with International Classification of Diseases, Tenth Revision
(ICD-10), codes B20–B24.9. All other deaths were classified
as not AIDS-related, although interpretation of the results for
non–AIDS-related mortality is complicated by the inclusion
of deaths that are not likely to be affected by treatment, such
as injuries. We assumed that cause-of-death information was
missing at random given measured covariates (9).

Causes of death in the National Death Index may be misclassi-
fied for at least 2 reasons. First, identifying a single cause of death
is difficult in many settings, and the level of consideration in as-
signing the underlying cause of death varies based on where the
death occurs and who fills out the death certificate. Second, algo-
rithms used for postprocessing of death certificates may reclassify
deaths among people with HIV due to non HIV-related causes to
one of the ICD-10 codes used for HIV-related mortality. Due to
the possibility of error in recording cause of death on death certifi-
cates forHIV-positive decedents, and an acknowledged unreliabil-
ity of reported AIDS-related deaths on death certificates (10), we
used a sensitivity analysis to explore how results might change if
the sensitivity and specificity of a report of AIDS-related death on
a death certificate were set to each of several plausible values. We
report results under the assumption of perfect measurement (i.e.,
sensitivity = specificity = 1) and under sensitivity analyses allow-
ing sensitivity to range from 1 to 0.9 and specificity to range from
0.95 to 0.9.

Statistical methods

The parametric g-formula. The quantities of interest are the
counterfactual risks of death due to each cause, or cumulative
incidence functions, under immediate therapy initiation and under
delayed therapy initiation (11). Formally, the risks are defined as

( ) = ( ≤ = )F t j P T t J j, ,g
g g , where Tg is the time from

CNICS enrollment to death from any cause under treatment plan
g, and Jg is the cause of death under treatment plan g.Tg and Jg

are potential outcomes because they are the outcomes that would
have occurred under treatment plan g.

The true potential outcomes are unobserved (12, 13).However,
under a set of assumptions, the g-formula provides consistent esti-
mates of the counterfactual risk functions under each treatment
plan based only on observed data. These assumptions include 1)
no measurement error of treatment plan, outcome, or covariates
(12); 2) exchangeability between participants in the study sample
observed to follow plan g and participants not following plan g,
perhaps conditional on a set of covariates Z ; 3) treatment plan
positivity, or that all participants have nonzero probability of fol-
lowing treatment plan g conditional on covariates Z (14); 4)
exchangeability between participants under complete observation
and participants lost to follow-up or missing key data at time t ,
perhaps conditional on covariates Z (15, 16); and 5) observation
positivity, or that all participants have nonzero probability of being
observed at time t , conditional on Z . Here, we relax assumption 1
to allow uncertainty in the cause-of-death designations.
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Details on implementation of the parametric g-formula in general and to compare ART strategies are described elsewhere (2, 5, 17).
Briefly, our implementation of the g-formula to estimate the effects of a treatment plan on cause-specific mortality involved modeling the
conditional probability of death due to any cause during eachmonth and the probability that a predicted deathwas due to the cause of inter-
est, given that the person was predicted to die during that month. The g-formula accounts for time-fixed and time-varying confounders
through a generalization of standardization in whichwe estimate the density of all possible covariate histories and sum the risk of mortality
over these histories (17, 18). Let ( )Y ti , ( )C ti , and ( )A ti be indicators of death from any cause, censoring (due to drop-out or reaching the
end of the study in calendar time), and treatment inmonth t for participant i, respectively. ( )Z ti represents a vector of covariates for partici-
pant i at time t , and Ji is an indicator that participant i died fromAIDS. The participant subscript i will be suppressedwhere possible below,
and overbarswill represent history.

