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Abstract

Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. 

They emit both primary particulate matter and precursor gases that react to form secondary 

particulate matter in the atmosphere. In this work, we updated the organic aerosol module and 

organic emissions inventory of a three-dimensional chemical transport model, the Community 

Multiscale Air Quality Model (CMAQ), using recent, experimentally derived inputs and 

parameterizations for mobile sources. The updated model included a revised volatile organic 

compound (VOC) speciation for mobile sources and secondary organic aerosol (SOA) formation 

from unspeciated intermediate volatility organic compounds (IVOCs). The updated model was 

used to simulate air quality in southern California during May and June 2010, when the California 

Research at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. 

Compared to the Traditional version of CMAQ, which is commonly used for regulatory 

applications, the updated model did not significantly alter the predicted organic aerosol (OA) mass 

concentrations but did substantially improve predictions of OA sources and composition (e.g., 

POA–SOA split), as well as ambient IVOC concentrations. The updated model, despite substantial 

differences in emissions and chemistry, performed similar to a recently released research version 

of CMAQ (Woody et al., 2016) that did not include the updated VOC and IVOC emissions and 

SOA data. Mobile sources were predicted to contribute 30–40 % of the OA in southern California 

(half of which was SOA), making mobile sources the single largest source contributor to OA in 

southern California. The remainder of the OA was attributed to non-mobile anthropogenic sources 

(e.g., cooking, biomass burning) with biogenic sources contributing to less than 5 % to the total 

OA. Gasoline sources were predicted to contribute about 13 times more OA than diesel sources; 
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this difference was driven by differences in SOA production. Model predictions highlighted the 

need to better constrain multi-generational oxidation reactions in chemical transport models.

1 Introduction

Organic aerosol (OA) is a major component of atmospheric fine particulate matter (Jimenez 

et al., 2009). Source apportionment studies have historically attributed the majority of 

ambient OA in southern California to motor vehicle emissions (Schauer et al., 1996), but 

analysis of data from the California Research at the Nexus of Air Quality and Climate 

Change (CalNex) study has led to conflicting conclusions about the overall contribution of 

motor vehicles to OA in southern California and the relative importance of gasoline versus 

diesel sources. Bahreini et al. (2012) hypothesized that the majority of OA in southern 

California was secondary organic aerosol (SOA) formed from emissions from gasoline-

powered sources based on differences in weekday and weekend pollutant concentrations; 

Hayes et al. (2013) and Zotter et al. (2014) reached the same conclusion based on analysis of 

mass spectrometer and radiocarbon data, respectively. In contrast, Gentner et al. (2012) 

concluded that diesel vehicles contributed more OA than gasoline vehicles based on a 

comprehensive speciation of SOA precursors present in gasoline and diesel fuels. Ensberg et 

al. (2014) proposed that observed levels of OA could be explained only if vehicle emissions 

were a minor source of SOA or that the SOA formation potential of vehicle emissions were 

significantly higher than that measured in laboratory studies. Finally, source-resolved 

chemical transport model (CTM) simulations predicted that gasoline sources contributed 

approximately twice as much POA as diesel sources in southern Cal-ifornia (Woody et al., 

2016).

Research and regulatory efforts have historically focused on emissions of primary organic 

aerosol (POA), but recently the attention has shifted to secondary organic aerosol (SOA) 

since SOA appears to dominate OA mass concentrations even in urban areas (Zhang et al., 

2007). Typical CTM treatments of OA assume non-volatile POA emissions and formation of 

SOA from “traditional” precursors (Carlton et al., 2010), which are speciated volatile 

organic compounds (VOCs) such as alkanes smaller than C12, single-ring aromatics, 

isoprene, and mono- and sesquiterpenes. Robinson et al. (2007) proposed a new conceptual 

model for emissions and evolution of OA from combustion sources: (1) POA emissions are 

semi-volatile and reactive (Grieshop et al., 2009; Huffman et al., 2009; May et al., 2013, b, 

c), (2) combustion sources emit substantial amounts of intermediate volatility organic 

compounds (IVOCs) that are efficient SOA precursors (Jathar et al., 2014; Zhao et al., 

2015), and (3) semi-volatile organic vapors in equilibrium with OA photochemically react or 

“age” in the atmosphere to form additional SOA (Miracolo et al., 2010). Recent state-of-the-

science OA models have included these three processes, which have improved model 

performance (Murphy and Pandis, 2009; Koo et al., 2014). These improvements, however, 

have required simultaneous inclusion of all the above-mentioned processes; for example, 

inclusion of semi-volatile POA without SOA formation from IVOCs and aging reactions 

degraded model performance vis-à-vis total OA mass (Robinson et al., 2007). However, the 

inputs required to represent these three processes are poorly constrained. For example, IVOC 

emissions from all sources are often assumed to be 1.5 times the POA emissions (Robinson 
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et al., 2007; Shrivastava et al., 2008; Koo et al., 2014; Woody et al., 2016), based on 

measurements from two medium-duty diesel vehicles (Schauer et al., 1999). New 

experimental data are needed to better constrain these processes.

Recently, a series of experiments investigated the VOC emissions and SOA formation from 

gasoline vehicles, diesel vehicles, and small off-road engines recruited from the California 

in-use fleet (Gordon et al., 2013, 2014a, b). May et al. (2014) analyzed the VOC data to 

develop detailed emissions profiles. Jathar et al. (2014) analyzed the SOA data to derive 

quantitative estimates of the IVOC emissions and their potential to form SOA after several 

hours of atmospheric oxidation. Here, we use the term IVOCs to represent higher carbon 

number species (C12+) that are difficult to speciate using traditional gas chromatography–

mass spectrometry (GC-MS) techniques due to the very large number of constitutional 

isomers and/or polarity of partially oxidized species (Jathar et al., 2014; Presto et al., 2011; 

Zhao et al., 2015; Hatch et al., 2015). Jathar et al. (2014) referred to these as unspeciated 

organic compounds. We use the term VOCs to include the class of SOA precursors typically 

speciated using conventional GC-MS techniques (e.g., alkanes smaller than C12 and single-

ring aromatics). Jathar et al. (2014) derived separate parameterizations to account for SOA 

formation from IVOC emissions from gasoline and diesel sources for use in CTMs.

