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Tobacco use, hypertension, hyperglycemia, overweight, and inactivity are leading causes of overall and cardiovascu-
lar disease (CVD) mortality worldwide, yet the relevant metabolic alterations responsible are largely unknown. We con-
ducted a serum metabolomic analysis of 620 men in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study
(1985–2013). During 28 years of follow-up, there were 435 deaths (197 CVD and 107 cancer). The analysis included
406 knownmetabolitesmeasuredwith ultra-high-performance liquid chromatography/mass spectrometry–gas chroma-
tography/mass spectrometry. We used Cox regression to estimate mortality hazard ratios for a 1-standard-deviation
difference in metabolite signals. The strongest associations with overall mortality were N-acetylvaline (hazard ratio
(HR) = 1.28; P < 4.1 × 10−5, below Bonferroni statistical threshold) and dimethylglycine, 7-methylguanine, C-glycosyl-
tryptophan, taurocholate, and N-acetyltryptophan (1.23 ≤ HR ≤ 1.32; 5 × 10−5 ≤ P ≤ 1 × 10−4).C-Glycosyltryptophan,
7-methylguanine, and 4-androsten-3β,17β-diol disulfate were statistically significantly associated with CVD mortality
(1.49 ≤ HR ≤ 1.62, P < 4.1 × 10−5). No metabolite was associated with cancer mortality, at a false discovery rate of
<0.1. Individuals with a 1-standard-deviation higher metabolite risk score had increased all-cause and CVDmortality in
the test set (HR = 1.4,P = 0.05; HR = 1.8,P = 0.003, respectively). The several serummetabolites and their composite
risk score independently associated with all-cause and CVDmortality may provide potential leads regarding themolec-
ular basis of mortality.

7-methylguanine; all-causemortality; bile acids; cardiovascular diseasemortality;C-glycosyltryptophan;
dimethylglycine;N-acetylvaline; serummetabolomics

Abbreviations: ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention; CVD, cardiovascular disease; FDR, false discovery
rate; HR, hazard ratio; ICD, International Classification of Diseases; SD, standard deviation.

Leading causes of mortality worldwide include tobacco use,
overweight, hypertension, hyperglycemia, and physical inactiv-
ity (1), with these risk factors contributing to a higher risk of
cardiovascular disease (CVD), diabetes, and cancer. However,
the underlying biological mechanisms and biochemical actions
that could serve as therapeutic or preventive targets are not
completely understood. Advances in laboratory technologies of
liquid and gas chromatography, mass spectrometry and nuclear
magnetic resonance have enabled population-based metabolo-
mic studies to quantify a broader spectrum of low–molecular
weight metabolites in biospecimens, including serum. Suchmeta-
bolomic profiles reflect influence of exogenous and endogenous

exposures and, when coupled with health status, may offer insight
into biochemical pathways involved in disease pathogenesis and
mortality.

Very limited prospective population data exist relating circu-
latingmetabolites to overall mortality. One targeted study found
that 4 out of 106 plasma biomarkers were associated with all-
cause andCVDmortality in the Estonian Biobank and FINRISK
study (n = 17,345) (2), but these were primarily large proteins or
lipoproteins with known CVD functions (i.e., α-1-acid glycopro-
tein, albumin, and very-low-density lipoprotein particle size).
Another untargeted serum metabolomic analysis identified that
9 out of 204 metabolites (including cotinine, mannose, and
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γ-glutamyl-leucine) were associated with all-cause mortality
among 1,887 African Americans in the Atherosclerosis Risk
in Communities (ARIC) Study (3).

To evaluate serum metabolites independently associated
with mortality risk, we conducted an untargeted, prospective,
serummetabolomic analysis of overall mortality in the Alpha-
Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study
cohort, with up to 28 years of outcome follow-up.

METHODS

Study population

Details of ATBC Study have been documented elsewhere (4).
Briefly, a total of 29,133 male smokers aged 50–69 years were
recruited into the trial from 1985 to 1988 in southwest Finland.
Participants were randomly assigned to receive α-tocopheryl-
acetate (50 mg), β-carotene (20 mg), both, or placebo daily for
5–8 years. At a baseline, presupplementation visit, fasting blood
sampleswere collected and stored at−70°C; risk-factor question-
naires were completed; and height, weight, and total and high-
density lipoprotein cholesterol were measured (4). The ATBC
Study was approved by institutional review boards at the US
National Cancer Institute and the FinnishNational PublicHealth
Institute. All participants provided written informed consent.

The present analysis is based on control participants without
cancer (cancer-free at the index date) previously selected for one
of 5 metabolomic studies nested within the ATBC Study (Web
Figure 1 (available at https://academic.oup.com/aje): metabolo-
mic set 1 (n = 186), metabolomic set 2 (n = 38), metabolomic
set 3 (n = 67), metabolomic set 4 (n = 131), and metabolomic
set 5 (n = 198)) (5–7). After excluding duplicate samples, our
study included 620 men.

Outcome assessment

All-cause mortality, CVD-related mortality, and cancer-related
mortality were ascertained through December 31, 2013, using the
Causes of Death registry, Statistics Finland. All-cause mortality
was defined as death from any cause, CVDmortality was defined
where the underlying cause of death was CVD (International
Classification of Diseases (ICD), ninth or tenth revision: ICD-9
codes 390–459 or ICD-10 codes I00–I99), andmalignant neo-
plasms as underlying cause of death defined cancer mortality
(ICD-9 codes 140–208 or ICD-10 codes C00–C96).

Metabolite assays

Fasting serum metabolites were measured using high-
resolution, accurate-mass ultrahigh-performance liquid chro-
matography/mass spectroscopy and gas chromatography/mass
spectroscopy at Metabolon, Inc. (Durham, North Carolina).
Methodologic details of sample preparation, quality control,
data extraction, and compound identification were described
previously (8, 9). Metabolites with fewer than 10 nonmissing
values within each metabolomic set were excluded, with 906
metabolites identified in at least one of the 5 metabolomic
sets. After further excluding metabolites missing from 2 or
more of the metabolomic sets, 406 metabolites remained in
the final analysis. Of these, 406 metabolites were categorized

into one of 8 chemical classes: amino acids, carbohydrates, co-
factors and vitamins, energy metabolites, lipids, nucleotides,
peptides, and xenobiotics (Web Table 1). Quality-control sam-
ples (9%) were assigned to each batch to evaluate technical reli-
ability, and a coefficient of variation was calculated (median
coefficient of variation = 9% (interquartile range, 4–20)) (5–7).
In previous studies, we and others have evaluated the within-
individual variability of metabolites over time. These studies
have found that the median intraclass correlation coefficient
of metabolites, based on samples separated by between 4 months
and 2 years, was approximately 0.5 (10–12).