If censoring is uninformative, the risk of dying due to cause j by time t under no intervention on treatment plan can be written
as equation 1:

∏

∑ ∑ ∑( ) = [ = | ( ) = ¯ ( ) = ¯ ( ) ¯ ( ) = ¯ ( ) ( − ) = ( ) = ]
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Under assumptions 1–4 above, the counterfactual risk at time t under treatment plan g can be consistently estimated (2, 5, 17, 19) as equa-
tion 2 below:

∏
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where, at time =t 0, ( − )Z t 1 is defined as the values of the covariates at CNICS enrollment, ( − ) =A t 1 0, and ( − ) =Y t 1 0.
In equation 2, we replace the estimated probability of receiving exposure a at time s in the observed data, [ ( ) = ( )| ¯ ( ) =P A s a s Z s

¯ ( ) ¯ ( − ) ( − ) = ( ) = ]z s a s Y s C s, 1 , 1 0 , with the probability of receiving treatment a at time s under treatment plan g,
[ ( ) = ( )| ¯ ( ) = ¯ ( ) ¯ ( − ) ( − )=P A s a s Z s z s a s Y s, 1 , 1g ( ) =C s ]0 . Note that this probability is set by the investigator. Under

“immediate treatment” ( = )g 0 , [ ( ) = | ¯ ( ) ==P A s Z s1g 0 ¯ ( ) ¯ ( − ) ( − ) = ( ) = ] =z s a s Y s C s, 1 , 1 0 1 for all time points. Under
delayed treatment ( = )g 1 , [ ( ) ==P A sg 1 | ¯ ( )=Z s1 ¯ ( ) ¯ ( − ) ( − ) = ( ) = ] =z s a s Y s C s, 1 , 1 0 1 if CD4 cell count was (or had ever
been observed) below 350 cells/mm3, and 0 otherwise. Z included time-fixed covariates, including sex, race, ethnicity, HIV–trans-
mission risk factor (history of injection-drug use ormale-to-male sexual contact), and age, year, CD4 cell count, and viral load at CNICS
enrollment. Z also contained time-varying covariates including CD4 cell count, viral load, andAIDS status at each clinic visit. Con-
tinuous variables weremodeled flexibly using restricted quadratic splines. In the results presented, we allowed a 6-month grace period (20)
for participants in the delayed treatment arm to initiate treatment after their CD4 cell counts dropped below 350 cells/mm3. Details on this
implementation of the parametric g-formula, including implementation of the grace period, are provided inWeb Appendix 1 (available at
https://academic.oup.com/aje).

Briefly, to implement an analysis using the parametric g-formula, one first estimates each of the conditional probabilities for the
cause of death among those who died, the probability of death due to any cause, and the density of time-varying covariates at each time
point in the observed data (step 1). In low-dimensional settings, such as when few binary covariates must be considered, these conditional
probabilities may be estimated nonparametrically. However, when Z is high-dimensional, parametric models are used to estimate one or
more components of the above equation. In step 2, a largeMonteCarlo sample of participants at CNICS enrollment is drawn (with replace-
ment) from the study population. The distribution of covariates at CNICS enrollment is estimated nonparametrically using the empirical
distribution in theMonte Carlo sample. In step 3, the investigator sets [ ( ) = ( )| ¯ ( )=P A s a s Z sg ¯ ( ) ¯ ( − ) ( − ) = ( ) = ]z s a s Y s C s, 1 , 1 0
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according to the treatment plan of interest and, in step 4, uses the conditional probabilities (or regression coefficients) estimated in step 1 to
simulate the follow-up experience for the participants in theMonte Carlo sample under each treatment plan. In this setting, some decedents
were missing information on cause of death. We imputed the causes of death for these individuals using the g-formula under the assump-
tion that cause-of-death datawasmissing at random (details are given inWebAppendix 2 includingWebTables 1 and 2). Details on using
penalized maximum likelihood to estimate the cause-of-death model in settings with few deaths due to a specific cause are provided in
WebAppendix 3.