In this work, we used an updated version of CMAQ to simulate ambient OA from gasoline 

and diesel sources in southern California. The updates included new mobile source 

emissions profiles for VOCs (based on May et al., 2014) and emissions and 

parameterizations for SOA production from IVOCs (based on Jathar et al., 2014). Model 

predictions were evaluated using data collected during CalNex, compared to predictions of 

other models, and used to investigate the contribution of gasoline and diesel sources to 

ambient OA concentrations. This was the first time that a comprehensive set of gasoline and 

diesel source data have been used to develop source-specific IVOC inputs for a three-

dimensional CTM. Earlier modeling efforts have relied on data that are almost a decade old 

(e.g., Koo et al., 2014) and/or have used box models that may not accurately simulate 

horizontal and vertical transport and deposition (e.g., Hayes et al., 2015). Hence, our work 

presents a step forward in improving the representation of sources, emissions, and 

photochemical production of OA in large-scale models. This paper builds upon recent work 

by Baker et al. (2015) and Woody et al. (2016), who used different versions of CMAQ to 

simulate OA in California during May and June 2010.

2 Methods

In this section, we provide a brief overview of CMAQ followed by more detailed 

descriptions of the OA model and emissions.

2.1 Chemical transport model

The CMAQ model version 5.0.2 was used to simulate air quality in California from 4 May to 

30 June 2010, which coincides with the CalNex campaign (May–July 2010). Details about 

the application of this version to CalNex can be found in Baker et al. (2015) and Woody et 

al. (2016). Briefly, the model domain covered California and Nevada with a 4 km (317 × 

236) grid resolution (Supplement Fig. S1). The vertical domain included 34 layers and 
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extended to 50 mbar. Atmospheric gas-phase chemistry was simulated with the Carbon 

Bond 2005 (TUCL05) chemical mechanism (Yarwood et al., 2005; Whitten et al., 2010; 

Sarwar et al., 2012). Aerosol chemistry and partitioning was simulated using the aerosols 6 

(AERO6) module with different models to represent OA (described below). United States 

anthropogenic emissions were based on the EPA’s 2011v1 modeling platform (http://

www.epa.gov/ttnchie1/net/2011inventory.html) and biogenic emissions were estimated using 

the Biogenic Emission Inventory (BEIS) version 3.14 model (Carlton and Baker, 2011). 

Gridded meteorological inputs for CMAQ and SMOKE were generated using version 3.1 of 

the WRF model (Skamarock et al., 2008). The first 11 days of the simulation were excluded 

from the analysis to minimize the influence of initial conditions. Boundary conditions were 

provided by a 36 km continental US CMAQ simulation from the same time period.

2.2 OA Model

The OA model used here builds on the volatility basis set (VBS) implementation in CMAQ 

(Koo et al., 2014) and is referred to as the VBS-IVOC model. The novel aspects of this work 

are the implementation of updated organic emissions profiles that explicitly account for 

IVOC emissions from gasoline and diesel sources and experimentally constrained 

parameterizations of Jathar et al. (2014) for the SOA production from IVOC emissions.

In the VBS-IVOC model, we extended the work of Baker et al. (2015) and Woody et al. 

(2016), both of which evaluated different OA models in CMAQ using the CalNex data. 

Baker et al. (2015) evaluated the standard OA module in CMAQ (Carlton et al., 2010). 

Woody et al. (2016) evaluated the VBS version of CMAQ as implemented by Koo et al. 

(2014), which treated POA emissions as semi-volatile and reactive and accounted for SOA 

production from VOCs and IVOCs and multigenerational oxidation of aged products. The 

VBS-IVOC model was the same as the VBS model of Woody et al. (2016) except for the 

treatment of gasoline and diesel sources. To facilitate direct comparison between the 

different models, all three studies (this work; Baker et al., 2015; and Woody et al., 2016) 

used the same CTM (CMAQ v5.02), emissions inventory (except for the modifications 

described below), and meteorology inputs. However, Baker et al. (2015) used a different gas-

phase chemical mechanism (SAPRC07b). We refer to the Baker et al. (2015) treatment of 

OA and the model results as the “Traditional” model and we refer to the Woody et al. (2016) 

treatment of OA and the model results as the “VBS” model.

The VBS version of CMAQ includes four distinct volatility basis sets to separately track 

different classes of OA: anthropogenic POA, anthropogenic SOA, biogenic SOA, and 

biomass burning POA (Koo et al., 2014). The VBS-IVOC model extended CMAQ with three 

additional basis sets for POA from gasoline sources, diesel sources, and cooking activities to 

provide POA source apportionment (Woody et al., 2016). Each basis set has five volatility 

bins with different effective saturation concentrations (C*): non-volatile and logarithmically 

distributed bins from 100 to 103 μg m−3 at 298 K. The gas–particle partitioning of semi-

volatile organic compounds in each basis set is assumed to be in equilibrium and to form a 

quasi-ideal solution with all of the OA.
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2.2.1 Emissions—In the VBS-IVOC model, we used emission inventories developed by 

Baker et al. (2015) and modified by Woody et al. (2016) for use with the VBS model. In this 

section we briefly describe the VBS inventory of Woody et al. (2016), focusing on the 

updates to gasoline and diesel organic emissions used in the VBS-IVOC model.

We (in the VBS-IVOC model) and Woody et al. (2016) used the same semi-volatile POA 

emissions. These were estimated by redistributing the non-volatile POA emissions of Baker 

et al. (2015) into the VBS. For gasoline and diesel exhaust and biomass burning, this 

redistribution was done using the source-specific volatility distributions of May and 

coworkers (May et al., 2013a, b, c). Cooking emissions were redistributed using an 

approximation developed by Woody et al. (2016) based on thermodenuder measurements 

made with cooking emissions and ambient measurements made during MILAGRO 

(Huffman et al., 2009). For all other sources, the volatility distribution of Robinson et al. 

