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Abstract

Peripheral visual perception is characterized by reduced information about appearance due to 

constraints on how image structure is represented. In particular, visual crowding (poorer 

recognition of peripheral targets when presented among flankers) is a consequence of excessive 

integration in the visual periphery. The basic phenomenology of visual crowding and a number of 

other tasks have been successfully accounted for by a summary-statistic model of pooling, 

suggesting that texture-like processing is a useful model of how information is reduced in 

peripheral vision. Here, I attempt to extend the scope of this model by examining a recently 

reported property of peripheral vision: reduced perceived numerosity in the periphery. I 

demonstrate that a summary-statistic model of peripheral appearance accounts for reduced 

numerosity in peripherally-viewed arrays of randomly placed dots, but does not account for 

observed effects of dot clustering within such arrays. The model thus offers a limited account of 

how numerosity is perceived in the visual periphery. I also demonstrate, however, that the model 

predicts that numerosity estimation is sensitive to element shape, which represents a novel 

prediction regarding the phenomenology of peripheral numerosity perception. In closing, I discuss 

possible ways to extend the model to account for a broader range of behavior and also the potential 

for using the model to make further predictions regarding how number is perceived in untested 

scenarios in peripheral vision.
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Introduction

Peripheral vision is subject to lossy encoding such that substantial information content is not 

available to observers. Basic examples of how information is lost due to the constraints 

imposed by visual physiology are the reductions in acuity and color sensitivity in peripheral 

vision. Peripheral visual acuity is poor largely due to changes in photoreceptor size as 

eccentricity increases (Virsu & Rovamo, 1979) and similarly, peripheral color sensitivity is 
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reduced as a direct result of the decreasing proportion of cones vs. rods as retinal 

eccentricity increases (Martin et al., 2001).

Beyond these initial limitations, there are downstream constraints on peripheral vision that 

further limit the fidelity of the visual system’s representation of visual structure. In 

particular, the phenomenology of visual crowding (Whitney & Levi, 2011) is an important 

example of how perception is limited by processes that further reduce representational 

fidelity in peripheral vision. Visual crowding refers to deficits in peripheral target 

recognition induced by neighboring flanking items. Crowding does not impair target 

detection, which differentiates crowding from masking (Pelli, Palomares, & Majaj, 2004), 

and observers’ ability to identify isolated peripheral targets rules out accounts based on 

visual acuity in the periphery. Crowding thus results from additional constraints on visual 

processing that limit representational fidelity. Understanding the nature of these constraints 

and determining how they limit visual processing in computational terms is an ongoing 

enterprise. There are a range of factors that alter crowding strength, and the effects of 

manipulating flanker/target similarity (Bernard & Chung, 2011), the geometric arrangement 

of flankers relative to targets (Manassi, Sayim & Herzog, 2012), and other spatial and 

temporal factors that influence performance (Kooi et al., 1994), all offer important 

constraints on the computational mechanisms that lead to crowding, and by extension, may 

also govern a wide range of phenomena observed in peripheral vision (Rosenholtz, 2011). 

Here, I consider how these mechanisms may govern the perception of numerosity in 

peripheral vision using a recent model of peripheral visual function to explain recent 

empirical data.

A key issue in understanding how peripheral vision works is characterizing the nature of 

integration in peripheral vision. A fundamental assumption of most descriptions of crowding 

and related phenomena is that image structure is somehow pooled over increasingly large 

chunks of the visual field as eccentricity increases. In the context of crowding, the size of the 

regions in which crowding occurs scales with eccentricity (Pellu & Tillman, 2008; Rosen, 

Charkravarti & Pelli, 2014), a relationship that is referred to as Bouma’s Law (Bouma, 