Sensitivity analysis for outcome misclassification. The conditional probabilities in step 1 are typically estimated using pooled
linear-logistic regression fit by maximum likelihood. Logistic regression provides consistent estimates of the conditional probabili-
ties if models are correctly specified and treatment plans, covariates, and outcomes are measured without error in the observed data.

We confined our attention to accounting for error in the cause-of-death designation. If causes of death are misclassified, the conditional
probabilities or regression coefficients estimated in the model for cause of death in step 1 are likely to be incorrect. To illustrate this
point, consider the pooled logistic regression model we wish to fit in step 1 among participants known to die at time k:

τ = [ = | ( ) = ¯ ( ) = ¯ ( ) ¯ ( ) = ¯ ( ) ( − ) = ( ) = ]
= {β + β ¯ ( )+ β { ¯ ( )} + β ( )} ( )

P J Y k A k a k Z k z k Y k C k

A k h Z k h k

1 1, , , 1 0

expit , 30 1 2 3

where { }h x represents an arbitrary function of the given variable and ( ) = { + (− )}x xexpit 1/ 1 exp . To estimate the counterfactual risk
functions, consistent estimation ofβ = {β β β β }, , ,0 1 2 3 is necessary.

However, we observe error-prone cause of death ′J in place of J . A standard g-formula analysis (ignoring error in cause of death),
might fit a pooled logistic model for ′J :

τ′ = [ ′ = | ( ) = ¯ ( ) = ¯ ( ) ¯ ( ) = ¯ ( ) ( − ) = ( ) = ]
= {γ + γ { ¯ ( )}+ γ { ¯ ( )} + γ ( )} ( )

P J Y k A k a k Z k z k Y k C k

h A k h Z k h k

1 1, , , 1 0

expit . 40 1 2 3

If the sensitivity or specificity of ′J as ameasure for J is less than 1, then γ ≠ β, and the g-formula will no longer provide a consistent esti-
mate of the counterfactual risk function ( )F t j,g .

However, we can estimate the parameters of τ in step 1 under a range of plausible values for sensitivity and specificity bymodifying the
likelihood function for the cause-of-death model. Details on this procedure have been described previously for sensitivity analyses and to
account for misclassification in standard regression models in settings with validation data (21–24). Below, we describe how to
estimate the conditional probabilities in step 1 under a range of plausible values for the misclassification parameters (i.e., sensitivity and
specificity), as in a sensitivity analysis.

Table 1. Results from 1,000 Simulated Cohorts Illustrating the Performance of the Parametric G-Formula to Estimate the Risk DifferenceWhen
Sensitivity and Specificity are Known

Scenario Specificity Sensitivity
Standard G-Formula Modified G-Formula

Risk Difference Biasa Standard Errorb MSEc Risk Difference Bias Standard Error MSE

1 1.0 1.0 10.45 0.15 1.09 1.22 10.45 0.15 1.09 1.22

2 0.9 0.9 9.04 −1.25 1.22 3.04 10.49 0.20 1.44 2.11

3 0.9 0.7 6.99 −3.30 1.24 12.44 10.39 0.10 1.98 3.93

4 0.7 0.9 8.92 −1.37 1.33 3.67 10.76 0.47 1.84 3.61

5 0.7 0.7 6.99 −3.31 1.40 12.91 10.77 0.47 2.97 9.05

Abbreviation: MSE,mean squared error.
a Bias was defined as the difference between the true risk difference and the estimated risk difference.
b Standard error was estimated as the standard deviation of the bias.
c MSEwas the sum of the squared bias and the variance.
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We begin by specifying the logistic likelihood for the cause-
of-death model in the true data:

∏(β) = τ ( − τ ) ( )
=

( − )L 1 5
i

N

i
j

i
j

1

1i i

Because the true cause-of-death indicator J is not available, we
rewrite the likelihood using the error-prone cause-of-death indica-
tor ′J and investigator-assigned misclassification probabilities
(i.e., sensitivity ( )se and specificity ( )sp ) as follows:

∏(β) = {τ × + ( − τ ) × ( − )}

× {( − τ ) × + τ × ( − )} ( )
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1 1
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where = ( ′ = | = )se P J J1 1 and = ( ′ = | = )sp P J J0 0 . We
assume thatmisclassification is nondifferential with respect to co-
variates, although in settings with rich validation data or prior
knowledge, sensitivity and specificity can be estimated condi-
tional on covariates (23).