Statistical analysis

We batch-normalized each metabolite by dividing by the
batch median. Undetected values (missing values) within each
metabolite were imputed to the minimum value. The metabo-
lite levels were then processed through log-transformation
and normalization. Within each of the 5 data sets, we exam-
ined the association between the metabolite level and all-cause,
CVD, and cancer mortality using Cox proportional hazard
regression, using attained age as the time scale. For Cox regres-
sion, among subjects included in the nested case-control studies,
start date was the index date at which the individually matched
case was diagnosed with cancer. Among subjects included
in the evaluation of vitamin supplementation (5), the start date
was the baseline enrollment date. We thus removed from our
analysis “immortal” person-time (13), which is the person-time
during which an event case could not have occurred. In the
models, we adjusted for age at blood collection (continuous),
body mass index (calculated as weight (kg)/height (m)2; continu-
ous), number of cigarettes per day (continuous), total cholesterol
(continuous), high-density lipoprotein cholesterol (continuous),
history of hypertension (elevated blood pressure), history of dia-
betes mellitus, and serum creatinine (continuous). ATBC inter-
vention group (as a categorical variable) was omitted because it
was not associated with baseline serum levels. We additionally
adjusted for physical activity and dietary factors (total energy
intake, fruit intake, vegetable intake, and red meat consump-
tion) as potential confounder factors in the models, and they
did not change the effect of any metabolite remarkably, thus
they were not included in the final model. We then performed
afixed-effectmeta-analysis to obtain single estimated hazard ratios
and 95% confidence intervals to describe the association between
each metabolite level with all-cause, CVD, and cancer-related
mortality. We also fitted crude models for our top metabolite sig-
nals that adjusted only for age at blood collection (continuous) in
order to evaluate and not overadjust for potential mediators. To
account for multiple testing (14), a Bonferroni-corrected threshold
of statistical significance was defined as P < 4.1 × 10−5 (across
tests for 406metabolites and 3 outcomes).

Each metabolomic set was divided into a training set and test
set (70% and 30%, respectively). Using only the former, we
identifiedmetabolites (false discovery rate (FDR)< 0.1) associ-
ated with all-cause mortality (number of metabolites = 12),
CVDmortality (n = 12), and cancermortality (n = 0; no further
training-test analysis). In each training set, we performed a Cox
regression with all qualifying metabolites and then used fixed-
effects meta-analysis to obtain a single set of coefficients. In the
test set, we constructed a metabolite risk score, a linear sum of
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metabolite levels weighted by their corresponding coefficients.
Then the metabolite risk score was normalized and used as both
a continuous variable (per standard deviation (SD)) and catego-
rized quartiles to estimate the associations with each outcome
(all-cause or CVD mortality), using Cox proportional hazard
regression (attained age as time scale). All models adjusted for
multiple covariates as described above. If the number of covari-
ates exceeded the size of the training set (or the model fit did
not converge) for one of the 5 data sets, results from that train-
ing set were not included in the meta-analysis.

Pathway analyses assessed the associations between chemi-
cal classes and subclasses of metabolites and mortality. For
each pathway, we created a single measure of significance, a P
value based on Fisher’s statistic (e.g., sum of log-P values) to
combine the P values for the score statistics from the Cox
regression (after adjustment for multiple covariates). Because
of the correlation between metabolites, we calculated the
P value based on Fisher’s statistic using a parametric boot-
strap (15, 16). For each bootstrap replication, we gener-
ated a vector of score test statistics from a multivariate
normal distribution with mean 0 and estimated covariance
matrix (15). Fisher’s statistic was recalculated for each
replication, and the reported P value for each pathway is
the proportion of the 105 permutations where the permuted
statistic is more extreme than the observed value.

Correlations between top metabolites for the 3 outcomes were
estimated using Pearson’s coefficient. Metabolites with r values
greater than 0.5 or lower than −0.5 were considered highly posi-
tively or negatively correlated, respectively. We used SAS, ver-
sion 9.3 (SAS Institute, Inc., Cary, North Carolina), and
R, version 3.2.3 (R Foundation for Statistical Computing,
Vienna, Austria), for all analyses. All reported P values were
2-sided.

RESULTS

Baseline characteristics of the study population in each me-
tabolomic set are presented in Table 1. A total of 620 partici-
pants were included from the 5 metabolomic sets, with a
follow-up period of up to 28 years (median, 10.7 years (inter-
quartile range, 5.7–18.5 years)), during which there were 435
deaths, including 197 CVD deaths and 107 cancer deaths. We
observed no meaningful differences in these characteristics
across sets.

Metabolites associated with all-causemortality

After adjustment for multiple covariates, metabolites associ-
ated with all-cause mortality with a FDR of ≤0.05 are shown in
Table 2, sorted by P value. The amino acid N-acetylvaline,

Table 1. Baseline Characteristics of 620Men in 5Metabolomic Sets in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study, Finland,
1985–2013a

Characteristic
Metabolomic Set 1

(n = 186)
Metabolomic Set 2

(n = 38)
Metabolomic Set 3

(n = 67)
Metabolomic Set 4

(n = 131)
Metabolomic Set 5

(n = 198)
Median (IQR) Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Age at baseline, years 58 (53–61) 60 (56–63) 56 (53–62) 57 (54–61) 59 (55–64)

Follow-up time, years 20.2 (13.7–26.9) 9.0 (5.4–14.3) 6.2 (3.7–9.7) 8.5 (4.6–13.5) 8.4 (3.6–13.5)

No. of deaths

All-causemortality 128 29 39 94 145

CVDmortality 63 13 16 53 52

Cancer mortality 34 9 10 20 34

BMIb, mean 26.0 26.0 26.3 26.2 26.0

Smoking, cigarettes/day 20 (15–25) 18 (10–20) 20 (15–25) 20 (15–24) 20 (13–25)

SerumHDL cholesterol,
mmol/L

1.1 (1.0–1.3) 1.2 (1.0–1.3) 1.1 (1.0–1.4) 1.2 (1.0–1.4) 1.1 (1.0–1.3)

Serum total cholesterol,
mmol/L

6.3 (5.6–7.1) 6.3 (5.6–6.8) 6.3 (5.3–7.1) 6.4 (5.6–6.9) 6.2 (5.4–6.8)

History of hypertension, % 16.1 10.5 10.5 21.4 17.7

History of diabetesmellitus, % 4.3 2.6 1.5 3.1 4.0

Physically active, % 24.2 21.1 23.9 24.4 19.2

Dietary intake per day

Total energy, kcal 2,648 (2,231–3,063) 2,532 (2,060–3,122) 2,614 (2,255–3,084) 2,601 (2,222–3,024) 2,598 (2,070–3,066)

Fruit, g 121 (62–200) 131 (72–182) 124 (73–207) 110 (63–185) 98 (57–170)

Vegetables, g 113 (74–162) 116 (58–158) 106 (65–167) 102 (73–149) 98 (66–146)

Redmeat, g 68.5 (52.2–95.5) 63.1 (49.6–83.6) 69.6 (49.5–90.7) 68.3 (49.5–88.9) 67.0 (49.0–88.1)

Abbreviations: BMI, bodymass index; CVD, cardiovascular disease; HDL, high-density lipoprotein; IQR, interquartile range.
a Data for continuous variables are shown asmedian (IQR); otherwise as indicated.
b Calculated as weight (kg)/height (m)2.