(2007) was used to map the existing POA emissions into the VBS.

In the VBS-IVOC model, we used new VOC speciation profiles for tailpipe emissions from 

gasoline and diesel sources (Table S1 in the Supplement). These speciation pro-files were 

applied to the emissions inventory of Baker et al. (2015). Therefore, the VBS-IVOC model 

had the same mobile source emission rates as Baker et al. (2015) but with different organic 

speciation. For all gasoline sources (on- and off-road), the VOC speciation was based on 

fleet-averaged data from May et al. (2014), which reported emissions of 202 unique species 

measured during chassis dynamometer testing of 68 light-duty gasoline vehicles operated 

over the cold-start Unified Cycle (UC) using gasoline that met Cali-fornia summertime 

specifications (five of the vehicles were also run on the freeway, arterial, and hot-start UC 

cycles). For on- and off-road diesel vehicles, the VOC speciation was derived from the EPA 

SPECIATE profile for on-road heavy-duty diesel vehicles (profile number 8774); the same 

diesel emissions profile was used in Baker et al. (2015) and Woody et al. (2016). All VOCs 

were mapped to CB05 model species using EPA’s speciation tool, which lumps unique 

organic compounds to a representative model species that are similar in terms of their 

reactivity and reaction chemistry (Eyth et al., 2006; Carter, 2008).

For gasoline and diesel sources, we estimated the IVOC emissions in the VBS-IVOC model 

based on the gas-phase carbon-balance analysis of Jathar et al. (2014), who found that 

unspeciated organic compounds (assumed to be mainly IVOCs) contributed, on average, 25 

and 20 % of the non-methane organic gas (NMOG) emissions from gasoline and diesel 

vehicles, respectively. IVOCs were included in the VBS-IVOC model by reapportioning the 

existing NMOG emissions between VOCs and IVOCs (effectively renormalizing the VOCs 

described above). Therefore, unlike previous VBS models such as Woody et al. (2016), 

where IVOC emissions were added to the NMOG emissions, no new NMOG emissions 

were added to the VBS-IVOC model for the gasoline and diesel sources. In addition, 

gasoline and diesel POA emissions in the C* bins of 103 and 104 μg m−3 (organic 

compounds that exist in the vapor phase in the atmosphere; 32 % of gasoline and 35 % of 

diesel POA emissions) were reclassified as IVOCs, consistent with the parameterization of 

Jathar et al. (2014).
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Following Robinson et al. (2007), IVOC emissions for all other sources (non-gasoline and 

diesel) were assumed to be 1.5 times the POA emissions. Woody et al. (2016) assumed this 

for all sources. Some of the IVOCs, as defined here, may have already been included in the 

original emissions pro-file as ALK5 and UNK; however, Pye and Pouliot (2012) showed that 

these emissions are very likely underestimated and, therefore, did not pose a serious problem 

of double counting SOA precursors.

To illustrate the effects of these changes, Fig. 1 plots the POA and SOA precursor emissions 

(BTEX (all aromatics), ALK5 (long alkanes), and IVOCs) from all gasoline and diesel 

sources in Los Angeles and Orange counties aggregated over the entire simulation period (4 

May to 30 June 2010). Table S2 lists the emissions for on- and off-road gasoline and diesel 

use, all other sources, and biogenic sources. Here, gasoline and diesel sources included both 

on-and off-road applications.

The magnitude of the POA emissions was identical between all three models with the 

exception that some of the POA emissions were reclassified as IVOCs in the VBS-IVOC 

model as described earlier. The BTEX emissions were identical between the Traditional and 

VBS models, but lower in the VBS-IVOC model because we renormalized the NMOG 

emissions to account for IVOCs. The Traditional model did not include IVOC emissions. 

The IVOC emissions in the VBS-IVOC model were a factor of 4 higher for gasoline sources 

than in the VBS model of Woody et al. (2016), but 20 % lower for diesel sources. Taken 

together, the BTEX, ALK5, and IVOC emissions (sum of all anthropogenic SOA precursors) 

were somewhat higher (40 %) in the VBS-IVOC model compared to the VBS model for 

gasoline sources and slightly lower (5 %) for diesel sources. In all models, gasoline sources 

had substantially larger organic emissions than diesel sources (e.g., 3.7, 42, 35, and 16 times 

more POA, BTEX, ALK5, and IVOC for the VBS-IVOC model, respectively); therefore, we 

anticipated much higher SOA production from gasoline sources than from diesel sources.

2.2.2 SOA formation—SOA production from VOCs was simulated using the 

parameterizations of Murphy and Pandis (2009) except for toluene (Hildebrandt et al., 

2009). SOA production from aromatics (toluene, xylene, and benzene), isoprene, and 

monoterpenenes had high- and low-NOx yields; there was no NOx dependence in the SOA 

yield from sesquiterpenes and IVOCs. Emissions profiles for VOCs, IVOCs, and their SOA 

yields, specific to gasoline and diesel tailpipe emissions, are presented in Table S1.