If the values of sensitivity and specificity are correct, themod-
ified likelihood function given by equation 6 will provide con-
sistent estimates for β that match the estimates that would be
obtainedby applying the likelihood function shown in equation 5
to the true data. However, estimates obtained using the modified
likelihood function will be less precise than estimates from the
true data as sensitivity and specificitymove away from 1.

We evaluated the finite sample performance of the proposed
approach using simulation experiments. Specifically, we com-
pared bias (i.e., the difference between the true value and the esti-
mated value), the standard deviation of the bias, and mean
squared error (i.e., the sum of the bias squared and the variance
of the bias) between the standard g-formula and the g-formula
modified to account for outcomemisclassification under several
levels of misclassification severity. Details on the design of the
simulation studies can be found inWebAppendix 4.

RESULTS

In simulation experiments, the bias in the standard g-formula
increased as sensitivity and specificity decreased (Table 1). The
modified g-formula approach had little bias in all scenarios exam-
ined if presumed values of sensitivity and specificity were correct.
However, estimates obtained using the modified approach also
became less precise as the quality of the outcome measurement
deteriorated, resulting in increasing mean squared error, although
mean squared error was smaller for the modified g-formula
approach than for the standard g-formula approach in all scenarios.
If the presumed values of sensitivity and specificitywere incorrect,
the modified g-formula approach yielded estimates with residual
bias due to misclassification, although bias was not as severe as
under the standard g-formula approach in which sensitivity and
specificity were assumed to be 1 (Figure 1).

Table 2 presents the characteristics of the study population at
CNICS enrollment. Of the 3,882 patients who entered care at
a CNICS site between 1998 and 2014 with a CD4 cell count
over 500 cells/mm3, 82%weremale (n = 3,193), 34%were black

(n = 1,338), and 68% were men who have sex with men (n =
2,635). At CNICS enrollment, the median calendar year was
2006 (interquartile range, 2002–2010), themedian agewas 36 (in-
terquartile range, 28–43) years, the median CD4 cell count was
648 (interquartile range, 567–783) cells/mm3, and themedian viral
loadwas 11,253 (interquartile range, 3,072–42,777) copies/mL.

Of the 3,882 patients included in the analysis, 2,089 initiated
ART during the study period, 1,450 patients were lost to CNICS
follow-up whileART-naive, and 721patientswere lost toCNICS
follow-up after starting ART. During the 10 years of follow-up,
178 deaths occurred, including 36 AIDS-related deaths, 74 non–
AIDS-related deaths, and 68 deaths with unknown cause.

Table 2. Demographic and Clinical Characteristics at Enrollment of
3,882 Eligiblea Patients at 8 Clinical Sites,Who Entered Treatment
Between January 1, 1998, and December 31, 2014, andWere
Followed for Mortality for up to 10 Years, Centers for AIDSResearch
Network of Integrated Clinical Systems, United States

Characteristic

At CNICS Enrollment
(n = 3,882)

No. of Patients %

Male sex 3,193 82

Black race 1,338 34

Hispanic ethnicity 334 9

Injection-drug user 500 13

MSM 2,635 68

AIDS 215 6

Age group, years

18–30 1,272 33

31–50 2,277 59

>50 333 9

CD4 cell count at entry

500–600 1,411 36

601–750 1,293 33

751–1,000 881 23

>1,000 297 8

CD4 cell count at ART

0–200 100 3

201–350 287 7

351–500 393 10

>500 1,309 34

Did not initiate ARTwhile in the study 1,793 46

Year of CNICS enrollment

1998–2002 1,062 27

2003–2007 1,179 30

2008–2014 1,641 42

Abbreviations: AIDS, acquired immune deficiency syndrome; ART,
antiretroviral therapy; CNICS, Centers for AIDS Research Network of
Integrated Clinical Systems; MSM,menwho have sex with men.