Am J Epidemiol. 2018;187(8):1721–1732

SerumMetabolomic Profiling of All-CauseMortality 1723



which achieved statistical significance at the Bonferroni-
corrected threshold for multiple tests, along with dimethyl-
glycine, 7-methylguanine, C-glycosyltryptophan, taurocholate,
and N-acetyltryptophan, showed the strongest signals, being
positively associated with all-cause mortality after adjusting for

conventional risk factors (meta-analysis hazard ratios (HRs)
per SD metabolite increase were 1.23–1.32, and 2.02 × 10−5 ≤
P < 1.38 × 10−4; all subsequent HRs are fully adjusted). The
next most significant metabolites related to higher overall mor-
tality included erythronate, 4-androsten-3β,17β-diol disulfate 1,

Table 2. Associations Between All-CauseMortality and SerumMetabolitesa in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study,
Finland, 1985–2013

Metabolite Chemical Class Chemical Subclass HRb 95%CI P Value

N-Acetylvalinec Amino acid Valine, leucine, and isoleucinemetabolism 1.28 1.14, 1.43 2.02 × 10−5

Dimethylglycine Amino acid Glycine, serine, and threoninemetabolism 1.26 1.13, 1.40 4.56 × 10−5

7-Methylguanine Nucleotide Purinemetabolism, guanine-containing 1.31 1.15, 1.51 8.77 × 10−5

C-Glycosyltryptophan Amino acid Tryptophanmetabolism 1.32 1.15, 1.51 9.18 × 10−5

Taurocholate Lipid Primary bile acid metabolism 1.23 1.10, 1.36 1.33 × 10−4

N-Acetyltryptophan Amino acid Tryptophanmetabolism 1.24 1.11, 1.39 1.38 × 10−4

Erythronate Carbohydrate Aminosugar metabolism 1.23 1.09, 1.39 6.62 × 10−4

4-Androsten-3β,17β-diol disulfate 1 Lipid Sterol/steroid 1.21 1.08, 1.36 7.46 × 10−4

N-Acetylmethionine Amino acid Cysteine, methionine, SAM, taurinemetabolism 1.23 1.09, 1.39 7.62 × 10−4

5,6-Dihydrothymine Nucleotide Pyrimidinemetabolism, thymine-containing 1.28 1.11, 1.48 9.46 × 10−4

Hexanoylcarnitine Lipid Carnitinemetabolism 1.20 1.08, 1.34 1.17 × 10−3

Palmitoleate (16:1n7) Lipid Long-chain fatty acid 1.20 1.08, 1.35 1.26 × 10−3

5-Dodecenoate (12:1n7) Lipid Medium-chain fatty acid 1.20 1.08, 1.35 1.29 × 10−3

N-Acetylphenylalanine Amino acid Phenylalanine and tyrosinemetabolism 1.20 1.07, 1.34 1.33 × 10−3

Myristoleate (14:1n5) Lipid Long-chain fatty acid 1.20 1.07, 1.35 1.37 × 10−3

N1-Methylguanosine Nucleotide Purinemetabolism, guanine-containing 1.23 1.08, 1.39 1.37 × 10−3

Docosadienoate (22:2n6) Lipid Long-chain fatty acid; polyunsaturated fatty acid
(n3 and n6)

1.18 1.06, 1.32 2.70 × 10−3

Taurochenodeoxycholate Lipid Primary bile acid metabolism 1.22 1.07, 1.39 2.73 × 10−3

Homocitrulline Amino acid Urea cycle; arginine and prolinemetabolism 1.24 1.08, 1.44 2.81 × 10−3

3-Hydroxycotinine glucuronide Xenobiotics Tobaccometabolite 1.26 1.08, 1.47 2.86 × 10−3

N-Formylmethionine Amino acid Cysteine, methionine, SAM, taurinemetabolism 1.20 1.06, 1.36 3.49 × 10−3

3-Methyl catechol sulfate 1 Xenobiotics Benzoate metabolism 1.18 1.05, 1.32 3.86 × 10−3

4-Acetamidobutanoate Amino acid Guanidino and acetamidometabolism;
polyaminemetabolism

1.23 1.07, 1.41 3.88 × 10−3

γ-Glutamyltryptophan Peptide γ-Glutamyl amino acid 1.19 1.06, 1.34 3.96 × 10−3

Asparagine Amino acid Alanine and aspartate metabolism 0.86 0.78, 0.96 4.55 × 10−3

N-Acetyltyrosine Amino acid Phenylalanine and tyrosinemetabolism 1.16 1.05, 1.29 5.19 × 10−3

Xylose Carbohydrate Pentose metabolism 1.17 1.05, 1.31 5.31 × 10−3

3-Methyl catechol sulfate 2 Xenobiotics Benzoate metabolism 1.22 1.06, 1.39 5.43 × 10−3

N2,N2-Dimethylguanosine Nucleotide Purinemetabolism, guanine-containing 1.20 1.05, 1.36 5.58 × 10−3

3-Hydroxybutyrate (BHBA) Lipid Ketone bodies 1.17 1.05, 1.30 5.78 × 10−3

4-Vinylphenol sulfate Xenobiotics Benzoate metabolism 1.17 1.05, 1.31 6.20 × 10−3

Abbreviations: CI, confidence intervals; HDL, high-density lipoprotein; HR, hazard ratios; SAM,S-adenosylmethionine; SD, standard deviation.
a Metabolites were natural log-transformed and standardized (mean = 0, variance = 1). All 620 participants were included in each test, except

for metabolites 5,6-dihydrothymine, taurochenodeoxycholate, homocitrulline, and 3-hydroxycotinine glucuronide (missing metabolic data from set
1 (n = 186), thus a total of 434 participants were included in these tests), for metabolitesN-acetyltryptophan and 3-methyl catechol sulfate (missing
metabolic data from set 2 (n = 38): a total of 582 participants were included in these tests). False discovery rate of≤0.05.