1973). This is a quantitative description of where information is pooled, but it does not tell 

us how information is pooled. Subjectively, peripherally-viewed image features often appear 

jumbled or mixed together, but what is the nature of that jumbling and mixing? What 

processes lead to a description of image structure such that visual features appear to be re-

arranged and combined in strange ways? One proposal is that image structure may be 

represented by summary statistics that describe visual features using distributional 

information (e.g. texture descriptors), leading to a histogram-like representation of 

appearance that is sufficient to capture some aspects of what objects or targets are present in 

a peripheral region, but that lacks joint encoding of form and location. In general, models 

based on summary statistics record some information about what features were present in a 

stimulus, but tend to lack information about where those features were and how they co-

occurred spatially with other features. Initially, summary-statistic models of crowding used 

very simple distributional measurements to account for behavior. For example, Parkes et al. 

(2001) suggested that stimulus averaging within a crowded array could explain observers’ 

responses in an orientation discrimination task. Rather than representing each item in a 

crowded array, their proposal was that observers were subject to compulsory averaging of 
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the orientations in the stimulus and made responses based on that average. While adequate 

for simple scenarios (e.g oriented bars) it is difficult to understand exactly what averaging 

would mean for an array of complex objects (Wallace & Tjan, 2011). Recently, texture-

based summary-statistic models that address this issue have been applied to a range of 

problem domains. Such models rely on texture features to describe image structure and are 

applicable to arbitrary image inputs. Also, using models that support texture synthesis makes 

it possible to test model predictions behaviorally using “mongrel” images that reflect the 

image constraints imposed by the statistical descriptors imposed by the model. If the model 

captures the information loss imposed by peripheral vision, then performance with original 

images presented in the periphery should match performance with mongrels. In several 

recent reports, performance with mongrels generated using the Portilla-Simoncelli texture 

synthesis algorithm (Portilla & Simoncelli, 2000) does correlate significantly with 

performance in peripheral tasks, suggesting this is a useful model of peripheral encoding. 

For example, Balas, Nakano & Rosenholtz (2009) demonstrated that mongrels could 

account for performance across a range of visual crowding tasks. Visual search performance, 

which depends on observers’ ability to identify candidate target locations in the periphery, is 

also accounted for by mongrels that reflect local summary statistics (Rosenholtz et al., 

2012). More broadly, the texture statistics in the Portilla-Simoncelli model may be a good 

approximation of mid-level computations that are carried out in area V2 (Freeman et al. 

2013) that are used to encode scene structure across the visual field (Freeman & Simoncelli, 

2011). This particular set of summary statistics is thus a promising candidate model of 

peripheral visual function that may explain performance in many tasks.

In the present study I have applied the model to numerosity perception in the visual 

periphery, which is an interesting problem domain for several reasons. Perceived numerosity 

in large arrays of items appears to depend upon texture-like properties of the array including 

density and local area computations (Durgin, 2008; Raphael, Dillenburger, & Morgan, 

2013), suggesting that texture features may be appropriate descriptors of array appearance. 

Though numerosity judgments are not necessarily texture-based in all settings (Mandler & 

Schebo, 1982; Palomares et al., 2011), texture representations do appear to be employed for 

numerosity judgments as a function of stimulus features like array density. For example, 

Anobile, Cicchini & Burr (2014) demonstrated that when element density is relatively low, 

numerosity discrimination thresholds have a constant Weber fraction (linear increases as a 

function of numerosity). However, when density is comparatively high, numerosity 

discrimination thresholds increase according to a square-root law, which suggests a different, 

texture-like, mechanism for low vs. high-density arrays.

Perceived numerosity has also been shown to change as a function of peripheral viewing in 

ways that are consistent with visual crowding. The aforementioned transition between linear 

vs. square-root threshold increases as a function of numerosity occurs at different dot 

densities as a function of eccentricity, for example, such that texture mechanisms appear to 

be utilized at lower densities in the periphery (Anobile et al., 2015). This dependence on 

eccentricity is consistent with the impact of visual crowding on other tasks, and the square-

root dependence between discrimination thresholds and numerosity further supports the use 

of texture descriptors as a tool for understanding peripheral numerosity in particular. 