a Eligible patients were ART-naive, virally unsuppressed patients
who were linked to care at a CNICS site with an initial CD4 cell count
above 500 cells/mm3.
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Table 3. Standardized 10-Year Risk of Mortality According toWhether DeathWas Related to Acquired Immune Deficiency Syndromea, Among 3,882 Eligibleb PatientsWho Entered
Treatment at 8 Clinical Sites Between January 1, 1998, and December 31, 2014, Centers for AIDS Research Network of Integrated Clinical Systems, United States

Analysis Type and
Treatment Arm Sensitivity Specificity

AIDS-Related Mortality Non–AIDS-Related Mortality

10-Year Risk
(%)

Risk
Ratio 95%CI Risk

Difference 95%CI 10-year Risk
(%)

Risk
Ratio 95%CI Risk

Difference 95%CI

Standard analysis

No intervention 1.00 1.00 3.67 8.47

Immediate ART 1.00 1.00 2.11 1.00 Referent 0 Referent 8.05 1.00 Referent 0 Referent

Delayed ART 1.00 1.00 3.64 1.73 1.17, 2.54 1.53 0.62, 2.45 8.43 1.05 0.86, 1.27 0.38 −1.19, 1.95

Sensitivity analyses

Scenario 1

No intervention 1.00 0.95 3.32 8.74

Immediate ART 1.00 0.95 1.85 1.00 Referent 0 Referent 8.30 1.00 Referent 0 Referent

Delayed ART 1.00 0.95 3.27 1.76 1.12, 2.77 1.41 0.43, 2.40 8.75 1.06 0.88, 1.28 0.50 −1.08, 2.07

Scenario 2

No intervention 1.00 0.90 3.13 9.13

Immediate ART 1.00 0.90 1.59 1.00 Referent 0 Referent 8.57 1.00 Referent 0 Referent

Delayed ART 1.00 0.90 3.05 1.91 1.04, 3.51 1.46 0.34, 2.57 9.19 1.05 0.87, 1.27 0.45 −1.14, 2.05

Scenario 3

No intervention 0.95 0.90 3.25 8.96

Immediate ART 0.95 0.90 1.65 1.00 Referent 0 Referent 8.49 1.00 Referent 0 Referent

Delayed ART 0.95 0.90 3.12 1.89 1.13, 3.14 1.47 0.45, 2.48 9.08 1.05 0.86, 1.29 0.44 −1.10, 1.99

Scenario 4

No intervention 0.90 0.95 3.60 8.55

Immediate ART 0.90 0.95 1.93 1.00 Referent 0 Referent 8.27 1.00 Referent 0 Referent

Delayed ART 0.90 0.95 3.59 1.86 1.19, 2.91 1.66 0.64, 2.68 8.44 1.03 0.85, 1.26 0.25 −1.32, 1.81

Scenario 5

No intervention 0.90 0.90 3.31 8.85

Immediate ART 0.90 0.90 1.70 1.00 Referent 0 Referent 8.50 1.00 Referent 0 Referent

Delayed ART 0.90 0.90 3.27 1.93 1.18, 3.14 1.57 0.58, 2.57 9.04 1.04 0.85, 1.27 0.34 −1.19, 1.86

Abbreviations: AIDS, acquired immune deficiency syndrome; ART, antiretroviral therapy; CI, confidence interval.
a Participants could have received no intervention, immediate ART, or delayed ART. In the delayed group, patients initiated ART at their first visit at which CD4 cell count was<350 cells/mm3

or the patient was diagnosed with AIDS.
b Patients who entered care with a CD4 cell count over 500 cells/mm3 were eligible and were followed for death for up to 10 years.
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Because the number of deaths observed to be AIDS-related was
small, we estimated the parameters in the cause-of-death model
using penalized maximum likelihood as described in Web
Appendix 3.