b For each study set, we used attained age as timemetric in the Cox proportional hazards regressionmodel, and we adjusted for age at baseline,
body mass index, number of cigarettes per day, total cholesterol, HDL cholesterol, history of hypertension (elevated blood pressure), history of dia-
betes mellitus, and serum creatinine. The reported HR (per SD) and P value were obtained from meta-analysis, which was conducted using a
fixed-effects model to pool the study sets estimates.

cN-acetylvaline achieved statistical significance after Bonferroni correction for multiple tests.
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N-acetylmethionine, and 5,6-dihydrothymine (all P < 9 × 10−4).
In addition, increased serum metabolites in long-chain fatty-
acid metabolism (e.g., palmitoleate, myristoleate, and doco-
sadienoate), purine metabolism (e.g., N1-methylguanosine and
N2,N2-dimethylguanosine), and benzoate metabolism (e.g.,
3-hydroxycotinine glucuronide, 3-methyl catechol sulfate 1 and
2)were associatedwith an increased all-causemortality (Table 2).
Associations for the top metabolite signals and all-cause mortal-
ity in the crude models, which adjusted only for age at blood col-
lection, did not differ materially from the multivariable models
(data not shown).

We combined the 12 metabolites identified from the train-
ing set with an FDR of <0.1 (Table 3) to yield a metabolite
risk score and observed an elevated mortality in the test set
for men having a higher score (HR = 1.38 per SD, 95% confi-
dence interval: 1.08, 1.75; Table 3). For the categorized metabo-
lite risk score, individuals in the third and fourth quartiles showed
94% and 73% higher mortality, respectively, than those in the
lowest quartile (P for trend= 0.05; Table 3).

Metabolites associated with CVDmortality

Metabolites related to CVD mortality (after adjustment for
multiple covariates) with a FDR of ≤0.05 are shown in Table 4,
sorted by P value. We found that the following were related to
elevated CVD mortality (per SD, HR = 1.38–1.62, and 8.4 ×
10−6 ≤ P < 3.8 × 10−4): higher serum amino acids C-glycosyl-
tryptophan, 3-(4-hydroxyphenyl)lactate, N-acetylvaline, and
dimethylglycine; nucleotide 7-methylguanine; and lipids 4-
androsten-3β,17β-diol disulfate, taurocholate, and tauroche-
nodeoxycholate. Of these, P values for C-glycosyltryptophan,
7-methylguanine, and 4-androsten-3β,17β-diol disulfate achieved
statistical significance at the Bonferroni-corrected threshold.
The next most significant metabolites related to higher CVD

mortality included the peptide ADSGEGDFXAEGGGVR,
4-acetamidobutanoate, erythronate, N-acetylphenylalanine, and
cortisol, with asparagine being inversely associated (all P <
10−3) (Table 4). The crude model estimates that adjusted only
for age at blood collection were similar to the multivariable-
adjusted associations (data not shown).

For the CVD analysis, the metabolite risk score was based
on the following 12 metabolites identified in the training set:
C-glycosyltryptophan, dimethylglycine, N-acetylvaline, 4-
androsten-3β,17β-diol disulfate 1, stearoyl-linoleoyl-GPPE,
ADSGEGDFXAEGGGVR, 4-hydroxyhippurate, mannose,
3-hydroxyhippurate, N-acetylputrescine, asparagine, and oleic
acid ethanolamide (Table 5). In the test set, we found an
increased mortality in men with a higher metabolite risk score
(HR = 1.83, 95% confidence interval: 1.28, 2.62) (Table 5).
For the categorized metabolite risk score, individuals in the
highest quartile experienced over four times the mortality
risk when compared with those in the lowest quartile (HR =
4.35, P for trend: 0.003, Table 5).

Metabolites associated with cancer-relatedmortality

After adjustment for multiple covariates, no metabolite was
associated with cancer mortality at either the FDR of ≤0.1 or
Bonferroni threshold. Metabolites associated with cancer-
related mortality with a nominal P value of <0.05 are shown
in Table 6. The amino acids dimethylglycine, N-acetylvaline, lev-
ulinate, and N-acetylmethionine were the top metabolites posi-
tively associated with cancer-related mortality (per SD, HR =
1.42–1.62, and 6.7 × 10−4 ≤ P < 6.1 × 10−3), as were the
tobacco metabolites hydroxycotinine and cotinine N-oxide.
By contrast, the amino acids indolepropionate and 3-
phenylpropionate and the peptide glutamine-leucine were
inversely associated with cancer mortality (per SD, HR = 0.63–-
0.70, and 8.4 × 10−4 ≤ P < 6.2 × 10−3) (Table 6). As expected,

Table 3. Hazard Ratios for the Association of Metabolite Risk ScoreWith All-CauseMortality in the 30% Test Sets in
the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study, Finland, 1985–2013

Quartile of Metabolite Risk Scorea Event Participant Person-years HRb 95%CI

1 27 44 690.4 1.00 Referent

2 25 41 570.7 1.30 0.71, 2.38

3 36 45 474.7 1.94 1.08, 3.48

4 37 43 400.6 1.73 0.91, 3.30

P value for trend 0.05

Metabolite risk score as continuous variable (per SD) 1.38 1.08, 1.75

Abbreviations: CI, confidence intervals; FDR, false discovery rate; HDL, high-density lipoprotein; HR, hazard ratios;
SD, standard-deviation.

a The risk score was generated by summing the top 12 metabolites (FDR of ≤0.1) identified in the test set, which
were weighed by their regression coefficients in the training set. The risk score is calculated as 0.073 × (log-N-acetyl-
valine) + 0.085 × (log-C-glycosyltryptophan) + 0.07 × (log-dimethylglycine) + 0.084 × (log-N-acetylputrescine) +
0.077 × (log-erythronate) + 0.07 × (log-ADSGEGDFXAEGGGVR) + 0.071 × (log-mannose) + 0.082 × (log-tauro-
chenodeoxycholate) + 0.065 × (log-taurocholate) + 0.095 × (log-5,6-dihydrothymine) + 0.078 × (log-N-acetyl-
methionine) + 0.085 × (log-acisoga).

b Hazard ratio for all-cause mortality generated from Cox proportional hazards regression, and adjusted for age at
randomization, body mass index, number of cigarettes per day, history of diabetes, serum cholesterol, HDL, history of
hypertension (elevated blood pressure), serum creatinine, andmetabolomic sets.
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the tobacco metabolites hydroxycotinine and cotinine N-oxide
showed stronger associations with cancer-related mortality in
the age-adjusted model (per SD, HR = 1.83 and 1.72, P = 6.8 ×

10−5 and 5.0 × 10−5, respectively). For the other top signals,
associations with cancer mortality were not materially differ-
ent in the crudemodels (data not shown).