IVOC emissions from gasoline and diesel sources were represented separately using two 

(one for gasoline and one for diesel) gas-phase species in the chemical mechanism (CB05-

TUCL) and the parameterizations of Jathar et al. (2014) were used to estimate the SOA 

production from the IVOC oxidation. Briefly, the IVOCs reacted with the hydroxyl radical 

(OH) to form a set of semi-volatile products distributed in the VBS (Table S1). The 

stoichiometric mass yields for each product were determined by fitting the SOA production 

measured in smog chamber experiments performed with diluted vehicle exhaust (Jathar et 

al., 2014). Following Woody et al. (2016), for all other sources (i.e., not gasoline and diesel) 

SOA production from IVOCs was based on the published yields for the SAPRC ARO2 

model species from Murphy and Pandis (2009).
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SOA formed from VOCs and IVOCs was aged via reactions of the organic vapors with OH 

using a rate constant of 2 × 10−11 cm3 molecules−1 s−1. These aging reactions formed 

products with a vapor pressure reduced by 1 order of magnitude. Biogenic SOA was not 

aged based on previous findings that aging reactions over-predicted OA concentrations in 

rural areas (Fountoukis et al., 2011; Lane et al., 2008; Murphy and Pandis, 2009). Semi-

volatile POA vapors from all sources were aged using the scheme of Robinson et al. (2007) 

– gas-phase reactions with OH using a rate constant of 4 × 10−11 cm3 molecule−1 s−1, which 

lowered volatility by an order of magnitude (Robinson et al., 2007). Finally, the aging 

reactions also shifted a portion (~ 10 %) of the POA vapors to the anthropogenic SOA basis 

set to maintain O : C ratios (Koo et al., 2014). OH was artificially recycled in the IVOC 

oxidation and all aging reactions to prevent double counting and impacts to the gas-phase 

chemistry of the underlying chemical mechanism (Koo et al., 2014).

3 Results

Although the simulation domain covers the entire state of California, we focused our 

analysis on model predictions over southern California and the metropolitan area of Los 

Angeles. This region is the second most populated area in the US, has historically had severe 

air pollution problems, and was the focus of a major air quality campaign (CalNex) during 

the simulation period.

3.1 Spatial distribution of OA

Figure 2 shows maps of average predicted concentrations of total OA (POA + SOA) from 

the VBS-IVOC model for the following sources: (a) all, (d) gasoline, (e) diesel, (f) bio-

genic, and (g) other. In addition, Fig. 2 also plots the predicted ratios of (b) POA to OA and 

(c) SOA to OA. Average predicted concentrations of OA in southern California ranged 

between 1.5 and 3 μg m−3 with POA accounting for slightly more than half of the OA in 

source regions such as downtown Los Angeles (a “source” region was defined as one with 

high anthropogenic emissions of species such as POA) and SOA dominating in non-source 

regions and off the coast.

Gasoline sources were predicted to contribute ~ 35 % of the inland OA, while diesel sources 

contributed less than 3 % (for details see Sect. 4). The predicted gasoline OA exhibited a 

slightly different spatial pattern than total OA, with higher downwind concentrations near 

Riverside than those near central Los Angeles, reflecting the importance of atmospheric 

production of SOA. As expected, biogenic SOA was more important outside of the urban 

areas contributing 5 % of total OA in urban areas versus 10–20 % in non-urban areas. Other 

OA contributed slightly more than half of all OA in the urban areas. Other OA was 

dominated by cooking POA, biomass burning POA, and other anthropogenic SOA (see Fig. 

4 for contributions of these sources in Pasadena).

3.2 Model evaluation using OA mass and composition measurements

The VBS-IVOC model was evaluated using measurements made at the Chemical Speciation 

Network (CSN) and the CalNex Pasadena ground sites. Figure 3a compares predicted daily 

averaged OA mass concentration to measurements of organic carbon (OC) made at six CSN 
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sites in California (Fresno, Bakersfield, Central Los Angeles, Riverside, El Cajon, and Simi 

Valley). Figure 3b compares predicted daily averaged OA concentrations to measurements 

made using a high-resolution aerosol mass spectrometer (HR-AMS) in Pasadena (Hayes et 

al., 2013). The CSN measurements were multiplied by an OA : OC ratio to account for the 

non-carbon species associated with organic carbon (Turpin and Lim, 2001). While ambient 

OA : OC ratios can range between 1.4 and 2.3 (Aiken et al., 2008), we used a value of 1.6 in 

this work based on previous estimates used for filter-based measurements (e.g., Cappa et al., 

2016). This value was consistent with the OA : OC ratio of 1.7 ± 0.5 estimated by Hayes et 

al. (2013) in Pasadena.

Predictions from the VBS-IVOC model were slightly lower than the filter-based 

measurements at the CSN sites, similar to other studies (Simon et al., 2012). The fractional 

bias and fractional error versus CSN sites was −23 and 43 %, respectively. At the CSN sites, 

predictions from the VBS-IVOC model were marginally better at the southern California 

sites (Central LA, Riverside, El Cajon, Simi Valley, Pasadena) than the central California 

sites (Fresno, Bakers-field). This may be due to sources related to oil and gas production and 

agricultural activity being more important in central California (Gentner et al., 2014).

Figure 3b indicates predictions from the VBS-IVOC model were a factor of 3 lower than the 

HR-AMS OA data at the Pasadena site. It is unclear why the model performs much better at 

numerous CSN sites than the Pasadena site. One possibility is that the Pasadena site is 

influenced by local sources and transport that is not captured by the model at a 4 km 

resolution.

OA mass concentrations are only one measure for evaluating model performance. Given the 

myriad sources of and complexity in SOA production, a model can predict the right absolute 

OA concentration for the wrong reason. Therefore, it was important to evaluate the model 

against OA composition. Figure 4 compares predicted POA and SOA mass fractions to 

results from a positive matrix factorization (PMF) analysis of HR-AMS measurements made 

in Pasadena (Hayes et al., 2013). Since the absolute OA concentrations as measured with the 

HR-AMS were under-predicted (Fig. 3b), we focused on OA mass fractions. Mass fractions 

only allow for a qualitative comparison of the OA composition and any differences in the 

modeled and measured mass fractions cannot be interpreted as an under- or over-prediction 

in the absolute mass concentration.