Under no intervention on treatment, the 10-year risk of all-
cause mortality was 12%. The risk ratio comparing all-cause
mortality under immediate treatment to delayed treatment was
1.19 (95% confidence interval (CI): 0.98, 1.56), and the risk dif-
ference was 1.91% (95%CI: 0.72, 2.60).

Using the standard g-formula approach assuming nomisclas-
sification, the estimated 10-year risk of AIDS-related mortality
increased from 2.11% under immediate treatment to 3.64% under
delayed treatment, for a risk ratio of 1.73 (95% CI: 1.17, 2.54)
and a risk difference of 1.53% (95% CI: 0.62, 2.45) (Table 3).
The 10-year risk of non–AIDS-related mortality increased from
8.05% under immediate treatment to 8.43% under delayed treat-
ment, for a risk ratio of 1.05 (95%CI: 0.86, 1.27) and a risk differ-
ence of 0.38% (95%CI:−1.19, 1.95).

Lower rows of Table 3 present results allowing for varying de-
grees of misclassification of cause of death. Under all treatment
plans, as specificity moved away from 1, the estimated 10-year
cumulative incidence of mortality due to AIDS decreased, while
mortality due to non-AIDS causes increased. As sensitivity also
moved away from 1, the cumulative incidence estimates de-
pended on the relative values of sensitivity and specificity.
For all scenarios assuming imperfect cause-of-death ascer-
tainment, the risk ratio comparing AIDS-related mortality
between immediate and delayed treatment was further from
the null than the risk ratio under perfect cause-of-death ascertain-
ment, although estimates were less precise. Risk ratios comparing
non–AIDS-relatedmortality between treatment plansweremostly
unchanged as sensitivity and specificity moved away from 1 but
were also less precise.
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Figure 1. Simulation results illustrating the bias (A), standard error
(B), and mean squared error (C) under the proposed approach to esti-
mate the risk difference in a cohort of 3,000 patients when true sensi-
tivity = specificity = 0.75 under various presumed values of (equal)
sensitivity and specificity in 1,000 simulation experiments. Dashed
lines refer to the value one would see under a standard analysis
(assuming perfect sensitivity and specificity) and dotted lines refer to
the value one would see under an analysis that correctly assumed
sensitivity and specificity to be 0.75.
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Figure 2. Standardized cumulative incidence functions for mortality
related to acquired immune deficiency syndrome, under immediate
and delayed treatment conditions, using standard analysis and sensi-
tivity analysis (setting sensitivity to 95% and specificity to 90%),
among 3,882 patients who entered care with a CD4 cell count over
500 cells/mm3 between January 1, 1998, and December 31, 2014, at
8 clinical sites, and who were followed for death for up to 10 years,
Centers for AIDS Research Network of Integrated Clinical Systems,
United States.
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Figure 2 presents graphical results under the assumption that
sensitivity was 95% and specificity was 90%. Figures illustrating
the cumulative incidence for AIDS-related mortality under each
of the other scenarios examined in the sensitivity analyses are pre-
sented inWeb Figure 1.

DISCUSSION

Here, we have described and demonstrated a method to esti-
mate effects of dynamic treatment plans on cause-specific mortal-
ity under various assumptions about misclassification of cause of
death. Results from simulation experiments indicate that account-
ing for outcomemisclassification using the proposed approach re-
duces both bias and mean squared error in estimates of the risk
ratio, provided that sensitivity and specificity are known.