Table 4. Associations of Cardiovascular Disease-RelatedMortality and SerumMetabolitesa in the Alpha-Tocopherol, Beta-Carotene Cancer
Prevention Study, Finland, 1985–2013

Metabolite Chemical Class Chemical Subclass HR b 95%CI P Value

C-Glycosyltryptophanc Amino acid Tryptophanmetabolism 1.60 1.30, 1.96 8.4 × 10−6

7-Methylguaninec Nucleotide Purinemetabolism, guanine-containing 1.62 1.30, 2.03 1.9 × 10−5

4-Androsten-3β,17β-diol disulfate 1c Lipid Sterol/steroid 1.49 1.24, 1.80 2.1 × 10−5

3-(4-Hydroxyphenyl)lactate Amino acid Phenylalanine and tyrosinemetabolism 1.43 1.20, 1.71 6.4 × 10−5

Taurocholate Lipid Primary bile acid metabolism 1.38 1.18, 1.62 7.5 × 10−5

N-Acetylvaline Amino acid Valine, leucine, and isoleucinemetabolism 1.41 1.19, 1.68 8.6 × 10−5

Taurochenodeoxycholate Lipid Primary bile acid metabolism 1.52 1.22, 1.91 2.7 × 10−4

Dimethylglycine Amino acid Glycine, serine, and threoninemetabolism 1.38 1.15, 1.65 3.8 × 10−4

ADSGEGDFXAEGGGVR Peptide Fibrinogen cleavage peptide 1.38 1.15, 1.66 4.4 × 10−4

4-Acetamidobutanoate Amino acid Guanidino and acetamidometabolism; polyamine
metabolism

1.55 1.21, 1.98 4.6 × 10−4

Erythronate Carbohydrate Aminosugar metabolism 1.40 1.15, 1.70 7.6 × 10−4

N-Acetylphenylalanine Amino acid Phenylalanine and tyrosinemetabolism 1.33 1.13, 1.57 7.9 × 10−4

Cortisol Lipid Sterol/steroid 1.38 1.14, 1.68 9.3 × 10−4

Asparagine Amino acid Alanine and aspartatemetabolism 0.76 0.65, 0.90 9.8 × 10−4

4-Hydroxyhippurate Xenobiotics Benzoate metabolism 1.35 1.12, 1.62 1.5 × 10−3

N1-Methylguanosine Nucleotide Purinemetabolism, guanine-containing 1.39 1.13, 1.71 1.6 × 10−3

5-Dodecenoate (12:1n7) Lipid Medium-chain fatty acid 1.31 1.11, 1.56 1.9 × 10−3

2-Hydroxyglutarate Lipid Fatty acid, dicarboxylate 1.38 1.13, 1.70 1.9 × 10−3

γ-Glutamyltryptophan Peptide γ-Glutamyl amino acid 1.33 1.11, 1.60 2.4 × 10−3

N-Acetyltyrosine Amino acid Phenylalanine and tyrosinemetabolism 1.29 1.09, 1.52 2.4 × 10−3

N-Acetyltryptophan Amino acid Tryptophanmetabolism 1.30 1.10, 1.55 2.5 × 10−3

N-Acetylmethionine Amino acid Cysteine, methionine, SAM, taurinemetabolism 1.38 1.12, 1.69 2.7 × 10−3

Palmitoleate (16:1n7) Lipid Long-chain fatty acid 1.29 1.09, 1.53 2.7 × 10−3

5-Methylthioadenosine (MTA) Amino acid Polyaminemetabolism 1.33 1.10, 1.60 2.8 × 10−3

1-Linoleoylglycerophosphoethanolamine Lipid Lysolipid 1.30 1.09, 1.55 3.4 × 10−3

N6-Carbamoylthreonyladenosine Nucleotide Purinemetabolism, guanine-containing; purine
metabolism, adenine-containing

1.39 1.11, 1.73 3.9 × 10−3

Andro steroid monosulfate 1 Lipid Sterol/steroid 1.29 1.08, 1.53 4.0 × 10−3

4-Androsten-3β,17β-diol disulfate 2 Lipid Sterol/steroid 1.31 1.09, 1.58 4.5 × 10−3

Mannose Carbohydrate Fructose, mannose, galactose, starch, and sucrose
metabolism

1.29 1.08, 1.54 4.6 × 10−3

Glycine Amino acid Glycine, serine, and threoninemetabolism 0.81 0.70, 0.94 4.7 × 10−3

1-Oleoylglycerophosphoethanolamine Lipid Lysolipid 1.28 1.07, 1.52 5.4 × 10−3

7-α-hydroxy-3-oxo-4-cholestenoate
(7-HOCA)

Lipid Sterol/steroid 1.27 1.07, 1.50 5.6 × 10−3

Malate Energy Krebs cycle/tricarboxylic acid cycle 1.29 1.07, 1.54 6.2 × 10−3

3-Hydroxybutyrate (BHBA) Lipid Ketone bodies 1.28 1.07, 1.53 6.4 × 10−3

γ-CEHC glucuronide Cofactors and
vitamins

Tocopherol metabolism 1.26 1.07, 1.49 6.6 × 10−3

Pseudouridine Nucleotide Pyrimidinemetabolism, uracil-containing 1.30 1.08, 1.58 6.9 × 10−3

Acetoacetate Lipid Ketone bodies 1.27 1.06, 1.51 7.6 × 10−3

N6-Acetyllysine Amino acid Lysinemetabolism 1.25 1.06, 1.48 7.6 × 10−3

Table continues
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Pathway analysis

In the metabolite pathway analysis, we found that the amino-
acid chemical class and primary-bile-acids subclass were signif-
icantly associated with all-cause and CVD mortality below the
Bonferroni-corrected P value threshold (Web Tables 2–5).
After Bonferroni correction, however, no chemical class or
subclass was associated with cancer mortality (Web Tables 6
and 7).