Figure 4 compares model predictions to hydrocarbon-like OA (HOA), cooking OA (COA) 

and oxygenated OA (OOA) factors derived from the ambient HR-AMS data (Hayes et al., 

2013). The AMS HOA factor is typically associated with POA from motor vehicles and 

other fossil fuel sources. Therefore, in this work, it is compared against predictions of POA 

from gasoline and diesel sources. The AMS COA factor is associated with primary cooking 

emissions and is compared against predictions of POA from cooking sources. The AMS 

OOA factor is associated with SOA and is compared against predictions of total SOA; the 

model did not resolve SOA by degree of oxygenation and hence we have not compared 

predictions to the individual HR-AMS-derived semi-volatile OOA (SV-OOA) and low-

volatility OOA (LV-OOA) factors.
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Before discussing the normalized composition predicted by the VBS-IVOC model, we 

briefly describe the findings from Woody et al. (2016), who carefully compared the 

predictions of absolute concentrations of the VBS model to the PMF factors estimated from 

the ambient HR-AMS measurements. Woody et al. (2016) found that (i) the predicted 

cooking-related OA concentrations compared well with the COA factor during the morning 

but were low in the afternoon and late night, (ii) non-cooking POA concentrations compared 

well with the HOA factor except during the afternoon when it was underpredicted, and (iii) 

predicted SOA concentrations matched the diurnal profile of the OOA factor but were a 

factor of 5 lower during all times of the day.

Figure 4 shows that the VBS-IVOC model better predicts the POA–SOA split than the 

Traditional model. For the VBS-IVOC model, the POA–SOA split was 1 : 1 versus ~ 20 : 1 

for the Traditional model. The measurement-based factor analysis estimated a POA–SOA 

split of 1 : 2. For the Traditional model, SOA contributed less than 3 % of the total OA.

In Fig. 4, we show that the predicted gasoline+diesel POA fraction compared well with the 

HR-AMS HOA fraction while the predicted cooking POA fraction was over-predicted 

compared to the HR-AMS COA fraction. For the VBS-IVOC model, about 6 % of the OA 

was from biomass burning, while Hayes et al. (2013) were unable to determine a biomass 

burning factor in their PMF analysis of ambient data. The SOA fraction predicted by the 

VBS-IVOC model was about 35 % lower than the estimated OOA fraction. It is unclear if 

the predicted non-mobile, non-cooking and non-biomass burning POA (which in Pasadena 

accounts for ~ 9 % of the OA) should be combined with SOA before being compared with 

ambient OOA factor. The non-mobile, non-cooking and non-biomass burning POA (or 

anthropogenic (other) POA) category here includes sources such as stationary fuel 

combustion (e.g., natural gas combustion), surface coatings (e.g., metal coating), mineral 

processes (e.g., concrete production), road dust and managed burning (e.g., prescribed 

burns). Unfortunately, the composition of the POA emitted from these sources is not well 

understood and needs to be investigated by future work.

Although predictions from the VBS-IVOC model were much better than the Traditional 

model for the POA–SOA split and the fractional source contribution/composition of OA, in 

Fig. 3b we show that predictions from the VBS-IVOC model were substantially lower than 

the absolute concentrations measured by the HR-AMS. Future research should explore 

higher resolution simulations (< 1 km) for the Los Angeles area, in addition to improving 

estimates of POA emissions (e.g., cooking) and improved representations for SOA formation 

(e.g., higher SOA yields when accounting for vapor wall losses in chambers).

3.3 Model evaluation using IVOC measurements

A novel aspect of the VBS models (VBS and VBS-IVOC) is that they track IVOCs, an 

important class of SOA precursors (Jathar et al., 2014). Campaign-averaged predictions of 

IVOC concentrations are compared in Fig. 5 against IVOC measurements at the Pasadena 

ground site made by Zhao et al. (2014). This was the first time 3-D model predictions of 

IVOCs have been compared against ambient measurements. The VBS-IVOC model did not 

simulate secondary production of IVOC species (for lack of data) and hence model 

predictions in Fig. 5 only include primary emissions of IVOCs. The IVOC measurements 
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shown in Fig. 5 are split into two categories: primary and oxygenated. Zhao et al. (2014) 

attributed the measured primary IVOCs to emissions from mobile sources (gasoline + diesel) 

and oxygenated IVOCs to primary sources and those formed in the atmosphere.

Predicted gasoline and diesel IVOC concentrations (3.9 μg m−3) from the VBS-IVOC model 

were 35 % lower when compared to the hydrocarbon IVOCs concentrations measured by 

Zhao et al. (2014) (6 μg m−3). In contrast predictions from the VBS model were a factor of 4 

lower than the measurements, which highlights the improved representation of IVOCs in the 

VBS-IVOC model; the Traditional model predicted essentially no IVOCs. The under-

prediction of VBS-IVOC could partly be a result of the inability of the model with a 4 km 

horizontal resolution to capture the location-specific concentrations at Pasadena. The 

model–measurement comparison suggests that the VBS-IVOC model reasonably simulated 

the emissions, transport, and chemistry of IVOCs from mobile sources. Furthermore, the 

VBS-IVOC model predicted that the majority of the hydrocarbon IVOCs originated from 

gasoline sources. Coincidentally, the predicted IVOC sum for other anthropogenic sources 

and biomass burning (4.3 μg m−3) compared well with the measured oxygenated IVOCs (4.1 

μg m−3). Given the uncertainty in the model emissions of IVOCs for non-mobile sources 

(POAx1.5), the comparison with oxygenated IVOCs needs to be explored in future work.

3.4 Model intercomparison for OA

We compared predictions from the VBS-IVOC model to OA predictions from Baker et al. 

(2015) and Woody et al. (2016), who simulated air quality in California during CalNex. 

Figure S2 presents maps of averaged concentrations and ratios of POA, SOA and total OA 

(POA + SOA) from the Traditional and VBS-IVOC models. The results were qualitatively 

similar to earlier VBS implementations (Fountoukis et al., 2014; Hodzic et al., 2010; 

Ahmadov et al., 2012; Shrivastava et al., 2011; Tsimpidi et al., 2010) and previous 

comparisons between VBS and Traditional-like models (Robinson et al., 2007; Shrivastava 

et al., 2008; Woody et al., 2016; Jathar et al., 2011). In the VBS-IVOC simulation, total OA 

concentrations were lower in source regions (~ 50 %) but ~ 20–40 % higher away from 

sources than the Traditional model. The decrease in source regions was due to POA 

evaporation, while an increase away from sources resulted from enhanced SOA production. 