Moreover, there are further unique features of how number is perceived in the periphery that 
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are intriguing targets for a model of peripheral vision. Specifically, Valsecchi, Toscani, & 

Gegenfurtner (2013) showed that the numerosity of peripherally-viewed arrays of dot is 

reduced relative to numerosity perceived in the fovea. They reported that numerosity was 

reduced by approximately 60–80% depending on the specific stimulus configuration and 

eccentricity used in their experiments, suggesting that the appearance code that supports 

peripheral visual processing represents the array in such a way that number is consistently 

reduced. By manipulating various stimulus properties including the minimum distance 

between elements, the authors demonstrated that visual crowding may drive this effect. 

Given the success of explaining visual crowding via specific summary statistics and the 

evidence indicating that crowding contributes to behavioral performance in peripheral 

numerosity perception, I therefore chose to investigate whether the Portilla-Simoncelli 

texture statistics could account for the reduction in perceived numerosity reported by 

Valsecchi, Toscani, & Gegenfurtner.

Specifically, I focused on examining whether parameter values that were sufficient to 

explain observers’ performance in previously reported visual crowding tasks (Balas, Nakano 

& Rosenholtz, 2009) yielded numerosity underestimates when the model was presented with 

arrays similar to those used in Valsecchi et al. (2013). In particular, I chose to examine 

whether the model could account for the amount of underestimation when randomly-placed 

dots were presented to observers in the periphery and also whether the model would exhibit 

similar sensitivity to varying inter-dot distance. Overall, these simulations reveal that 

decreased numerosity emerges naturally from the model in all conditions. However, while 

the quantitative fit is good when randomly-placed dots are used as target stimuli, the model 

does not exhibit sensitivity to inter-dot distance that is consistent with human performance. 

Despite this shortcoming, I also demonstrate that the model exhibits sensitivity to element 

shape, which represents a novel prediction regarding peripheral numerosity perception that 

remains to be tested in human participants. These particular summary statistics thus offer 

limited explanatory power for understanding peripheral numerosity perception, which 

constrains the scope of this model of peripheral vision. Nonetheless, I argue that the model 

may still suggest interesting directions for future research and also discuss principled 

extensions of the model that may reveal critical properties of peripheral vision that must be 

adequately characterized to increase the generality of summary-statistic models of the 

periphery.

Methods

In the simulations I report here, my aim was to examine three distinct aspects of peripheral 

numerosity perception, two of which were reported by Valsecchi et al. (2013) and a third 

scenario that has not been tested psychophysically. With regard to the former, I carried out 

simulations to determine: (1) If peripheral numerosity would be underestimated in 

“mongrel” images created using the Portilla-Simoncelli algorithm, and (2) If varying the 

minimum inter-dot distance between elements in a peripherally-viewed array would affect 

underestimation in mongrel images. With regard to the latter, I carried out additional 

simulations to determine if changing element shape (dots vs. crosses/circles, e.g.) led to 

changes in numerosity underestimation. In general, the model supports quantitative 
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measurement of the amount of underestimation, allowing direct comparison between human 

observers and the model.

Creating dot arrays

To generate the arrays that mongrel images would be based on, each simulation began by 

plotting randomly-placed elements using basic graphing routines in Matlab. To examine 

peripheral numerosity subject to random element placement (Exp. 1), element positions 

were sampled from a regular grid spanning 0–255 units in both the x and y-axes, with 

element centers spaced 10 units apart (to eliminate overlap) within a bounding frame 10 

units wide (to eliminate elements being cut off during plotting). Each dot was then randomly 

perturbed horizontally and vertically by sampling x and y displacements independently from 

a normal distribution with zero mean and a standard deviation of 2 units. To examine the 

impact of clustering (varying inter-element distance) on peripheral numerosity (Exp. 2), 

element positions were sampled according to a satellite algorithm (Allik & Tuulmets, 1991) 

that guarantees that each newly-sampled element is positioned within some fixed distance 

from a previously plotted element. Finally, to examine the potential effects of element shape 

on numerosity perception (Exp. 3), the markers used to plot randomly selected points could 

either be dots (closed circles), crosses, or naughts (open circles). In all cases, the Matlab plot 

depicting all of the dots was resized (if necessary) to 256×256 pixels before texture analysis 

and synthesis.