The pathway analysis also showed that fructose/mannose/
galactose/starch/sucrose metabolism, phenylalanine/tyrosine
metabolism, glycine/serine/threonine metabolism, purine/guanine

metabolism, tryptophan metabolism, and branched-chain
amino acids metabolism were top chemical subclasses associated
with all-cause andCVDmortality (WebTables 3 and 5). The sub-
classes benzoate metabolism and tobacco metabolism ranked as
the top pathways related to all-cause and cancer mortality
but not for CVD mortality (Web Tables 3, 5 and 7). Of note, all
the models adjusted for multiple mortality risk factors, including
smoking. The correlation of the top metabolites for the 3 out-
comes are presented inWeb Figures 2–4. Higher positive corre-
lations were observed among chemical subclasses of lipid fatty
acids (myristoleate (14:1n5), 5-dodecenoate (12:1n7), palmitole-
ate (16:1n7)), bile acids (taurochenodeoxycholate, taurocholate,

Table 4. Continued

Metabolite Chemical Class Chemical Subclass HR b 95%CI P Value

Pregnen-diol disulfate Lipid Sterol/steroid 1.27 1.06, 1.51 8.1 × 10−3

Myristoleate (14:1n5) Lipid Long-chain fatty acid 1.25 1.06, 1.47 8.2 × 10−3

Glycochenodeoxycholate Lipid Primary bile acid metabolism 1.24 1.06, 1.46 8.4 × 10−3

Histidine Amino acid Histidinemetabolism 0.80 0.68, 0.95 8.7 × 10−3

1-Linoleoylglycerophosphoinositol Lipid Lysolipid 1.25 1.06, 1.48 8.8 × 10−3

Abbreviations: CI, confidence intervals; CVD, cardiovascular disease; HDL, high-density lipoprotein; HR, hazard ratios; SAM, S-adenosyl-
methionine; SD, standard-deviation.

a Metabolites were natural log-transformed and standardized (mean = 0, variance = 1). All 382 participants were included in each test (analysis
included referent individuals (n = 185) and individuals with CVD-related death (n = 197)), except for metabolites taurochenodeoxycholate (missing
metabolic data from set 1: a total of 261 participants were included in the test) and for metabolites ADSGEGDFXAEGGGVR, 2-hydroxyglutarate,
N-acetyltryptophan, and γ-CEHC glucuronide (missing metabolic data from set 2: a total of 360 participants were included in these tests). False dis-
covery rate of≤0.05.

b For each study set, we used attained age as time metric in Cox proportional hazards regression models that adjusted for age at baseline, body
mass index, number of cigarettes per day, total cholesterol, HDL cholesterol, history of hypertension (elevated blood pressure), history of diabetes
mellitus, and serum creatinine. The reported HR (per SD) and P value were obtained from meta-analysis, which was conducted using a fixed-
effects model to pool the study sets estimates.

c Achieved statistical significance after Bonferroni correction for multiple tests.

Table 5. Hazard Ratios for the Association of Metabolite Risk ScoreWith Cardiovascular Disease-RelatedMortality
in the 30%Test Sets in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study, Finland, 1985–2013

Quartile of Metabolite Risk Scorea Event Participant Person-Years HRb 95%CI

1 11 32 462.9 1.00 Referent

2 15 32 450.5 2.13 0.87, 5.23

3 15 32 429.1 1.95 0.79, 4.80

4 21 32 265.2 4.35 1.78, 10.6

P value for trend 0.003

Metabolite risk score as continuous variable (per SD) 1.83 1.28, 2.62

Abbreviations: CI, confidence intervals; CVD, cardiovascular disease; HDL, high-density lipoprotein; HR, hazard
ratios; SD, standard deviation.

a The risk score was generated by summing the top 12 metabolites (false discovery rate of ≤0.1) identified in the
test set, whichwereweighed by their regression coefficients in the training set. The risk score is calculated as 0.124 × (log-C-
glycosyltryptophan) + 0.112 × (log-dimethylglycine) + 0.109 × (log-N-acetylvaline) + 0.112 × (log-4-Androsten-3β,17β-Diol
Disulfate 1) + 0.145 × (log-stearoyl-linoleoyl-GPPE) + 0.117 × (log-ADSGEGDFXAEGGGVR) + 0.113 × (log-4-hy-
droxyhippurate) + 0.107 × (log-mannose) + 0.111 × (log-3-hydroxyhippurate) + 0.141 × (log-N-acetylputrescine) − 0.1 ×
(log-asparagine) + 0.177 × (log-oleic acid ethanolamide).

b Hazard ratio for CVD mortality generated from Cox proportional hazards regression and adjusted for age at ran-
domization, body mass index, number of cigarettes per day, history of diabetes, serum cholesterol, HDL, history of
hypertension (elevated blood pressure), serum creatinine, andmetabolomic sets.
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glycochenodeoxycholate), sex steroids (pregnen-diol disulfate,
4-androsten-3β,17β-diol disulfate 1, 4-androsten-3β,17β-diol
disulfate 2), purine nucleotides (N1-methylguanosine, N2,

N2-dimethylguanosine), benzoate xenobiotics (3-methyl
catechol sulfate 1, 3-methyl catechol sulfate 2, 4-vinylphenol sul-
fate), and tobacco xenobiotics (cotinine N-oxide, hydroxycotinine)

Table 6. Associations of Cancer-RelatedMortality and SerumMetabolites (P < 0.05)a in the Alpha-Tocopherol, Beta-Carotene Cancer
Prevention Study, Finland, 1985–2013

Metabolite Chemical Class Chemical Subclass HRb 95%CI P Value

Dimethylglycine Amino acid Glycine, serine, and threoninemetabolism 1.61 1.22, 2.11 6.7 × 10−4

Indolepropionate Amino acid Tryptophanmetabolism 0.63 0.48, 0.83 8.4 × 10−4

N-Acetylvaline Amino acid Valine, leucine, and isoleucinemetabolism 1.62 1.22, 2.16 9.4 × 10−4

Levulinate (4-oxovalerate) Amino acid;
xenobiotics

Valine, leucine, and isoleucinemetabolism; food
component/plant

1.42 1.12, 1.79 3.4 × 10−3

3-Phenylpropionate (hydrocinnamate) Amino acid Phenylalanine and tyrosinemetabolism 0.70 0.55, 0.89 3.5 × 10−3

N-Acetylmethionine Amino acid Cysteine, methionine, SAM, and taurine
metabolism

1.60 1.14, 2.24 6.1 × 10−3

Glutamine-leucine Peptide Dipeptide 0.70 0.54, 0.90 6.2 × 10−3

Glycocholate sulfate Lipid Secondary bile acidmetabolism 1.42 1.10, 1.83 7.0 × 10−3

N-Acetylphenylalanine Amino acid Phenylalanine and tyrosinemetabolism 1.50 1.11, 2.02 7.8 × 10−3

N-Acetyltryptophan Amino acid Tryptophanmetabolism 1.46 1.10, 1.93 8.9 × 10−3

Hexanoylcarnitine Lipid Carnitinemetabolism 1.42 1.08, 1.86 1.1 × 10−2

O-Cresol sulfate Amino acid Phenylalanine and tyrosinemetabolism 1.48 1.09, 2.00 1.1 × 10−2

Ergothioneine Xenobiotics Food component/plant 0.74 0.58, 0.94 1.3 × 10−2

Hydroxycotinine Xenobiotics Tobaccometabolite 1.54 1.10, 2.18 1.3 × 10−2

Betaine Amino acid Glycine, serine, and threoninemetabolism 1.44 1.08, 1.93 1.4 × 10−2