The OA predicted by the Traditional model was dominated by POA (1–3 μg m−3) with very 

little SOA (0.2–0.4 μg m−3), while the OA predicted by the VBS-IVOC model had equal 

proportions of POA and SOA.

Figure S3 compares predictions of the VBS and VBS-IVOC models, including average 

concentrations and ratios of POA, SOA and total OA (POA + SOA). The results were 

surprisingly similar. POA concentrations in the VBS-IVOC model were slightly lower (~ 

10 %) in source regions and lower still in non-source regions (~ 20 %) than the VBS model. 

The SOA concentrations were nearly identical and both models predicted more spatially 

uniform OA concentrations compared to the Traditional model. The modest differences in 

POA and SOA likely resulted from a combination of the following three reasons: (1) the 

magnitude of the total SOA precursor emissions in the VBS and VBS-IVOC models were 

basically the same (see BTEX, ALK5 and IVOC emissions data in Fig. 1 for mobile sources 

and in Table S2 for all sources), (2) gasoline and diesel sources contributed only 30–40 % of 
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the predicted OA concentrations in southern California (see Sect. 5 for a detailed 

discussion), and (3) the majority of the SOA predicted in southern California arose from 

aging reactions.

Although the VBS and VBS-IVOC models contain very different representations of mobile 

source emissions, these emissions contributed, on average, to slightly more than one-third of 

the total OA in southern California (see Sect. 4). Therefore, the updates used in the VBS-

IVOC model had a limited influence in affecting the overall OA burden. Strict regulations 

have dramatically reduced emissions from motor vehicles over the past three decades, which 

has both improved air quality and increased the relative importance of other sources to OA 

(McDonald et al., 2015). For example, compared to mobile sources, cooking remains a 

possibly important, yet understudied, source of fine particle pollution in urban airsheds.

The similarity between predictions from the VBS and VBS-IVOC models was also due to 

the importance of aging reactions. Both models used the same aging scheme applied to POA 

and SOA vapors (for more details, see Koo et al., 2014) To quantify its contribution to 

predicted SOA concentrations, we ran the VBS-IVOC model with aging reactions turned off; 

these results are plotted in Fig. S4. Without aging, total predicted OA was nearly halved and 

SOA concentrations were significantly reduced (more than a factor of 5 in source regions, a 

factor of 10 to 20 in terrestrial non-source regions, and up to a factor of 40 over the ocean). 

Given that mobile sources contributed only about one-third of the total OA and that aging 

reactions significantly enhanced OA concentrations, it appears that modest differences in the 

emissions and yield potential of SOA precursors between the VBS and VBS-IVOC models 

had a limited effect on the OA burden.

4 Gasoline versus diesel source contributions to OA

Recent analyses of the CalNex data have led to conflicting conclusions about the 

contribution of gasoline and diesel sources to OA in southern California (Bahreini et al., 

2012; Gentner et al., 2012; Ensberg et al., 2014; Hayes et al., 2013, 2015; Zotter et al., 

2014). The source resolution implemented in the VBS-IVOC model allowed for an 

assessment of the absolute and relative importance of gasoline and diesel sources to OA in 

southern California. In Fig. 6, we plot the campaign-averaged OA concentrations attributable 

to gasoline and diesel use. The SOA production from VOCs emitted by gasoline and diesel 

sources was not tracked separately in the model. Here, the SOA from VOCs was estimated 

based on the contribution of gasoline and diesel sources to the emissions of VOC precursors 

(BTEX and ALK5) in Los Angeles and Orange counties.

In Pasadena, predictions from both VBS models showed that gasoline sources contributed ~ 

7 to 8 times more OA than diesel sources (Fig. 6a), which was somewhat lower than other 

inland locations in southern California (Fig. 6b). Domain-wide, the median predicted 

gasoline contribution to OA was 13 times that of diesel. At Pasadena, predictions from the 

VBS-IVOC model showed that gasoline contributed 20 times more SOA than diesel. Both 

VBS models predicted that the combined (gasoline and diesel) POA-to-SOA split was ~ 1 : 

3, implying that the contribution of gasoline and diesel sources to ambient OA strongly 

depends on SOA production and not directly emitted POA. Based on results from the VBS-
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IVOC model, gasoline sources produced more SOA than POA (SOA~ 3.6xPOA) while 

diesel sources produced less SOA than POA (SOA~ 0.5xPOA). Comparison of the POA 

predictions from the VBS-IVOC model to ambient measurements made by Ban-Weiss et al. 

(2008) suggests that the on-road gasoline POA in the model may be over-predicted by a 

factor of 2, although this over-prediction does not significantly change the gasoline/diesel 

contribution to OA. Finally, the emissions inventory (see Table S1) suggests that the 

Traditional model (with a non-volatile POA and little SOA production) would have 

predicted that gasoline sources contribute 4 times more OA than diesel sources.

Our predictions for the large contribution of gasoline vehicle exhaust to SOA were 

consistent with the weekday/weekend analysis of Bahreini et al. (2012) and qualitatively 

similar to the findings of Zotter et al. (2014) and Hayes et al. (2013). However, Hayes et al. 

(2015) predicted a much larger contribution of diesel sources to SOA than this work (only 

1.5 to 2 times lower than gasoline), which can mostly be attributed to the differences in 

emissions inputs for S/IVOC emissions. (Hayes et al. (2015) estimated that 44–92 % of the 

SOA comes from S/IVOCs. Hayes et al., 2015 estimated S/IVOC emissions by scaling POA 

emissions based on Schauer et al. (1999) and using the volatility distribution from Robinson 

et al. (2007). The POA scaling data are from two medium-duty vehicles manufactured more 

than two decades ago and the volatility data are from a single diesel engine manufactured a 

decade ago. In contrast, our work used a much more comprehensive dataset to determine S/

IVOC emissions from gasoline and diesel sources.