Synthesizing “mongrels” from dot arrays

To create a mongrel from each simulated dot array, I applied the Portilla-Simoncelli texture 

synthesis algorithm to each image. This involves first using analysis routines to describe the 

target image using a set of joint wavelet statistics. The analysis algorithm includes free 

parameters that specify the number of spatial scales (N_sc) used to compute wavelet 

coefficients, the number of orientation bands (N_or) used to describe image structure, and 

the size of the spatial neighborhood (N_neigh) over which local correlations are computed. I 

chose these parameter values to match those reported in Balas, Nakano, & Rosenholtz 

(2009) to test the hypothesis that values that proved adequate for accounting for visual 

crowding may also account for numerosity underestimation in the periphery (N_sc=4, 

N_or=4, N_neigh=9). Following texture analysis, synthesis proceeded by generating a 

random starting image and adjusting this image iteratively until it matched the target image’s 

statistics (Figure 1).

Counting dots in original and synthetic arrays

To objectively measure numerosity in each dot array, I applied morphological operators to 

thresholded versions of the original and synthetic arrays generated for each simulated trial. 

The synthetic arrays were histogram-matched to the parent image used to generate them, and 

an intensity threshold was applied to both images to convert them to binary images. Both 

images consistently had bimodal intensity histograms with narrow peaks centered near 

intensity values of 2 (near-black) and 200 (near-white), making it possible to impose a 

threshold in between these values without concern that the outcome depended critically on 

the exact intensity threshold used. Next, I applied Matlab functions for labeling contiguous 

regions to obtain the size of each black region in both the original and synthetic image. Each 
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original and synthetic array was thus described in terms of the number of segmented regions 

in the thresholded image. Regions in the synthetic array were only counted if they were at 

least as large as the smallest region in the original array. In keeping with the original report 

by Valsecchi et al., I expressed model performance using the ratio of dot numerosity in the 

synthetic image relative to its parent. Perfect performance would yield a ratio of 1, while 

overestimates would be larger and underestimates smaller than this. For each combination of 

stimulus parameters (target numerosity, clustering conditions) I conducted 50 simulations to 

obtain mean underestimation ratios and bootstrap estimates of 95% confidence intervals.

Results

To summarize the results of the model, I briefly describe the parameters that were allowed to 

vary across the three experimental scenarios I considered here and report underestimation 

ratios for all conditions as compared to the results reported in Valsecchi et al. (2013).

Experiment 1 – Random Dot Placement

In these simulations, target numerosity was either 30, 60 or 90 dots and elements were 

randomly positioned in the original arrays. Dot size was set to a Matlab marker size of 18 

units. The observed underestimation ratios for each target numerosity (with 95% confidence 

intervals are listed in Table 1.

These ratios exhibit the stability across target numerosities reported in Valsecchi et al. 

(2013) and are quantitatively a good fit to their results from the 12-degree eccentricity 

condition in their Exp. 1 (These means vary between 79%-85% across the same target 

numerosities).

Experiment 2 – Clustering

In these simulations, target numerosity was either 20, 40, or 60 dots. For each target 

numerosity, the minimum allowed inter-dot distance was controlled via “Satellite” sampling 

to yield “small”, “medium” and “large” clustering. In Table 2, I have listed the mean 

underestimation ratio for each condition along with 95% confidence intervals. At best, the 

model exhibits only a mild sensitivity to clustering (an increase of approximately 5% 

between the small and large clustering conditions), which is far smaller than the 

approximately 30% difference reported in Valsecchi et al.’s Exp. 2. Clustering thus matters 

somewhat to the model, but not nearly as much as it matters to human observers.