Erythronate Carbohydrate Aminosugar metabolism 1.45 1.08, 1.95 1.4 × 10−2

CotinineN-oxide Xenobiotics Tobaccometabolite 1.45 1.08, 1.96 1.4 × 10−2

Andro steroid monosulfate 1 Lipid Sterol/steroid 1.42 1.07, 1.87 1.5 × 10−2

1-Oleoylglycerol (1-monoolein) Lipid Monoacylglycerol 1.40 1.07, 1.84 1.5 × 10−2

2-Stearoylglycerophosphoethanolamine Lipid Lysolipid 0.77 0.62, 0.95 1.6 × 10−2

4-Vinylphenol sulfate Xenobiotics Benzoatemetabolism 1.36 1.06, 1.75 1.6 × 10−2

C-Glycosyltryptophan Amino Acid Tryptophanmetabolism 1.43 1.06, 1.92 1.8 × 10−2

5,6-Dihydrothymine Nucleotide Pyrimidinemetabolism, thymine-containing 1.53 1.07, 2.19 2.0 × 10−2

2-Ethylphenylsulfate Xenobiotics Benzoatemetabolism 1.38 1.05, 1.81 2.0 × 10−2

N-(2-Furoyl)glycine Xenobiotics Food component/plant 1.31 1.03, 1.68 3.0 × 10−2

Succinate Energy Krebs cycle/tricarboxylic acid cycle 1.31 1.03, 1.67 3.1 × 10−2

Homostachydrine Xenobiotics Food component/plant 1.30 1.02, 1.65 3.4 × 10−2

Xylose Carbohydrate Pentosemetabolism 1.29 1.02, 1.64 3.7 × 10−2

Phenylalanylglycine Peptide Dipeptide 1.31 1.01, 1.70 4.0 × 10−2

Phenol sulfate Amino Acid Phenylalanine and tyrosinemetabolism 1.27 1.01, 1.59 4.2 × 10−2

4-Hydroxyhippurate Xenobiotics Benzoatemetabolism 1.31 1.00, 1.72 4.7 × 10−2

Hydroquinone sulfate Xenobiotics Drug 1.32 1.00, 1.73 5.0 × 10−2

Abbreviations: CI, confidence intervals; HDL, high-density lipoprotein; HR, hazard ratios; SAM,S-adenosylmethionine; SD, standard deviation.
a Metabolites were natural log-transformed and standardized (mean = 0, variance = 1). All 292 participants were included in each test (analysis

included referent individuals (n = 185) and individuals with cancer-related death (n = 107)), except formetabolites 2-stearoylglycerophosphoethanolamine and
5,6-dihydrothymine (missingmetabolic data from set 1: a total of 200 participants were included in these tests) and formetabolites indolepropionate, glutamine-
leucine, N-acetyltryptophan, erythronate, 1-oleoylglycerol (1-monoolein), and homostachydrine (missing metabolic data from set 2: a total of 274 participants
were included in these tests).

b For each study set, we used attained age as time metric in Cox proportional hazards regression models that adjusted for age at baseline, body
mass index, number of cigarettes per day, total cholesterol, HDL cholesterol, history of hypertension (elevated blood pressure), history of diabetes
mellitus, and serum creatinine. The reported HR (per SD) and P value were obtained from meta-analysis, which was conducted using a fixed-
effects model to pool the study sets estimates.
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(Web Figures 2–4).We also show the metabolite-by-metabolite
correlation matrix that constituted metabolite risk scores of
all-cause and CVD deaths in Web Figures 5 and 6. Among the
12 metabolites included in the risk score for all-cause mortality,
the pairwise correlation ranged from −0.05 to 0.84 (Web Fig-
ure 5), and among the 12 metabolites included in the risk score
for CVD, the correlated ranged from −0.01 to 0.48 (Web Fig-
ure 6). The top positive correlation was seen within chemical
subclass bile acids (taurochenodeoxycholate, taurocholate) and
benzoate xenobiotics (3-hydroxyhippurate and 4-hydroxy-
hippurate), respectively.

DISCUSSION

In this study, we prospectively investigated associations
between >400 serum metabolites and all-cause, CVD, and can-
cer mortality among 620 men during a median follow-up of 11
years. The all-cause-mortality–related metabolite N-acetyl-
valine, and CVD-mortality–related metabolites C-glycosyl-
tryptophan, 7-methylguanine, and 4-androsten-3β,17β-diol
disulfate yielded the strongest signals that exceeded the multiple-
comparisons statistical threshold. By contrast, no metabolite was
associated with cancer mortality at an FDR of <0.1. Validating
in the test set the risk score that was based on the 12 top metabo-
lites revealed that individuals with higher metabolite scores had
elevated risks for all-cause and CVD mortality. Of note, men in
the highest risk-score quartile experienced quadrupled CVD
mortality comparedwith those in the lowest score quartile.

Serum N-acetylvaline was a top metabolite signal positively
associatedwith all-cause andCVDmortality (it was also a top sig-
nal for cancer mortality). This metabolite is in the branched-chain
amino acids, valine/leucine/isoleucine metabolism pathway. Our
data also showed that serum N-acetylvaline was strongly corre-
latedwith serum valine (r = 0.44; P = 1 × 10−30). Branched-
chain amino acid metabolites play a role in human health
outcomes including cardiovascular disease, stroke, insulin resis-
tance, diabetes, and pancreatic cancer (17–23), and they are asso-
ciated with obesity and physical activity (24, 25). On the other
hand, elevated N-acetyl amino acids, including N-acetylvaline,
may indicate disruptions in acetylation activity that could influ-
ence cell homeostasis through histone-chromatin function and
gene regulation (26–28). Whether some of these factors mediate
the increased mortality–higher circulating N-acetylvaline (and
otherN-acetyl amino acids) associations, or a direct biological
action influencing risk of death, will require further study.

Also strongly related to mortality was the tertiary amine
dimethylglycine, which can be produced from betaine dur-
ing the transfer of a methyl group from homocysteine to
methionine, a reaction catalyzed by betaine-homocysteine
methyltransferase (29). Serum dimethylglycine was signifi-
cantly correlated with serum betaine in our data (r = 0.26;
P = 3 × 10−11). Elevated plasma dimethylglycine has been
associated with mortality risk, and it may enhance risk pre-
diction of all-cause and CVD-related mortality, particularly
among coronary heart disease patients (30). Dimethylgly-
cine was also independently associated with incident acute
myocardial infarction and improved outcome prediction among
patients with stable angina (31). Regarding cancer, higher fecal
dimethylglycine has been related to colorectal cancer in China

(32), and urinary dimethylglycine has been correlated with clin-
ical stage of hepatocellular carcinoma in West Africa (33). By
contrast, circulating dimethylglycinewas unrelated to colorectal
cancer or prostate cancer risk in nested case-control studies
(34–36).