Error in cause-of-death designations is sometimes addressed
using an adjudication process. For example, the CoDe protocol
(10) is a standardized adjudication process for determining the
cause of death among HIV-positive decedents through medical
record review. However, adjudication is a resource-intensive pro-
cess thatmay be prohibitively expensive. In addition, adjudication
procedures are subject to error themselves and are limited by
missing data, given that many deaths occur outside medical care
settings. The proposed approach provides a framework for incor-
porating previously developed approaches to account for outcome
misclassification into the parametric g-formula in settings where
adjudication is infeasible or where one wishes to account for pos-
sible error in an adjudication process.

Magder andHughes (25), Lyles et al. (23), Edwards et al. (24,
26), and others (27) have described approaches to account for
outcomemisclassification in regression models using maximum
likelihood–based approaches. Here, we show how tomodify the
likelihood of one of the regressionmodels used in the parametric
g-formula to reduce bias in counterfactual risk functions for
cause-specific mortality. As in the maximum likelihood–based
approaches to account for measurement error in regression mod-
els described elsewhere, our approach to this sensitivity analysis
could be extended to allow sensitivity and specificity to differ ac-
cording to treatment history or values of other covariates. For
example, with additional information on the performance of the
cause-of-death designation on death certificates in the presence
of specific comorbidities, this approach could be extended to
allow sensitivity and specificity to vary as a function of comor-
bid conditions or to cluster within hospitals.

In each scenario explored in the sensitivity analysis, we
assumed the values of sensitivity and specificity were known
without error. This approach could be extended to incorporate
internal or external validation data as in Lyles et al. (23) or to place
prior distributions on sensitivity and specificity (28–30). One
could place prior distributions on sensitivity and specificity using
the data priors described by Greenland (31, 32) or within the con-
text of a Bayesian implementation of the parametric g-formula
(33, 34). For both the sensitivity-analysis approach presented here
and the Bayesian approach, the investigator must incorporate
external knowledge about the likely values of sensitivity and spec-
ificity. Because the observed data offer some constraints on the
joint distribution of possible values of sensitivity and specificity
(35, 36), only a portion of the possible combinations of sensitivity
and specificity must be explored. For example, because only 36

AIDS-related deaths were reported out of 178 total deaths, the
lower bound on specificity was around 80% (i.e., there could
have been nomore than 36/178 = 20% false positives).

Sensitivity and specificity estimated from validation data
or from prior knowledge are subject to uncertainty. With val-
idation data, one could allow this uncertainty to propagate
through the analysis to the final point estimate by resampling
both the validation data and the main study data in each bootstrap
sample. With prior knowledge, one could accomplish this by
drawing values of sensitivity and specificity from their prior distri-
butions in each bootstrap sample. In each case, the resulting 95%
confidence interval would incorporate both random error in the
main study data and uncertainty in the values of sensitivity and
specificity (32). In contrast, 95% confidence intervals from the
sensitivity-analysis approach presented here incorporated only
random error in themain study, representing the amount of uncer-
tainty we would have in each scenario if the proposed values of
sensitivity and specificitywere known to be correct.

We also assumed that the month of death was known. In coun-
trieswith established death registries, this assumption is likely real-
istic. However, in resource-limited settings with no national death
registry, the vital status in a given month may also be subject to
error. In these cases, the proposed approach may not yield consis-
tent estimates of the counterfactual cause-specific mortality func-
tions without further modification to the likelihood to account for
error in vital status in each month as well as the cause of death.
Similarly, extensions to the proposed method will be required to
account for outcome misclassification for other endpoints (e.g.,
disease incidence) in which the timing and event type are subject
to error.

In conclusion, we have shown how the parametric g-formula
can be used to estimate counterfactual cumulative incidence
functions for cause-specific mortality when event types are mis-
classified if the sensitivity and specificity of the cause-of-death
designation are known. When sensitivity and specificity are not
known, this approach can be used to estimate the effects of
dynamic treatment plans under a range of plausible values of
sensitivity and specificity of the recorded event type.
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