We also investigated the sensitivity of the VBS-IVOC predictions to uncertainty in diesel 

IVOC emissions. Zhao et al. (2015) recently directly measured the IVOCs from emissions of 

on-road diesel engines. They found that IVOCs could contribute up to 60 % of the NMOG 

emissions, which was much greater than the 20 % used here. To explore the implications of 

the findings of Zhao et al. (2015), we performed two additional sensitivity simulations with 

the VBS-IVOC model where we scaled IVOC emissions from diesel sources by a factor of 3 

and 5, which were effectively equivalent to IVOC-to-NMOG ratios of 0.6 and 1.0, 

respectively. For these simulations, additional IVOC mass was added to the inventory.

Results from the IVOC sensitivity simulations are also shown in Fig. 6a. We found that 

increasing the IVOC emissions proportionally increased the OA contribution from diesel 

sources. However, even if all of the NMOG emissions from diesel were IVOCs (an upper 

bound estimate), gasoline-related OA still dominated OA from diesel sources. A factor of 5 

increase in IVOC emissions only resulted in a 0.025 μg m−3 increase in total OA mass 

concentration. Therefore, uncertainty in the diesel IVOC emissions did not appear to alter 

the model–measurement comparison discussed earlier.

Figure 6c shows the cumulative distribution for the fractional contribution of gasoline and 

diesel sources to total OA across southern California. Gasoline sources contributed much 

more to the total OA (median contribution of 35 %) than diesel sources (median contribution 

of 2.6 %) over southern California (Fig. 6c). Together, mobile sources (gasoline and diesel 

use) contributed ~ 30–40 % (10th–90th percentile) of the predicted OA concentration in 

southern California. Therefore, mobile sources remain the single most important source 

despite decades of increasingly strict emissions controls. The balance of the OA was from 
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cooking POA (median contribution of 10 %), biogenic SOA (median contribution of 10 %) 

and all other anthropogenic sources (median contribution of 40 %, which includes SOA 

from cooking sources). Gasoline sources were still predicted to be the largest single source 

category. This finding partially supports the conclusion of Ensberg et al. (2014) that mobile 

sources do not contribute to the majority of OA in southern California and potentially 

explains why the updates only modestly changed the overall model predictions.

Figure 6a resolves the OA contributions based on the precursor class at the Pasadena site. 

The VBS-IVOC model predicted that IVOCs, particularly from gasoline vehicles, formed 

almost as much SOA as VOCs (long alkanes and single-ring aromatics). This was in contrast 

to Jathar et al. (2014), who found that unspeciated precursors (or IVOCs) were 

approximately a factor of 4 larger than VOCs in forming SOA in chamber experiments. One 

possible explanation for this difference was that Jathar et al. (2014) did not account for the 

effects of continued aging of IVOC oxidation products on OA concentrations. Simulations 

with the VBS-IVOC model with aging reactions turned off (discussed in Sect. 3.4) indicate 

that aging enhanced VOC SOA by a factor of 14 but enhanced IVOC SOA only by a factor 

of 3–5. The different enhancements were caused by different product distributions for VOC 

and IVOC SOA in volatility space. This underscores the uncertainty in the treatment of 

aging reactions.

Platt et al. (2014) and Gordon et al. (2013) recently argued that off-road sources, especially 

those powered using two-stroke engines, can be a large contributor to fine particle pollution 

in cities. In the inventory of Baker et al. (2015), which was used in this work, off-road 

sources contributed to ~ 40 % of the NMOG and ~ 40 % of the POA emissions from mobile 

sources. Given their substantial emissions, it is critical then that emissions rates from these 

sources be accurately represented in large-scale models. Only one study so far has reported 

VOC and IVOC emissions profiles from off-road engines. May et al. (2014) have found that 

two-stroke off-road gasoline engines have similar emissions profiles as on-road gasoline 

engines, but that the four-stroke off-road gasoline engines had much higher IVOC fractions 

than on-road gasoline engines. However, Platt et al. (2014) have shown that most of the SOA 

produced from two-stroke off-road gasoline engines can be explained by the emissions and 

oxidation of aromatic compounds and they did not find IVOCs to be an important precursor 

of SOA. In our work, we have assumed that the VOC speciation, IVOC fraction of NMOG, 

and the SOA parameterization for IVOCs were identical between the on- and off-road 

mobile sources. Given the uncertainties, these assumptions may need to be examined in 

detail in future work.

5 Conclusions

In this work, we developed an updated version of the CMAQ model that included revised 

estimates of (i) VOC and IVOC SOA precursors from gasoline and diesel sources and (ii) 

experimentally constrained parameterizations for SOA production from IVOCs. Predictions 

of OA mass concentrations from the updated model (VBS-IVOC) slightly under-predicted 

daily averaged, filter-based measurements at CSN sites in California during May and June 

2010 (fractional bias = −23 % and fractional error = 43 %) but were a factor of 3 lower than 

aerosol mass spectrometer-based measurements made at Pasadena as part of the CalNex 
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campaign. The Pasadena site may have been influenced by local sources and transport not 

captured by the model at a 4 km resolution. We recommend future modeling studies to be 

performed at higher resolution.

When compared to a Traditional model of OA in CMAQ that includes a non-volatile 

treatment of POA and no SOA from IVOCs, the VBS-IVOC model produced different 

spatial patterns of OA with lower (~ 50 %) concentrations in source regions but higher (~ 

20–40 %) concentrations away from the sources. The VBS-IVOC model in comparison to 

the Traditional model improved predictions of the sources and composition of OA. These 

findings are consistent with previous comparisons between the Traditional and VBS models 

and highlight the importance of the use of an OA model that includes semi-volatile and 

reactive POA and SOA formation from IVOCs.