Higher serum C-glycosyltryptophan and 7-methylguanine
were associated with increased overall and CVD mortality
(e.g., odds of overall and CVD mortality increased, respec-
tively, by 30% and 60%with each 1-SD log-metabolite increase).
C-glycosyltryptophan (also known asC-mannosyltryptophan) is
a tryptophan glycoconjugate that has been used as a biomarker
of kidney function (37–39) and is related to infectious burden
and increased inflammation (40). It is strongly correlated with
age and has been related to methylation of the promoter region
of WDR85, a gene that may regulate diphthamide synthesis,
important for RNA translation, cell cycle, and embryonic devel-
opment, thereby supporting a role for C-glycosyltryptophan in
aging and human development (41). It is possible that its role
in aging and inflammation and its relationship to kidney func-
tion may partially account for the positive association we
observed for overall and CVD mortality. 7-Methylguanine
is a by-product of DNA methylation damage repair that is
used as a marker of exposure to methylating agents and is
potentially related to cancer and aging (42). Tumor tissues
exhibit elevated 7-methylguanine levels (43, 44), which
might reflect decreased defense against intracellular reac-
tive oxygen species (43–45).

Taurocholate, taurochenodeoxycholate, and the primary bile
acid metabolism pathway were also significantly associated
with all-cause and CVD mortality. Taurocholate, the bile acid
conjugate of cholic acid and taurine, like taurine itself, has been
related to lower risks of hypertension, stroke, and other athero-
sclerotic diseases (46), while hepatic uptake of taurocholate may
decline with age (47). Experimental intestinal infusion of tauro-
cholate is related to Akt signaling pathway activation, a possible
determinant of cellular senescence (48–50). Other biologically
plausiblemetabolites associatedwith increased risk of CVDmor-
tality include lower serum histidine and glycine. Histidine may
be independently inversely associated with age (51), and it can
be metabolized to carnosine, a known antioxidant characterized
as an “anti-aging” biochemical based on suppression of oxidative
damage, glycation of proteins, and scavenging toxic age-related
molecules (52). Glycine is the precursor of severalmolecular spe-
cies, including purines and glutathione, and a substantial body of
evidence supports its beneficial role in cytoprotection, antioxi-
dation, antiinflammation responses, and metabolic regulation
(53–57). Increased CVDmortality was also related to elevated
serum mannose, consistent with findings from the Atheroscle-
rosis Risk in Communities study (3), as well as to lysolipids
(e.g., 1-linoleoyl-glycerophosphoethanolamine), which are
considered important cell-signaling molecules that contribute
to regulation of cell differentiation, growth, proliferation, and
invasion (58–62), and to steroid hormones in the androgen
pathway (e.g., 4-androsten-3β,17β-diol disulfate 1).

Although we identified no metabolites significantly associ-
ated with cancer mortality in the model that adjusted for multi-
ple covariates, tobacco metabolism was the top associated
pathway, a finding consistent with population studies showing
excess cancer mortality is associated with both tobacco smok-
ing and higher circulating cotinine concentrations (63–68).
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It is noteworthy but not unexpected that the crude models, not
adjusting for tobacco smoking, showed strong cancer mortal-
ity associations for tobacco metabolites, including cotinine N-
oxide and hydroxycotinine.

Several mortality-related metabolites we identified have
been associated with chronic aging (41, 51). Considering multi-
ple cellular actions, transformations, and cumulative cellular
damage that occur across the life course, with cumulative health
deterioration and eventually death, it is biologically plausible
that the 2 related but distinct biological traits may be contributed
to and regulated by several common molecular functions and
biochemical pathways. Also, several of the metabolites we
identified are associated with known epidemiologic risk factors
related to mortality. These include, for example, physical
activity and mannose (24); hypertension risk and tRNA-specific
modified nucleosideN2,N2-dimethylguanosine and tricarboxylic-
acid-cycle intermediate malate (69); several tobacco smoke-
related metabolites (70); type 2 diabetes/hyperglycemia
and glycine (71–73), mannose (71, 72), and ketone bodies 3-
hydroxybutyrate and acetoacetate (71); and body mass index–
related biochemicals asparagine, 3-(4-hydroxyphenyl)lactate,
histidine, and glycine (amino acids), mannose (carbohydrate), and
hexanoylcarnitine and 7-HOCA (lipids) (74, 75). Discovery of
these specific risk factor-associated metabolites in relation to
mortality both validates the clinical risk association and affords
hypothesis-generating exploration of underlying biological mech-
anisms for the factor-outcome associations. Further, with regard
to potential clinical value, the elucidation of possible underlying
biologicalmechanisms of action for the risk factor–mortality asso-
ciation affords a more precise understanding with potential
therapeutic/preventive implications. Second, the metabolomic
approach may identify novel biochemicals associated with here-
tofore unknown risk exposures.

Limitations and strengths of the present study deserve con-
sideration. Even though the study was not large, substantial and
highly statistically significant associations were discovered. All
participants were Finnish, aged 50–69 years, male, and smo-
kers, which limits generalizability of our findings when con-
sidering other populations (e.g., women, younger individuals,
and those of other ethnicities). The analysis was restricted to
known compounds that were found in at least 4 of 5 study sub-
sets, making it possible that other associations with mortality
exist for excluded or unnamed metabolites that were not eval-
uated. Although all models adjusted for potential confounding
factors such as serum creatinine, body mass index, and history
of diabetes, it is possible that metabolites-mortality associa-
tions were partly mediated by subclinical diseases, such as
renal insufficiency, hepatic dysfunction, or insulin resistance.
The reported hazard ratios reflect the association between mor-
tality and a single measure of each metabolite; the association
with average lifetime levels are likely to be stronger given their
documentedwithin-person variability over time (10–12). Impor-
tant strengths of the study were its prospective nature, with up to
28 years of follow-up, permitting examination of metabolite
profiles years prior to the mortality outcomes, and validated mor-
tality ascertainment from national registries that had little or no
loss-to-follow-up.

In summary, we identified a panel of circulating metabo-
lites and their composite risk score that were prospectively
independently associated with all-cause and CVD-related

mortality and substantiated by pathway analyses. The metabolo-
mic traits were related to branched-chain amino acid metabol-
ism, DNA repair, primary bile acid and androgen metabolism,
aging, inflammation, and tobacco smoking. Additional prospec-
tive investigations in more diverse populations are warranted to
reexamine these associations, which, if replicated, will require
elucidation of deeper underlying biological mechanisms. Trans-
lation to potential therapeutic and preventive targets should also
be pursued.
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