Experiment 3 – Element Shape

In these final simulations using Portilla-Simoncelli mongrels (which have not been tested 

psychophysically), target numerosity was either 40 or 60 elements. For each numerosity, 

target shape was either dots (closed circles) 18 units in size, crosses that were 8 units in size, 

or naughts (open circles) that were also 8 units in size. The marker size of naughts and 

crosses was selected so that element size in the original arrays would be matched when 

naughts and crosses were drawn with a line of sufficient thickness to guarantee that elements 

in the original images were counted correctly using our morphological operators. The mean 

underestimation ratio for each condition with associated 95% confidence intervals is listed in 
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Table 3. At both target numerosities, underestimation varies with shape: crosses lead to 

greater underestimation than dots, and naughts lead to even greater underestimation.

Image blur as an alternate model of peripheral numerosity

Finally, to assess whether or not increased image blur in peripheral vision could also account 

for the results, I carried out additional simulations in which I generated “blur mongrels” 

made by convolving the original dot arrays with Gaussian filters with increasingly large 

spatial kernels. In these simulations, I observed a clear effect of target numerosity on the 

underestimation ratio – for numerosities of 30 or 60 dots, even severe blur tended to yield 

underestimation ratios of approximately 90%, while the same amount of blur applied to an 

array of 90 dots yielded a much larger underestimation ratio of approximately 15–20%. 

These effects were further exacerbated when clustered dots were used, since small inter-dot 

distance could lead to arrays that were dramatically underestimated due to the vast majority 

of dots being blurred together. This discrepancy between an extreme effect of target 

numerosity on “blur mongrels” and the lack of such an effect in human observers suggests 

that reduced numerosity is likely not the result of blur, which is consistent with arguments 

made in prior reports.

Discussion

These simulations demonstrate that some (but not all) aspects of peripheral numerosity 

perception emerge naturally from a summary-statistic model of peripheral vision. This is 

consistent with an emerging computational description of peripheral vision in terms of the 

constraints imposed by a texture-like statistical code for appearance (Rosenholtz, 2011) and 

also with the proposal that perceived numerosity depends on crowding and texture statistics 

in some settings. The model is limited in scope, however. While performance when dots are 

placed randomly is quantitatively good, it fails to reproduce the phenomenology associated 

with dot clustering. This latter outcome complicates matters a good deal, because the 

psychophysical impact of clustering (and related results concerning element density) is an 

important piece of supporting evidence for the putative relationships being explored here 

between peripheral vision, visual crowding, texture representations, and numerosity 

perception. I conclude by discussing the implications of the limited success of the model 

first, then consider how the model may be extended in a principled fashion to account for a 

broader range of data.

To speak first of what the model can do, like prior reports describing correspondences 

between summary-statistic codes for appearance and the perception of peripheral targets, I 

find that the basic phenomenology of a task that depends on peripheral vision is a natural 

consequence of using texture features to describe discrete objects: Mongrels underestimate 

numerosity. Critically, the observation that the same parameter values that predict visual 

crowding performance across a range of conditions also account for perceived numerosity in 

arrays of randomly-placed dots (Exp. 1) suggests that at least in some cases, numerosity 

judgments are affected by the information lost due to the imposition of an image-based 

texture representation of image structure. An advantage of this model is that it requires 

neither an explicit description of items in an array in terms of their position or “occupancy” 
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(Allik & Tuulmets, 1991), nor does it depend on special computations that capture 

numerosity/density (Dakin et al., 2011). Instead, the model depends on a general texture-

based description of appearance that can be applied to arbitrary inputs. This does not 

preclude specific mechanisms for number processing that operate at later stages of visual 

cognition, but does offer a means of accounting for some properties of number perception in 

terms of lower-level processes. This model also succeeds where some simpler ones fail: 

Estimating numerosity after blurring dot arrays has a tendency to lead either to catastrophic 

amounts of underestimation as clustering or target numerosity increases, or to lead to very 

little underestimation at all.