Predictions of OA from the VBS-IVOC model were similar to those from a recently released 

research version of CMAQ (VBS) that included semi-volatile POA and SOA formation from 

IVOCs (Woody et al., 2016). The predictions of these two models were similar for three 

reasons. First, the VOC and IVOC updates in this work, surprisingly, did not substantially 

alter the total emissions of SOA precursors in southern California (although the VOC-IVOC 

composition was different between the two models for gasoline sources). Second, mobile 

sources only accounted for slightly more than one-third of the total OA in southern 

California and hence updates to the emissions and SOA production from mobile sources had 

a limited influence on the total OA burden. Third, and most important, was that both models 

predicted that multigenerational aging of vapors in equilibrium with OA was a major source 

of SOA. Both models used similar aging mechanisms that were conceptually based on the 

work of Robinson et al. (2007), which assumed a constant reaction rate constant and only 

allowed for the formation of functionalized, lower-volatility products. However, reaction 

rates may vary with C* and O : C of the OA and fragmentation reactions can be increasingly 

important at longer timescales (Kroll et al., 2011). Furthermore, existing aging mechanisms 

have not been constrained with laboratory data. This implies that the OA predictions, despite 

the substantial new data, are poorly constrained as one moves downwind of source regions. 

Murphy and Pandis (2009) reported improved model performance when aging reactions 

were turned off for biogenic SOA. Recently, Jathar et al. (2016) proposed that laboratory 

chamber experiments that were used to parameterize SOA production may already include 

products from some aging reactions, raising concerns about double counting. Although some 

work has been done to understand the aging of biogenic SOA (Donahue et al., 2012; Henry 

and Donahue, 2012); future laboratory work needs to be directed in understanding the role 

of aging of OA vapors formed from anthropogenic sources on the mass and properties of 

OA.

For the first time, we compared model predictions to ambient measurements of IVOCs. The 

new VBS-IVOC model better predicted the ambient IVOC concentrations compared to the 

Traditional and VBS models. This suggests that the updated model reasonably simulated the 

emissions, transport and chemistry of IVOCs from mobile sources. However, the model 

representation of IVOCs from non-mobile sources remains poorly constrained and needs to 

be explored through future emissions, laboratory and modeling studies.
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Finally, the VBS-IVOC model predicted that mobile sources accounted for 30–40 % of the 

OA in southern California, with half of the OA being SOA. The diurnal variation of OA in 

Pasadena supports the hypothesis that substantial OA is produced through photochemical 

reactions vs. primary emissions (Hayes et al., 2013). Gasoline-powered sources contributed 

13 times more OA than diesel-powered sources and sensitivity simulations indicated that 

these findings were robust to changes in diesel emissions. Model predictions suggested that 

half of the mobile source SOA was formed from the oxidation of IVOCs, which 

demonstrates the importance of including IVOCs as an SOA precursor. However, the relative 

contribution of VOCs and IVOCs to SOA formation was sensitive to the inclusion of aging 

reactions. While both laboratory and field evidence indicates that aging is an important 

atmospheric process, it is unclear if and by how much aging enhances OA over regional 

scales and whether aging chemistry varies by precursor and source (Jathar et al., 2016). For 

these reasons, the relative importance of VOC and IVOC SOA precursors and the source 

apportionment presented here is a first estimate and will likely evolve as we develop better 

models to simulate the dependence of aging on SOA formation.
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Figure 1. 
Total emissions from 4 May to 30 June 2010 for POA, BTEX (aromatics), ALK5 (long 

alkanes), and IVOCs for gasoline and diesel sources in the Los Angeles and Orange counties 

for the three OA models: Traditional, VBS, and VBS-IVOC.
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Figure 2. 
Averaged predictions from the VBS-IVOC model for (a) total OA (μg m−3), (b) POA 

fraction, (c) SOA fraction, (d) total gasoline OA (μg m−3), (e) total diesel OA (μg m−3), (f) 
biogenic SOA (μg m−3), and (g) other OA (μg m−3) over southern California.
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Figure 3. 
Scatter plot of VBS-IVOC OA predictions versus 24 h measurements from (a) filters 

collected at sites in the Chemical Speciation Network (CSN) and (b) HR-AMS 

measurements at the Pasadena ground site during the CalNex campaign. In panel (a) the 

model–measurement comparison is for six sites in California (Fresno, Bakersfield, Central 

Los Angeles, Riverside, El Cajon, and Simi Valley). f.b. is the fractional bias 

1
N ∑i = 1

N P − M
P + M

2
 and f.e. is the fractional error 1

N ∑i = 1
N ∣ P − M ∣

P + M
2

; P is the predicted value, M 

is the measured value and N is the sample size.
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Figure 4. 
Averaged, normalized composition of OA at the Pasadena ground site as predicted by the 

Traditional and VBS-IVOC models. Predictions are compared to PMF factors derived from 

ambient HR-AMS data collected in Pasadena Hayes et al. (2013).
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Figure 5. 
Comparison of predicted and measured campaign-averaged IVOC concentrations at the 

Pasadena ground site. Measured concentrations are from Zhao et al. (2014). Here, both 

model predictions and measurements only include primary IVOCs. The predictions of 

IVOCs include all vapors in equilibrium with POA.
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Figure 6. 
(a) VBS-IVOC predicted campaign-averaged OA concentrations attributable to gasoline and 

diesel sources at the ground site in Pasadena; the IVOCx1 result for diesel use is from the 

VBS-IVOC simulation, and the IVOCx3 and IVOCx5 results are from separate sensitivity 

simulations where IVOC emissions from diesel are scaled by a factor of 3 and 5, 

respectively, as described in the text. (b) Ratio of gasoline OA to diesel OA over southern 

California and (c) cumulative distribution functions that show the fractional contribution of 

gasoline plus diesel OA to total OA in southern California.
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