But what to make of the failure to reproduce the effects of clustering? This obviously signals 

that this model (which has been successful in many domains) fails to capture some feature of 

peripheral vision or numerical cognition. That the model has such a limit is not surprising 

and delineating the boundaries of the model’s ability to account for behavior is an important 

step towards developing better theories of peripheral vision. Though mongrel-like images of 

natural scenes have been described as metameric stimuli that make it possible to assay 

specific stages of processing along the ventral visual stream (Freeman & Simoncelli, 2011), 

it is also the case that adult observers are quite sensitive to discrepancies between natural 

images and synthetic images made from them (Balas, 2006; Wallis, Bethge & Wichmann, 

2016). Portilla-Simoncelli mongrels are thus known to not capture all the information 

observers have access to in peripheral vision, and here we are likely seeing a consequence of 

that imperfect representation. Applying full-field texture synthesis with multiple, 

overlapping pooling regions (per Freeman & Simoncelli, 2011) may be one way to extend 

the scope of the current model in a principled fashion, and perhaps this may account for a 

wider range of phenomena in this domain. Alternatively, it may also be necessary to include 

a wider class of texture descriptors (center-surround descriptors, e.g.) to arrive at a more 

expressive vocabulary for peripheral image structure. Of course, it may also be the case that 

there are simply other mechanisms at work here, and this is as far as summary statistics will 

take us in terms of understanding how numerosity is perceived.

With regard to this latter possibility, however, I want to emphasize the novel results included 

here regarding the impact of shape on underestimation. To my knowledge, this outcome has 

not been observed experimentally and contradicts the overall characterization of number 

perception as being sufficiently abstract to be robust to manipulations of element shape or 

orientation. While the current model clearly has limits, its moderate success also argues for 

its utility as a means of generating novel hypotheses regarding peripheral vision. My results 

suggest in part that we need a better model of the periphery to account for some of the ways 

people perceive number, but they also suggest that we can potentially learn more about how 

peripheral vision in general (and number perception in particular) works by querying 

appearance-based models like this one. I conclude therefore, that while summary-statistic 

representations of the periphery cannot currently get us all the way towards a comprehensive 

account of peripheral numerosity, they offer enough explanatory power to be an important 

platform for further exploration of peripheral visual function.
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Figure 1. 
An example of an original dot array and a synthetic array created from this parent image. 

These images have been processed per the description in the text, which includes resizing of 

the original array and thresholding of both the original and synthetic arrays to yield a binary 

image.
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Table 1

Mean underestimation ratios for dots as a function of target numerosity. Values in brackets represent 95% 

confidence intervals of the mean.

Mean underestimation ratio

30 dots 85.2% [82%–88%]

60 dots 85.4% [83%–87%]

90 dots 86.0% [84%–87%]

Atten Percept Psychophys. Author manuscript; available in PMC 2018 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Balas Page 13

Table 2

Mean underestimation ratios as a function of inter-element distance (clustering) and target numerosity. Values 

in brackets represent 95% confidence intervals of the mean.

20 elements 40 elements 60 elements

Small 80.2% [75%–86%] 81.0% [79%–83%] 84.4% [82%–87%]

Medium 84.6% [72%–99%] 83.3% [77%–87%] 83.0% [80%–85%]

Large 86.4% [84%–89%] 86.5% [82%–88%] 86.5% [85%–89%]
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Table 3

Mean underestimation ratios as a function of element shape and target numerosity. Values in brackets represent 

95% confidence intervals of the mean.

40 elements 60 elements

Dots 85.3% [84%–86%] 85.9% [84%–87%]

Crosses 76.8% [73%–78%] 78.0% [75%–80%]

Naughts 66.8% [64%–70%] 66.6% [65%–68%]
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